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Spin-orbit interaction in curved graphene ribbons
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We study the electronic properties of electrons in flat and curved zigzag graphene nanoribbons using a
tight-binding model within the Slater Koster approximation, including spin-orbit interaction. We find that a
constant curvature across the ribbon dramatically enhances the action of the spin-orbit term, strongly influencing
the spin orientation of the edge states: Whereas spins are normal to the surface in the case of flat ribbons, this is
no longer the case for curved ribbons. This effect is very pronounced, the spins deviating from the normal to the
ribbon, even for very small curvature and a realistic spin orbit coupling of carbon. We find that curvature results
also in an effective second neighbor hopping that modifies the electronic properties of zigzag graphene ribbons.
We discuss the implications of our findings in the spin Hall phase of curved graphene ribbons.
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I. INTRODUCTION

The electronic structure of graphene depends both on
its structure at the atomic scale, determined by the sp2

hybridization, and on its structure at a much larger length scale,
determined the shape of the sample.1,2 Thus, the electronic
properties of flat graphene differ in subtle but important ways
from rippled graphene3 and the properties of carbon nanotubes
are fully determined by the way they fold.1 Curvature is be-
lieved to affect the transport,4,5 magnetic,6 and spin relaxation
properties of graphene.7 In a wider context, the interplay
between mechanical deformations and electronic properties,
the so-called flexoelectronics, is giving rise to a new branch
in nanotechnology. Whereas conventional electronics devices
are based on the capability to tune their working properties by
application of external perturbations in the form of electric and
magnetic fields, mechanical deformation can have a major im-
pact on the properties of nanoelectronic devices. This results in
a wide range of new effects, like piezoelectric nanogenerators8

and field effects induced by piezoelectric effects9 in ZnO
nanowires, and stress driven Mott transitions in VO2

nanowires.10

The spintronic and magnetic properties of graphene are
intriguing. From the theory side, there are two bold predictions.
First, graphene should display a quantum spin Hall phase
with spin-filtered states in the zigzag edges.11,12 Second, the
same edges should have ferromagnetic order.13–22 The striking
progress in the fabrication of atomically precise graphene
ribbons is starting to provide experimental evidence for the
existence of stable zigzag edges.23–25 On the other hand,
several groups have reported the observation of ferromagnetic
order in graphene and graphite,26–30 in most instances in
samples that contain many flakes or structural disorder, or
have been irradiated.

The observation of the spin Hall phase in flat graphene
would require reducing the temperature below the spin-orbit
induced gap, which is smaller than 10 μeV.31–33 From this
point of view it would be desirable to increase the strength
of spin-orbit interaction in graphene. Hints of how this could
be achieved come from experiments. On one side, the spin
relaxation time of graphene, as measured in lateral spin valves,
is in the range of 100 ps,34 much shorter than expected

from the small size of spin-orbit and hyperfine nuclear
coupling.35 Thus, some mechanism enhancing the strength
of spin-orbit interaction must be at play in these samples. A
possible candidate could be curvature7,36 induced by ripples
and adatoms.37,38 Curvature has been shown to enhance the
effect of spin-orbit coupling in the case of carbon nanotubes,
for which recent experimental work has reported zero field
splittings induced by spin-orbit coupling splittings in the range
of 200 μeV.36

The recently reported fabrication of curved graphene
ribbons by unzipping carbon nanotubes39–41 opens the way
toward the experimental study of the effect of curvature
on the edge states of graphene ribbons. Here we study
this system from the theoretical point of view and we
compare the spin properties of a graphene ribbon both for
flat and curved ribbons. In flat graphene the π bands are
decoupled from the σ bands, unless spin-orbit coupling is
considered. However, the effect of spin-orbit coupling on
π bands occurs only via virtual transition to higher energy
σ bands.

