
PHYSICAL REVIEW B 86, 075447 (2012)

Analysis of the Kondo effect in ferromagnetic atomic-sized contacts
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Atomic contacts made of ferromagnetic metals present zero-bias anomalies in the differential conductance due
to the Kondo effect. These systems provide a unique opportunity to perform a statistical analysis of the Kondo
parameters in nanostructures since a large number of contacts can be easily fabricated using break-junction
techniques. The details of the atomic structure differ from one contact to another so a large number of different
configurations can be statistically analyzed. Here we present such a statistical analysis of the Kondo effect
in atomic contacts made from the ferromagnetic transition metals Ni, Co, and Fe. Our analysis shows clear
differences between materials that can be understood by fundamental theoretical considerations. This combination
of experiments and theory allows us to extract information about the origin and nature of the Kondo effect in
these systems and to explore the influence of geometry and valence in the Kondo screening of atomic-sized
nanostructures.
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I. INTRODUCTION

The Kondo effect is one of the most intriguing phenomena
arising from electronic correlations and was first observed over
80 years ago as a then-unexpected increase of the resistance of
gold wires at very low temperatures.1 This phenomenon was
successfully explained by Kondo 30 years later in his seminal
work2 as due to scattering of conduction electrons off magnetic
impurities present in the Au samples, thereby screening its
magnetic moment. More generally, whenever a local magnetic
moment is coupled to a sea of conduction electrons, the Kondo
effect can arise at low-enough temperatures with important
consequences for the electronic and magnetic properties of the
system.

Also in the case of mesoscopic devices, the Kondo effect
strongly alters the electronic structure and, therefore, has
dramatic consequences on the transport characteristics of the
system. One of the simplest mesoscopic devices showing the
Kondo effect is the case of a quantum dot connected in series
to two metallic leads3,4: When an electronic level of a quantum
dot is well below the Fermi energy of the metallic leads and
the Coulomb repulsion is strong enough to prevent double
occupation, the quantum dot behaves as a magnetic impurity.
In this situation conduction through the quantum dot is usually
strongly suppressed due to the Coulomb blockade.5 However,
at low temperatures the Kondo effect restores the conductance
due to the apparition of a sharp resonance—the so-called
Kondo resonance—in the spectral function of the quantum
dot right at the Fermi energy of the electrodes.

The essence of the Kondo effect is the formation of a
total spin-singlet state between the impurity electrons and the
conduction electrons near the Fermi level6 below a certain
critical temperature characteristic of the system, the Kondo
temperature. The formation of this Kondo singlet state gives
rise to the effective screening of the magnetic moment of the
impurity and leads to the formation of a sharp resonance
in the spectral density of the impurity electrons right at
the Fermi level. This is the aforementioned Kondo resonance,
sometimes also called Abrikosov-Suhl resonance.7–9 In the

case of magnetic impurities in metallic host materials, the
formation of the Kondo resonance in the spectral density of
the impurity leads to additional scattering of the conduction
electrons, resulting in the increase of the resistance of the metal
at low temperatures (for a review of the Kondo effect in bulk
metals with magnetic impurities; see, e.g., Ref. 6).

Other systems where evidence for the Kondo effect has
been found by the manifestation of a Kondo resonance, either
in the spectral density or the conductance characteristics,
include point contacts,10,11 different molecules containing
magnetic atoms on surfaces,12,13 fullerenes,14 carbon nan-
otubes contacted by metallic electrodes,15,16 and magnetic
atoms on surfaces studied by scanning tunneling microscopy
(STM).17–25

In the case of magnetic adatoms on metal surfaces studied
by STM, interference of different conduction channels through
the atom (one of them bearing the Kondo resonance) gives
rise to Fano line shapes26 in the low-bias conductance
characteristics, similarly to the case of a quantum dot coupled
laterally to a wire.27,28 By fitting those line shapes to the
Fano model, one can obtain different parameters that describe
the characteristics of the Kondo screening in the system, i.e.,
the width, position, and amplitude of the Kondo peak (for a
review, see, e.g., Ref. 20). Of special relevance to our work
are the STM experiments performed in the high-conductance
regime when the tip is brought into contact with the
adatom.29–37

In a recent work, we reported the observation of Kondo-
Fano line shapes in the conductance characteristics of atomic
contacts made from ferromagnetic materials.38 In contrast to
STM experiments where the contacted adatom can be imaged
and the geometry of the system formed by the adatom and
the surface can be completely characterized, break-junction
experiments do not allow us to control the geometry of the
system to the same extent (although they normally give rise to
some geometrical repetition39). On the other hand, using break
junctions, it is possible to form and study a large number of
different configurations.40
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The observation of the Kondo effect in ferromagnetic
atomic contacts was highly unexpected for two reasons: First,
given the chemical homogeneity of the atomic contacts, a
devision into magnetic impurity and a spin-degenerate Fermi
sea, as required for the appearance of the Kondo effect,
is not obvious at all. Second, electrodes and the contact
atoms are made from a ferromagnetic material. However, the
Kondo effect and ferromagnetism are generally competing
phenomena: For example, a strong-enough magnetic field
corresponding to a Zeeman energy above the binding energy
of the Kondo singlet (about the Kondo temperature) will break
up the singlet and, thus, the Kondo effect,41 while on the other
hand, magnetic fields on the order of the Kondo temperature
or below will lead to a splitting of the Kondo resonance as
shown, e.g., in Refs. 4,42, and 43.

Likewise, the Kondo resonance splits when a quantum dot
is connected to ferromagnetic electrodes in the case of parallel
alignment of the two electrodes’ magnetic polarizations, while
for antiparallel alignment of the electrodes, a normal Kondo
effect is obtained.44–47 Therefore, one would expect that the
coupling of the contact region to the strongly ferromagnetic
bulk electrodes should either eliminate the Kondo effect
completely or at least split the Kondo resonance unless the
antiferromagnetic coupling between magnetic impurity and
conduction electrons is strong enough compared to any other
interactions.

Here, as in our previous work,38 we propose that the
Kondo effect in ferromagnetic atomic contacts originates from
individual d levels of the undercoordinated tip atoms of the
nanocontact, and the Kondo screening is due to the delocalized
sp electrons, which are basically spin unpolarized. Hence, the
impurity or quantum dot bearing the spin consists of one or
several d levels of an individual contact atom.

In our model, depending on the material, the spin of the
tip atom can be localized in different d levels. Due to the low
symmetry of the contact atoms, the individual d levels couple
differently to the sp-conduction electron bath, resulting in dif-
ferent Kondo screenings of the spin. This scenario may explain
the different Kondo behavior observed for contacts made from
Fe, Co, and Ni.38 Contacts made of the same material may also
present slightly different atomic configurations, which will
also influence their Kondo properties. In our experiments, from
the fitting of the differential conductance curves performed
on atomic-sized contacts of ferromagnetic materials to a Fano
expression, we extract the relevant parameters that characterize
the Kondo effect on each contact.

In this work, the validity of the Fano-Kondo model for
the contact regime, and, more specifically, for the case of
atomic contacts, is revised and discussed. We present a more
exhaustive analysis than in Ref. 38 for all the parameters of the
Fano-Kondo model in our system and extract new information
from the data, for instance, the distributions for the occupation
of the d level for Fe, Co, and Ni. This further analysis confirms
the marked differences of the case of Ni with respect to Fe and
Co. We propose here a new interpretation of the data: The
nature of the Kondo screening for Ni differs from that for Fe
and Co. From the combined statistical analysis of the Kondo
parameters and theoretical fundamental considerations, we can
deduce the influence of valence and environment on the Kondo
screening in nanostructures.

This paper is organized as follows: The first two sections
are introductory. First, we review the transport properties
of atomic contacts in Sec. II. In Sec. III, we then present
the basic elements of the theory of the Kondo effect in the
framework of the Anderson impurity model and justify the
validity of the Fano-Kondo model for the case of atomic
contacts of transition metals. Sections IV and V are devoted to
the experimental methods and the presentation and discussion
of the experimental results, respectively. We, finally, discuss
the results in the framework of the theory presented in Sec. VI
and summarize our main conclusions in Sec. VII.