In the case of flat graphene, it has been verified that the effect
of spin-orbit on the π bands can be properly described by an
effective spin dependent second neighbor hopping between
the π orbitals. This is the so called Kane and Mele model,11,12

which predicts that graphene is a quantum spin Hall insulator
with a spin and valley dependent gap and peculiar spin-filter
zigzag edge states.11,12 In the case of curved graphene, π and
σ orbitals are coupled, and to the best of our knowledge the
validity of the Kane-Mele model has not been tested. This is
why we adopt a different strategy7,31,42–45 and use a four-orbital
tight-binding model, which includes both the π orbitals and
the s, px , and py orbitals.

The rest of this paper is organized as follows. In Sec. II
we describe the tight-binding method used in our calculations
and review some general results about the spin properties of
the system. In Sec. III we present results for the electronic
structure of flat zigzag graphene ribbons and compare with
those of the Kane-Mele model. In Sec. IV we address the main
point of this work, the electronic structure of edge states in
curved graphene zigzag ribbons. In Sec. V we discuss our
results.
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D. GOSÁLBEZ-MARTÍNEZ et al. PHYSICAL REVIEW B 83, 115436 (2011)

II. FORMALISM

In this section we briefly comment on the two different
tight-binding approximations used to calculate the electronic
structure and we provide some theory background.

A. Slater Koster approximation

In most of the calculations in this work we use a multiorbital
approach, taking into account the four valence orbitals of
the carbon atom, s,px,py , and pz, similar to what was used
in previous work.31,42–45 Thus, counting the spin, the single
particle basis has 8 elements per carbon atom. In addition, we
passivate the edge carbon atoms with a single hydrogen atom
for which a single s orbital, with the corresponding spin degen-
eracy, is included. The matrix elements of the Hamiltonian are
computed according to the Slater Koster approach considering
only first neighbor hoppings. For simplicity we approximate
the overlap matrix as the unit matrix. We model both the
carbon-carbon and carbon-hydrogen hoppings of graphene
with a set of tight-binding parameters derived by Kaschner
et al.46 from comparison with density functional calculations.
We show these parameters in Table I.

Spin-orbit coupling is treated as an intra-atomic potential:

VSO = λ�S ·
∑

I

�LI , (1)

where λ is the spin-orbit coupling parameter, �S is the spin
operator, and �Li is the orbital angular momentum operator
acting on the atomic orbitals of site I . The representation of
this operator in the basis px,py , and pz is provided in the
Appendix. Whereas there is no consensus regarding the value
of the atomic spin-orbit coupling in carbon, the values reported
in recent work range between λ = 4 and λ = 8 meV.31,32,36 In
this work we always discuss our results for values of λ in that
range and, when some physical insight is gained by so doing,
for values of λ much above the realistic range.

B. One-orbital tight-binding model

The low energy physics of most graphene based nanostruc-
tures can be described with a tight-binding model with a single
orbital per atom, which can be taken as a l = 1 atomic orbital
projected along the local normal direction to the graphene
surface, the so-called π orbitals. From the discussion above,
it is apparent that the atomic spin-orbit operator mixes orbital
states in the same atom with different values of m. However,
in some instances it is still possible to describe the low energy
sector of graphene with an effective Hamiltonian governed by
the π orbitals in which spin-orbit gives rise to spin dependent
hopping terms.11,12 We express the effective Hamiltonian using

TABLE I. Slater-Koster parameters and on-site energies involving
the same atoms, carbon-carbon interaction, and two different atoms,
carbon-hydrogen interaction. All the values are in eV.

V ssσ V spσ Vppσ Vppπ

C-C −7.76 8.16 7.48 −3.59
C-H −6.84 7.81

εC
s = −8.8 εC

p = 0.0 εH
s = −2.5

second quantization operators c
†
I,σ that create one electron in

the atomic site I with spin σ :

H0 =
∑

I,J,σ,σ ′
TIσ,Jσ ′c

†
I,σ cJ,σ ′ . (2)

The Hamiltonian matrix is the sum of four terms:

TIσ,Jσ ′ = tδσ,σ ′N
(1)
I,J + t ′δσ,σ ′N

(2)
I,J

+ itKM �τσ,σ ′ · ( �d1 × �d2)N (2)
I,J . (3)

The elements of the matrix N
(1)
I,J (N (2)