II. TRANSPORT IN ATOMIC CONTACTS

The system under study in this work are atomic contacts,40

i.e., a contact between two metallic leads mediated by an atom
forming a metallic bond with both leads. More specifically, we
focus here on the case of homogeneous contacts, those where
all the atoms forming the structure, leads, and contact are of
the same element. The formation of an atomic contact can
be identified from electronic transport measurements. When
two pieces of the same pure metal are brought into contact,
the conductance plotted against the inter-electrode distance
shows a plateau when the atomic contact is formed, close to
the quantum of conductance G0 = 2e2/h. The exact value
of this quantity will depend on the material and the atomic
configuration of the contact. In general, the atomic orbitals
will define a number of eigenchannels, each of these with a
transmission probability Ti which will be reflected in the total
conductance through the Landauer formula G = G0

∑
i Ti .

The number of channels will be related to the valence of the
metal48,49 and will normally include a high transmitive s-type
channel and several other with lower transmission, resulting in
a final conductance in the range of 0.7–2.5 G0. Experimentally,
the evolution of the conductance can be recorded over the
formation or breaking process of the contact showing in most
of the cases50 plateaus, not only for the one-atom contact but
for every atomic rearrangement of the wire while pulling.

The one-atom plateau of conductance for the case of gold
is near the quantum of conductance and, as shown in Fig. 1(a),
higher for the case of the 3d transition metals Fe, Co, and
Ni. From many of these traces we can build histograms which
help us to identify the transport properties of the most probable
atomic configurations of the contacts.

Different authors51,52 agree that, under cryogenic condi-
tions and considering a high-enough amount of data (thou-
sands of conductance traces), the conductance of monatomic
contacts made from Fe, Co, or Ni takes a value higher than the
quantum of conductance G0 = 2e2/h, as expected in general
for transition metals.40 Histograms of conductance of Fe,
Co, and Ni constructed from thousands of breaking traces at
4.2 K are shown in Fig. 1(b). The most probable values
for the conductance of the monatomic contacts are 1.2 G0,
1.6 G0, and 2G0 for Co, Ni, and Fe, respectively. Conductance
values between 1 G0 and 2 G0 for ferromagnetic nanocontacts
are in overall agreement with theoretical calculations.53–56

The conduction of these atomic contacts is the sum of the
contributions of different channels, where the s channel is
expected to be open and practically degenerate in spin and,
thus, to have an associated conductance of nearly 2e2/h. In
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(a) (b)

FIG. 1. (Color online) (a) Typical traces of conductance for
breaking contacts of Co, Fe, and Ni. (b) Histograms of conductance
are constructed from thousands of these breaking traces of contacts
fabricated by STM at 4.2 K for Ni, Fe, or Co. The histograms for the
three materials show a clear first peak at values above 2e2/h.

the ferromagnetic metals Fe, Co, and Ni, another contribution
to the overall conductance comes from the transmission
of electrons via the five 3d orbitals. However, due to the
directionality and stronger localization of the d orbitals,
the electrons in the d channels are easily scattered. Hence,
the transmission in d channels is usually far from perfect, as
has been shown by ab initio calculations.53 In this work it was
also shown that only the d channels are spin polarized while
the s channel basically is unpolarized.

III. BASIC ELEMENTS OF THE THEORY

As discussed in the Introduction, in the experiments the
presence of the Kondo effect is reflected in the conductance
of a one-atom contact as a zero-bias anomaly. The details
of this anomaly can be related to the characteristics of the
Kondo effect in the framework of the Anderson impurity
model (AIM).57 The purpose of this section is to provide
the basic elements for a theoretical description of the Kondo
effect in the framework of the single-level Anderson impurity
model (1AIM) and the two-level Anderson impurity model
(2AIM). This will allow us to properly analyze our experiments
for different materials. Additionally, we develop a simple
microscopic model in order to understand the occurrence of
different Fano line shapes within the same material in terms
of the variation of microscopic interactions due to variation in
the atomic structure in the contact region.