I,J ) are equal to 1 when I

and J are first (second) neighbors, and zero everywhere else.
Thus, the first two terms are the spin independent first and
second neighbor hoppings. The third term is the Kane-Mele
spin-orbit model.11,12 It is a spin dependent second neighbor
hopping between sites I and J which have a common first
neighbor C. The unit vector along the bond between sites I and
C (C and J ) is denoted by �d1 ( �d2). In the Kane-Mele spin-orbit
model the spin dynamics is linked to the bond orientation.
Thus, in flat graphene and graphene ribbons, the bonds lie in a
plane so that the Kane-Mele spin-orbit conserves the spin along
the normal to the plane. This is in contrast to the curved ribbons
and nanotubes considered below, for which the bond vectors
are not restricted to a plane and no component of the spin
operator is conserved. In the rest of this paper we calculate the
band structure of graphene based one-dimensional structures
using the four-orbital Slater Koster model and compare with
the results of the one-orbital model defined by Eqs. (2) and (3).
Whereas the one-orbital model gives results very similar to
those of the flat ribbon, this is not so in the case of curved
ribbons.

C. Some general results

We study one-dimensional ribbons formed repeating a
crystal unit cell. Taking advantage of the crystal symmetry, the
Hamiltonian can be written as

∑
Hn,m(�k) where the indexes n

and m run over the single-particle spin orbitals of the unit cell.
For the one-dimensional structures considered below, the unit
cell is shown in Fig. 1. The period of the crystal is given by the
graphene lattice parameter a, �k is given by a scalar k, and the
Brillouin zone can be chosen in the interval −π/a and π/a.
The eigenstates of the crystal are labeled with the band index

FIG. 1. (Color online) (a) Perspective view of a curved graphene
ribbon with edge atoms passivated with hydrogen. (b) Section of
a curved ribbon. (c) Scheme of the procedure to generate curved
ribbons.
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ν and their crystal momentum k. They are linear combination
of the atom I with quantum numbers n = l,m:

	νk(N,�r) = eikNa
∑
I,n,s

Cνk(I,n,s)φn(�r − �rI )χs, (4)

where N is an integer that labels the unit cell, and φn(�r − �rI )
is the atomic orbital with orbital quantum numbers n (which
encodes l and m) in the atom I of the unit cell. The eigenstate
of the spin operator along the z axis is denoted by χs , where
s can take values ± 1

2 . Because of the spin-orbit coupling it is
important to specify the positions of the atoms with respect to
the spin quantization axis.

Due to time reversal symmetry, every state with energy
εν(k) must have the same energy as its time reversal partner,
εν ′(−k), where ν and ν ′ label states related by time reversal
symmetry. In systems with inversion symmetry the bands
satisfy εν(k) = εν ′ (k) so that, in the same k point, there are
at least two degenerate states. In systems without inversion
symmetry, like the curved ribbons considered below, a twofold
degeneracy at a given k point is not warranted. In this
nondegenerate situation we can compute, without ambiguity,
the spin density associated with a given state with quantum
numbers ν,k as

〈�Sν,k(I )〉 ≡
∑

i,n,s,s ′
C∗

k,ν(I,n,s)Ck,ν(I,n,s ′)�Ss,s ′ , (5)

where �Sσ,σ ′ are the Pauli spin 1/2 matrices.
In the cases with inversion symmetry, like the flat ribbon

considered below, for a given k point there are at least two
degenerate bands. Thus, any linear combination of states
of the degenerate pair 	νk and 	ν ′k is also the eigenstate
of the Hamiltonian and has different spin density. In these
instances, we include an infinitesimally small magnetic field
in the calculation which breaks the degeneracy and permits
us to attribute a given spin density to a given state. When the
calculated spin densities so obtained are independent of the
orientation of the infinitesimally small magnetic field, they
can be considered intrinsic properties of the spin states. As
we discuss below, this is the case of the spin filter states in
flat spin ribbons, which point perpendicular to the ribbon and
have a strong correlation between spin orientation, edge, and
velocity, as predicted by Kane and Mele.11,12

In order to characterize the properties of a given state it will
also be convenient to calculate their sublattice polarization:

〈
σ z

ν,k

〉 =
∑
I,n,s

|Ck,ν(I,n,s)|2σz(I ), (6)

where σz(I ) = +1 when I is an A site and σz(I ) = −1 when
I is a B site.