A. Model of a nanocontact

We assume that the Kondo effect takes place in the under
coordinated tip atoms of the nanocontact. This assumption
seems reasonable considering that the Kondo effect is not
observed in bulk samples of the ferromagnetic materials
studied here. Hence, the Kondo effect must be related to
the atomic-size constriction of the nanocontact. Furthermore,

FIG. 2. (Color online) (a) Sketch of nanocontact just before
breaking. The tip atom (red) of the left electrode is only weakly
coupled to the right part of the nanocontact (and vice versa). This
leads to the simplified model of the nanocontact as shown in (b). In
the simplified model the tip atom (red) consists of a noninteracting s

level and a strongly interacting d level which couple more strongly
to the left electrode than to the right electrode (�L,α > �R,α). The
hybridization Vsd between the s and d levels is due to crystal field
splitting and is weak compared to the other energies. Moreover, the
coupling of the d level to the electrodes is much weaker than the
coupling of the s level (�s � �d ).

the Coulomb interaction and the localization of the electrons
within the atomic-size constriction, and especially at the tip
atoms, should be enhanced as compared to bulk.

Typically, the nanocontacts of the ferromagnetic metals Fe,
Co, and Ni form dimers in the last step before breaking,58,59 as
in Fig. 2(a). In this case, each tip atom will be more strongly
coupled to one electrode than to the other. As stated in Sec. II,
the main conduction channel through the tip atoms is the spin-
degenerate s channel with nearly perfect transmission. The d

channels, on the other hand, are strongly spin-polarized and
their transmission is weaker or even completely blocked due
to scattering by the geometry.53 As we have shown in our
previous work38 by means of ab initio calculations, due to
disorder and low coordination in the contact region one of the
d levels of the tip atom couples only very weakly to the d

levels of the neighboring atoms and instead couples only to
the basically spin-degenerate s channel. This is the situation
where the Kondo effect can take place and which is described
by the Anderson impurity model: A strongly interacting d

level couples to a noninteracting sea of conduction electrons.
Hence, we can identify this d level with the “quatum dot” or
impurity in our experiments. This situation is schematically
depicted in Fig. 2(b).

This scenario is further supported by recent dynamical
mean-field theory calculations of a Ni nanocontact connected
to electrodes made from Cu instead of Ni, thus neglecting
the ferromagnetic coupling to the bulk electrodes.60 In this
situation, a Kondo effect emerges in one of the d channels of the
tip atoms of the Ni nanocontact with the Kondo temperature, in
good agreement with the ones measured for Ni nanocontacts.

B. Kondo effect in the Anderson model

As we have argued in our previous work on the basis of ab
initio calculations, the combined effect of undercoordinated
tip atoms and disorder in the contact region can lead to the
selection of a single d level of the tip atom that is only weakly
coupled to the d levels of the neighboring atoms. Hence, the
magnetic coupling to the neighboring atoms is reduced for
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this level and, therefore, the Kondo effect can arise if this level
is half-filled. This situation can be fulfilled in the case of Ni
nanocontacts where the d shell is d9 and, thus, has a hole. In
this case, the single-level Anderson impurity model (1AIM)
where a single strongly interacting d level is coupled to a bath
of noninteracting conduction electrons is a good description
of the situation,

ĤAIM = εd n̂d + Un̂d↑n̂d↓ +
∑
q,σ

εq ĉ
†
qσ ĉqσ

+
∑
q,σ

(Vqĉ
†
qσ d̂σ + V ∗

q d̂†
σ ĉqσ ), (1)

where εd is the energy of the d level, U is the (effective)
Coulomb repulsion between two electrons in the d level, εq

is the energy dispersion of the bath electrons, and Vq is the
coupling (or hopping) between the bath and the d level. In the
cases of Fe and Co, there is more than one hole in the d shell
and, hence, one should consider a multilevel AIM. We will do
so in the next subsection.