III. FLAT GRAPHENE ZIGZAG RIBBONS

A. Two-dimensional graphene

The spin properties and electronic structure of the flat
ribbons considered below can be related to those of the two-
dimensional graphene crystal. We briefly recall the spin-orbit
physics of two-dimensional graphene as described within the
Slater Koster model.31 Within this approach, the electronic
structure of two-dimensional graphene is described by a

16 × 16 matrix, corresponding to the two atoms A and B of the
unit cell.31 At zero spin-orbit the 16 bands are two copies (one
per spin) of three bonding-antibonding pairs of σ bands and
one bonding-antibonding pair of the π orbitals which compose
the states of the bands at the Fermi energy and are decoupled
from the σ bands. The Fermi surface is composed of two points
K and K ′ where the gap between the two π bands vanishes.
In the neighborhood of both K and K ′ points the two π bands
are linear and the k · p theory is formally identical to that of
massless two-dimensional Dirac electrons. Spin-orbit couples
the σ and π orbitals, producing anticrossings away from the
Fermi energy and opening a gap at the K and K ′ points.

Within the one-orbital approach the Hamiltonian of
graphene reads

H = F (�k)σx1 + G(�k)szσz, (7)

where the σ operators act on the sublattice space A and B, 1 is
the unit matrix in the spin space, and sz = ±1 labels the spin.
The first neighbor hopping function reads

F (�k) = t(1 + ei�k·�a1 + ei�k·�a2 ), (8)

with �a1 = a(1,0) and �a2 = a(cos π
3 , sin π

3 ). The Kane-Mele
second neighbor spin-orbit coupling yields

G(�k) = itKM(ei�k·�a1 − ei�k·�a2 + ei�k·(�a2−�a1) − h.c.).

At the Dirac points K and K ′, the function F (�k) vanishes
in contrast with the the spin-orbit term, which is given by
G(K ′a) = −G(Ka) = 3

√
3tKM. Thus, the energy levels of

graphene at the Dirac points are governed by the following
Hamiltonian:11

h = SOτzσzsz, (9)

where τz = ±1 labels the valley quantum number and SO =
3
√

3tKM. Thus, for a given spin orientation sz = ±1, spin-
orbit opens a gap that takes a valley dependent value 2|SO|.
This spin and valley dependent gap would make graphene a
peculiar type of insulator which could not be connected with
a standard insulator by smooth variation of a parameter in the
Hamiltonian,11,12 i.e., a quantum spin Hall insulator.

B. Flat ribbons

We now discuss the electronic structure of flat graphene
ribbons with zigzag edges. The unit cell that defines the
zigzag ribbon has N carbon atoms and two hydrogen atoms
that passivate the dangling bonds in the edges of the ribbon.
These structures were proposed by Nakada et al.47 Using the
one-orbital tight-binding model, without spin-orbit coupling,
they found that zigzag ribbons have almost flat bands at the
Fermi energy, localized at the edges. An important feature
of zigzag edges is the fact that all the atoms belong to the
same sublattice. Since the honeycomb lattice is bipartite, a
semi-infinite graphene plane with a zigzag termination must
have zero energy edge states48 whose wave function decays
exponentially in the bulk, with full sublattice polarization.

In finite width zigzag ribbons, the exponential tails of the
states of the two edges hybridize, resulting in a bonding-
antibonding pair of weakly dispersing bands.17 The bands
of the zigzag ribbon can be obtained by folding from those
of two-dimensional graphene, either with real or imaginary
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transverse wave vector, and the longitudinal wave vector
varying along the line that joins the two valleys K and K ′.
Thus, the valley number is preserved in zigzag ribbons.