At zero temperature, the Anderson model is a Fermi liquid
and, hence, has a (renormalized) quasiparticle resonance (i.e.,
the Kondo peak in the Kondo regime) near the Fermi level.
The Green’s function of the d level is given by

Gd (ω) = z

ω − εK + i�K

, (2)

where z is the quasiparticle weight (i.e., the renormalization of
the single-particle wave function due to many-body effects),
εK is the position of the quasiparticle peak with respect to the
Fermi level (set to zero for convenience), and �K = k TK is
half the width of the quasiparticle resonance which defines the
Kondo temperature. Correspondingly, the projected density of
state of the d level is a Lorentzian centered at εK and width
2�K ,

ρd (ω) = − 1

π
Im Gd (ω) = z �K/π

(ω − εK )2 + �2
K

. (3)

In the case of the single-level AIM, the Kondo temperature
TK can be easily calculated from the parameters of the model
as follows:6

�K = kTK =
√

�dU

2
eπεd (εd+U )/�dU , (4)

where �d is the broadening of the d level due to the coupling
to the bath obtained by integrating out the bath degrees of
freedom,

�d = V 2ρbath(ω = 0). (5)

Here we have assumed an approximately constant bath density
of states ρbath and the coupling V independent of q. Note
the exponential dependence of the Kondo temperature on
the interaction U and broadening �d . This means that mild
changes in the parameters can have a huge effect on the Kondo
temperature. Also note that other definitions of the Kondo
temperature may differ by a constant prefactor.

Since the 1AIM is a Fermi liquid at zero temperature,61

we can exploit further relations of the Fermi liquid theory.
For example, one obtains the following important relationship

between the impurity-level occupation and the Kondo param-
eters (see, e.g., Chap. 5 in Ref. 6):

nd = 1 − 2

π
arctan

(
εK

k TK

)
. (6)

Also from the Fermi liquid theory of the Anderson model
we obtain the following exact relation between the density of
states at the Fermi level εF ≡ 0 (in general not the maximum
of the Kondo peak) to the occupation of the d level and the
broadening �d due to the coupling of the d level to the rest of
the system:

ρd (0) = sin2
(

π
2 nd

)
π�d

. (7)

Finally the amplitude of the Kondo resonance is

AK ≡ ρd (εK ) = z

πk TK

. (8)

C. Underscreened Kondo effect in the
multilevel Anderson model

Co and Fe feature two and three holes, respectively, in
the 3d shell of each atom and, hence, have an atomic spin
S > 1/2 due to Hund’s rule coupling. Therefore, a description
in terms of a 1AIM as before is problematic. Nevertheless,
the experimental results can be fitted very well to a 1AIM (see
below and Sec. V). The explanation might be that we are really
dealing with a so-called underscreened Kondo effect62 (UKE)
where only a spin-1/2 in one of the d levels is screened while
the rest remains unscreened.

Such a UKE behaves in many ways like a normal (fully
screened) S = 1/2 Kondo effect. For example, it is still
characterized by a zero-bias anomaly resulting from a sharp
resonance in the screened impurity level. Further support for
this hypothesis comes from a paper by Perkins et al.:63 They
find that for an underscreened Kondo lattice, ferromagnetism
and the Kondo effect can, in fact, coexist. On the other
hand, the UKE has a number of peculiar consequences, such
as the formation of a so-called singular Fermi liquid state
characterized, e.g., by the divergence of the quasiparticle
weight and thermodynamic quantities, such as the specific heat
capacity.64,65 Note that, in this sense, the UKE is very similar
to the so-called ferromagnetic Kondo effect,66 where the
impurity spin couples ferromagnetically with the conduction
electrons. The resulting antiscreening of the magnetic moment
by the conduction electrons also leads to the formation of a
singular Fermi liquid state. The ferromagnetic Kondo effect
has recently been discussed theoretically in the context of
magnetic impurities in nanocontacts.67,68