Spin-orbit coupling, described with the one-orbital model,
has a dramatic effect on the (four) edge bands.11,12 The second-
neighbor hopping makes the single edge band dispersive and
overcomes the weak interedge hybridization. Interestingly the
quantum numbers connect well with those at the Dirac points,
which are described by the effective Hamiltonian (9). Thus,
as we move from valley K to K ′ (positive velocity bands)
the spin ↑ (↓) states of the edge with sublattice A (B) must
change from the top of the valence band to the bottom of the
conduction band. The roles of spin and sublattice are reversed
when considering the two bands that start at K ′ and end at K .
Thus spin ↑ electrons move with positive velocity in one edge
and negative velocity in the other.

This scenario is confirmed by the four-orbital model and is
expected based on the fact that 2D graphene with spin-orbit
coupling is a quantum spin Hall insulator. In Fig. 2 we show the
bands of a flat ribbon with N = 20 carbon atoms. In Fig. 2(a)
we show the bands calculated without spin-orbit coupling.
The calculation shows both the edge and confined π bands
as well as some σ bands higher in energy. The rather flat
band at +7 eV comes from the hydrogen s orbitals hybridized
with the carbon edge σ orbitals. In the inset we zoom on the
edge states to show that they are almost dispersionless except
when k gets close to the Dirac point. In Fig. 2(b) we show the
same edge states, calculated with SO coupling, both within the
four-orbital and the one-orbital model. For this particular case
we have taken λ = 500 meV and tKM = 0.42 meV. Figure 2(c)
shows a slightly different slope for valence and conduction
bands for the four-orbital case. This electron-hole symmetry
breaking can not be captured with the one-orbital Kane-Mele
model.

It is apparent that the edge states acquire a linear dispersion
ε = mk. The slope m of the edge states dispersion increases
linearly with the size of the gap at the Dirac points, which in
turn scales quadratically with λ (and linearly with tKM). We
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FIG. 2. (Color online) (a) Bands for flat ribbon without SO. Inset:
Zoom of the edge bands for case (a). (b) Edge bands with SO (λ =
500 meV) and tKM = 0.42 meV. (c) Slope vs λ2. (d) Slope vs tKM.

FIG. 3. Properties of the edge state valence band. (a) Square of the
Wave function for valence states with k = π

a
− 0.01. The sublattice

polarization is apparent. (b) Spin density for states with k = π

a
−

0.01. (c) Spin density of time reversal symmetric state with k = − π

a
+

0.01. The spin density of the four states is polarized perpendicular to
the sample.

can use m to quantify the effect of spin-orbit coupling on the
edge states. Figure 2(d) shows that for flat ribbons, we can fit

m = αλ2 with α � 24 Å
eV2 .

Since the flat ribbons have inversion symmetry, the bands
have a twofold degeneracy. In order to avoid numerical spin
mixing of the degenerate states we apply a tiny magnetic field
(always less than 2 × 10−4 T) to split the states. As long
as the associated Zeeman splitting is negligible compared to
the spin-orbit coupling, the direction of the field is irrelevant.
By so doing, we can plot the spin density of the edge states
without ambiguity. In Fig. 3 we show both the spin density
of the four edge states with k = π

a
− 0.01 and the square of

the wave function for valence states, calculated with the four-
orbital model. In agreement with the one-orbital Kane-Mele
model, the spin densities are peaked in the edge, oriented
perpendicular to the plane of the ribbon. We have repeated the
calculation rotating the plane of the ribbon and obtained the
same result. From inspection of Figs. 2(b) and 3, it is apparent
that the valence bands correspond to the edge states and display
the spin filter effect; i.e., in a given edge right goers and left
goers have opposite spin.