We consider a two-level Anderson impurity model (2AIM).
This should model the situation of Co which has two holes in
the d shell. As in the case of the simple AIM, the system is
divided into two subsystems: the conduction electron bath B
and the impurity I with the two interacting levels. The version
of the 2AIM model that is relevant for the underscreened
Kondo effect is depicted schematically in Fig. 3(a): Only one
of the impurity levels couples to the conduction electron bath
while the coupling of the other level is negligible.69,70 Hence,
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FIG. 3. (Color online) (a) Schematic drawing of the two-level
Anderson impurity model in the underscreened situation. Only level
1 of the impurity is coupled to the bath B. [(b)–(d)] Schematic
illustration of a hopping process contributing to the underscreened
Kondo effect in the two-level Anderson impurity model.

the Hamiltonian of the 2AIM is given by

Ĥ2AIM = ĤI + ĤB + ĤT =
∑

i

(εi n̂i + U n̂i↑n̂i↓)

+U ′ n̂1n̂2 − JH ŝ1 · ŝ2 +
∑
q,σ

εqc
†
qσ cqσ

+
∑
q,σ

V1,q (d†
1σ cqσ + c†qσ d1σ ), (9)

where diσ (d†
iσ ) destroys (creates) one electron in impurity

level i with spin σ , and n̂iσ = d
†
iσ diσ is the occupation

number operator for level i and spin σ and n̂i = n̂i↑ + n̂i↓.
ŝi = ∑

σσ ′ d
†
iσ 	τσσ ′diσ ′ measures the spin in level i. εi are the

energies of the two impurity levels, U is the Coulomb repulsion
within the same level i, and U ′ is the Coulomb repulsion
between electrons in different levels which is generally smaller
than U , and JH is the Hund’s rule coupling. The bath B is
described as in the case of the 1AIM, Eq. (1). Finally, only
impurity level 1 is coupled to the conduction electron bath
with hopping V1, while the coupling of impurity level 2 is
negligible.

For the sake of simplicity, we also assume that the two
impurity levels are degenerate: ε1 = ε2 = ε. Typically, the
intralevel Coulomb repulsion U is bigger than the interlevel
Coulomb repulsion U ′ by an amount of the order of the
Hund’s rule coupling: U ≈ U ′ + JH . Assuming a constant
bath density of states and q-independent coupling V1,q = V1,
the half-width of level 1 due to the coupling to the conduction
electrons is given by �1 = V1

2ρbath.
In the situation where the two impurity levels are well below

the Fermi energy of the conduction electrons (εF > 2ε + U ′),
and the intralevel Coulomb repulsion U is strong enough to
prevent double occupation of each impurity level (2ε + U >

εF ), the impurity will be doubly occupied. And, due to Hund’s
rule coupling, the impurity will then be in a total spin-triplet

state, i.e., will have total spin SI = 1 (see Appendix A for
further details).

In this situation, switching on the coupling HT between
the impurity and the conduction electron bath gives rise to
hopping processes as depicted schematically in Fig. 3 which
will partially screen the total spin 1 of the impurity by flipping
the spin in impurity level 1. This partial screening of the
impurity spin S > 1/2 by a single conduction electron channel
is called the UKE.62 The coupling to the residual spin in the
other impurity level gives rise to a so-called singular Fermi
liquid (SFL) behavior,64,71,72 in contrast to the normal Fermi
liquid behavior of the usual fully screened Kondo effect.

The SFL is characterized by a cusp in the spectral density
at low temperatures, i.e., for low energies the spectral density
of impurity level 1 is approximately given by70,73

ρ1(ω) ≈ 1

π�1

(
1 − b

ln(|ω|/kT0)2

)
, (10)

where T0 is a new temperature scale associated with the spin-1
UKE and b > 0 is a constant. The cusp in the spectral density is
related to a logarithmic divergence of the quasiparticle weight
in the underscreened Kondo regime:65 z ∝ 1/ω log(kT0/ω).
Hence, in contrast to the normal Kondo effect, there is no
well-defined quasiparticle associated with the UKE, hence,
the name singular Fermi liquid. Note that, although the
quasiparticle weight z diverges for ω → 0, the spectral density
ρ1(ω) itself does not diverge.