IV. CURVED GRAPHENE ZIGZAG RIBBONS

The calculation of the previous section, using the four-
orbital model, backs up the conclusions of the Kane-Mele one-
orbital model for the spin filter effect in graphene. However,
the bandwidth of the edge states is less than 0.1 μeV for the
accepted values43 of λ = 5 meV. Thus, the effect is very hard
to observe in flat graphene ribbons. This leads us to consider
ways to enhance the effect of spin-orbit. For that matter, we
calculate the edge states in a curved graphene zigzag ribbon,
similar to those reported recently,39,40,49 using the four-orbital
model. In contrast to flat ribbons, the properties of the edge
states of a curved ribbon cannot be inferred from those of a
parent two-dimensional compound, because it is not possible
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FIG. 4. Electronic structure of curved zigzag ribbon with R =
4.1 nm. (a) Bands for curved ribbon without SO. (b)–(e) Zoom of
the edge bands for λ = 0 (b), λ = 5 meV (c), λ = 50 meV (d), and
λ = 500 meV (e).

to define a two-dimensional crystal with a finite unit cell and
constant curvature.

The unit cell of the curved ribbons is obtained as fraction
of a (n,n) nanotube, with radius R (see Fig. 1). For a given
nanotube we can obtain a series of curved ribbons with the
same curvature R−1 and different widths W or different
numbers of carbon atoms N . We can also study ribbons with
the same N and different curvatures R using a parent nanotube
with different n. Our curved ribbons are thus defined by W and
R or, more precisely, by n and N .

A. Energy bands

The energy bands of curved ribbons is shown in Fig. 4
for a ribbon with N = 20 and R = 4.1 nm. There are three
main differences with the flat ribbon. First, the edge states are
dispersive even with λSO = 0, as seen in Fig. 4(b). This effect
can be reproduced, within the one-orbital model, including
an effective second-neighbor hopping (t ′ � −1.5 meV). This
dispersion breaks electron-hole symmetry and competes with
the one induced by SO coupling, as seen in panels (c), (d), and
(e) of Fig. 4, with λSO = 5, 50, and 500 meV, respectively.

Second, curvature enhances the effect of spin-orbit cou-
pling, as expected. In order to separate the effect of spin-orbit
from the effect induced by curvature, we define the differential
bands as the energy bands of the curved ribbon at finite λSO,
subtracting the bands without spin-orbit:

ε̃ν(k) ≡ εν(k) − εν(k,λSO = 0). (10)

In Fig. 5(a) we plot the differential bands for the ribbon with
N = 20 and R = 4.1 nm. They are two doubly degenerate
linear bands with opposite velocities in the Brillouin zone
boundary. Thus, when the effect of curvature alone is sub-
tracted, the dispersion edge states look pretty much like those
of the flat ribbons in the region close to the Brillouin zone
boundary. Thus, we can also characterize them by the slope
of the linear bands, m. In Fig. 5(b) we plot that the slope of
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FIG. 5. (a) Differential energy bands [see Eq. (10)] for ribbons
with N = 20, R = 4.1 nm, and λ = 5 meV. It is apparent that for
small k they are linear, with slope m. (b) Slope of the differential
energy bands as a function of λ, for R = 4.1 nm. (c) Slope of the
differential energy bands as a function of κ = R−1, both in linear and
logarithmic scale, for λ = 5 meV. A 100-fold enhancement of the
slope occurs in a very narrow range of small curvatures.

the edge bands as a function of λ, obtained with the procedure
just described, for the same ribbon discussed before (N = 20,
R = 4.1 nm). It is apparent that the slope m is no longer
linear in λ2, in contrast to the case of flat ribbons. Even
more interesting, in Fig. 5(c) we plot the slope m for a fixed
value of λ = 5 meV, as a function of the curvature κ = R−1.
We find a dramatic 100-fold increase at small κ . This result
is consistent with the effective k · p Hamiltonian for carbon
nanotubes.7,50

The curvature induced enhancement of the spin-orbit effect
on the edge states of the curved ribbon can be understood
as follows. In flat graphene the Dirac bands are linear
combinations of atomic π orbitals with quantum numbers l =
1, m = 0. The effect of atomic spin-orbit coupling λ �L · �S can
be understood perturbatively. To first order, spin-orbit coupling
has no effect on the product states |σ 〉 × |l = 1,m = 0〉.
Second order coupling, via intermediate states with  with
respect to the Dirac point and orbital quantum numbers
l = 1, m = ±1, results in an effective spin-orbit Hamiltonian
acting on the π orbitals, with strength λ2


, which conserves

Sz. Curvature changes this situation, because it mixes the
π orbitals with the l = 1,m �= 0 orbitals, resulting in a spin-
orbit Hamiltonian for the electrons at the Fermi energy7,50

linear in the spin-orbit coupling λ.
The third difference with the flat ribbon is apparent for the

bands away from the zone boundary: They are not degenerate.
This is shown in Fig. 6(a), which is a zoom of Fig. 4(b),
including states at both sides of the Brillouin zone boundary.
The lack of degeneracy is originated by the lack of the inversion
symmetry of the curved ribbon. Interestingly, the degree of
sublattice polarization 〈σz〉, shown in Fig. 6(b), anticorrelates
with the splitting. In other words, the states strongly localized
at the edges are insensitive to the lack of the inversion of the
structure, which is nonlocal property.
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FIG. 6. (Color online) Detail of the edge states for curved ribbon
with R = 4.1 nm and λ = 5 meV. (a) Dispersion of the edge states.
(b) Sublattice polarization σz as a function of k for the two lowest
energy bands.

B. Electronic properties

We now discuss the spin properties of the edge states in
the curved ribbons. Note that due to the lack of inversion
symmetry, there is no degeneracy at a given k so that the spin
density is an intrinsic property of the state. In Fig. 7 we plot the
magnetization density 〈�Sν,k(I )〉 for the two lowest energy edge
bands with momentum k = π

a
+ 0.01 (upper panels) and k =

−π
a

− 0.01 (lower panel), for a ribbon with R = 4.1 nm and
λ = 5 meV. Whereas the correlation between the velocity, the
spin orientation, and the edge is the same as in flat ribbons, it is
apparent that the quantization axis is no longer parallel to the
local normal direction. The spin of the edge states lies almost
perpendicular to the normal direction. Thus, this is different
from the case of nanotubes, where the spin quantization axis
is parallel to the tube main axis, and different from the flat
ribbon.

FIG. 7. (Color online) Spin densities for states with k = − π

a
+

0.01 [panels (a) and (b)] and k = π

a
− 0.01 [panels (c) and (d)].

FIG. 8. (Color online) Spin densities for states with k = − π

a
+

0.01 [panels (a) and (b)] and k = π

a
− 0.01 [panels (c) and (d)]

in almost flat ribbon, R−1 = 3.7 × 10−3 nm−1. Note that curvature
cannot be appreciated.

The effect is even more striking in the case of an almost
flat ribbon, shown in Fig. 8 for which the spin quantization
direction is clearly not perpendicular to the ribbon plane.
Thus, a very small curvature is enough to change the spin
quantization direction of the edge states. This is better
seen in Fig. 9, where we plot the angle formed between the
spin quantization axis and the local normal in the edge atom.
In Fig. 9(a) we show the evolution of the angle for the states
with k = −π

a
+ 0.01 for the two lowest energy edge bands.

For flat ribbons R−1 = 0, the angles are 0◦ and 180◦, i.e.,
the quantization axis is perpendicular to the ribbon plane. In
the opposite limit, for large curvature, the spin quantization
angle lies perpendicular to the normal, i.e., tangential, but

FIG. 9. (Color online) (a) Angle θ formed by the edge spin density
and the local normal as a function of curvature κ = R−1 for λ = 5
meV. (b) Detail of (a) for small κ . Inset: derivative of the angle with
the curvature. Note the extremely large dθ

dκ
for a very narrow region

of small curvatures.
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always in the plane perpendicular to the ribbon transport
direction.

The transition between the two limits is far from smooth.
Even for the less curved ribbon that we have considered,
with R = 271 nm, we have θ � 70◦. This is better seen in
Fig. 9(b), where we show the low curvature region only for
one of the bands. The dramatic effect of curvature on the
spin orientation of the edge states is quantified in the inset
of Fig. 9(b), where we show dθ

dκ
as a function of curvature

κ . For small curvatures the derivative blows up exponentially.
Thus, the spin orientation of the edge states is very sensitive to
moderate buckling deformation of the ribbon. This sensitivity
is especially important for the small values of λ adequate
for carbon. Larger values of λ reduce the effect. We have
verified that the single-orbital model with the generalized
Kane-Mele Hamiltonian is not sufficient to capture the
effect.

V. DISCUSSION AND CONCLUSIONS

We are now in position to discuss whether or not the
spin filter effect could be more easily observed in curved
graphene ribbons. One side, the bandwidth of the edge states is
dramatically increased. For moderate curvatures (R = 4.1 nm)
the bandwidth of the edge states is 20 μeV, and it can reach
60 μeV for R � 1 nm, to be compared with 0.1 μeV for flat
ribbons. Thus, experiments done at 100 mK could resolve the
edge band of curved ribbons. On the other hand, the curvature-
induced second-neighbor hopping breaks the electron-hole
symmetry [see Fig. 6(a)], so that now there are four edge bands
at the Fermi energy. At each edge there would be left goers and
right goers with the same spin orientation, although slightly
different k. Taken at face value, this would imply that there is no
spin current in the ground state and backscattering would not be
protected.

In conclusion, we have studied the interplay of spin-orbit
coupling and curvature in the edge states of graphene zigzag
ribbons. Our main conclusions are as follows:

(1) In the case of the flat graphene ribbon, the microscopic
four-orbital model yields results identical to those of the Kane-
Mele one-orbital model. In particular, the edge states have the
spin filter property11,12 and the spin is quantized perpendicular
to the sample.

(2) Curved graphene ribbons also have spin-filtered edge
states. The bandwidth of the edge bands of curved ribbons is
increased by as much as 100 for moderate curvatures and is
proportional to the curvature, for fixed spin-orbit coupling.

(3) Curvature induces a second neighbor hopping which
modifies the dispersion of the edge states and, in this sense,
competes with their spin-orbit induced dispersion.

(4) The spin of the edge states is not quantized along the
direction normal to the ribbon. For moderate curvature, their
quantization direction depends very strongly on the curvature
of the ribbon. Above a certain curvature, the quantization

direction is independent of curvature and perpendicular to both
the normal and the ribbon direction. The strong sensitivity of
the spin orientation of edge states on the curvature suggests
that flexural phonons can be a very efficient mechanism for
spin relaxation in graphene.

Note added: During the final stages of this work a related
preprint was posted.52
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APPENDIX: ATOMIC ORBITAL BASIS AND
MATRIX ELEMENTS

In this appendix we give the expressions for the atomic
orbitals and the corresponding angular momentum matrix
elements, necessary to compute the spin-orbit matrix. In
our formalism, the atomic orbitals are described in terms
of the Cartesian basis, s,px,py,pz, which is related to the
basis of the eigenstates of L2 and Lz, through the following
transformation:51

|s〉 = |l = 0,m = 0〉, (A1)

|px〉 = − 1√
2

(|l = 1,m = 1〉 − |l = 1,m = −1〉, (A2)

|py〉 = i√
2

(|l = 1,m = 1〉 + |l = 1,m = −1〉, (A3)

|pz〉 = |l = 1,m = 0〉. (A4)

The spin-orbit Hamiltonian operator reads,

VSO = λ

[
L̂+ŝ− + L̂−ŝ+

2
+ L̂zŝz

]
, (A5)

which only affects the l = 1 subspace. The matrix elements of
this operator in the Cartesian basis read,

|px,↑〉 |py,↑〉 |pz,↑〉 |px,↓〉 |py,↓〉 |pz,↓〉
|px,↑〉 0 −iλ/2 0 0 0 λ/2

|py,↑〉 iλ/2 0 0 0 0 −iλ/2

|pz,↑〉 0 0 0 −λ/2 iλ/2 0

|px,↓〉 0 0 −λ/2 0 iλ/2 0

|py,↓〉 0 0 −iλ/2 −iλ/2 0 0

|pz,↓〉 λ/2 −iλ/2 0 0 0 0

(A6)
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