In an actual experiment the logarithmic cusp characteristic
for the UKE is probably hard to resolve due to limited
resolution and the smoothening effect of finite temperature.
Hence, in practice, the zero-bias anomaly arising from the
UKE is undistiguishable from that arising from the normal
Lorentzian-type Kondo peak unless very low temperatures can
be reached and the experimental resolution is fine enough to
resolve the cusp.

The half width of the resulting UKE resonance is deter-
mined by the temperature T0 as �S=1

K = kT0 exp(−√
2b). In

order to compare this width with the one of the normal Kondo
peak in the 1AIM, we consider the particle-hole symmetric
regime. Following Ref. 70 we have kT0 ∝ exp[− π

4�1
(U +

JH/2)] while kTK ∝ exp[−(πU )/(4�d )]. Hence, for the
same parameters U and �d = �1, the width of the reso-
nance should be smaller in the case of the UKE than for
the normal Kondo effect due to Hund’s rule coupling JH and
the additional exponential factor exp(−√

2b) < 1. Assuming
that the interaction U and coupling � for the d level giving
rise to the Kondo effect is approximately the same for the three
transition metals considered here, this might explain why the
widths of the zero-bias anomalies obtained for the cases of Fe
and Co are considerably smaller than for Ni (see Sec. V).

Finally, for the 2AIM in the UKE regime one obtains exactly
the same formula relating the occupation n1 of the impurity
level 1 (the one coupled to the conduction electron bath) to
the width and position of the resonance as in the case of the
1AIM, Eq. (6).70 This explains why the results in the cases of
Co and Fe can be fitted so well to the formula for the 1AIM
(see Sec. V).
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FIG. 4. (Color online) Graphical definition of the Fano resonance
parameters.

D. Kondo-Fano line shapes

The goal of this section is to devise a simple model in order
to understand the occurrence of different Fano line shapes
(i.e., peaks, dips, or asymmetric Fano curves) for the same
material. Our simple model also demonstrates the complicated
dependence of the Fano parameters on the basic microscopic
parameters. Fano line shapes in a related model have recently
been studied by Zitko74 using the numerical renormalization
group and focusing on the temperature dependence of the Fano
line shapes. Here we neglect any temperature effects since the
measured Kondo scales are much higher than the temperature
of 4.2 K, at which the experiments were performed. In any
case, the goal of this section is not to give an exact description
of the conductance spectra but rather to obtain a qualitative
understanding of how different line shapes emerge and how
they depend on the microscopic details of the system.

In the following we will show that the low-bias conductance
(‖eV ‖ � �K ) of our simplified model of a nanocontact shown
in Fig. 2 is well described by the Fano formula,

G(V ) = goff + A

1 + q2

(ε + q)2

ε2 + 1
with ε = eV − εK

�K

, (11)

where goff is the conductance offset, A is the amplitude of the
Fano resonance, q is the Fano factor determining the shape of
the Fano resonance (see Fig. 4), and, as described before, εK is
the energy position and �K the half-width of the Kondo peak
in the d level which, thus, determine the position and width of
the resulting Fano line shape.

As can be seen from Fig. 4, when the Fano factor becomes
very large (q → ∞), the conductance has a Lorentzian line
shape. This is the case when the coupling Vsd between
the s and the d levels of our tip atom is negligible so
the zero-bias anomaly in the conductance is dominated by
the direct transmission through the Kondo resonance of the d

level. On the other hand, for q = 0 we obtain a dip feature
in the conductance. This is, for example, the case when the
direct transmission through the d channel becomes negligible
(e.g., for �R,d ≈ 0) so the conductance is only given by the s

channel, which features a Lorentzian dip due to the coupling
Vsd to the Kondo resonance in the d level. For |q| = 1 the Fano

formula gives the typical asymmetric line shapes. In this case,
the conductance is also dominated by the s channel coupled to
the Kondo resonance in the d level as for q = 0 but now the s

level of the tip atom is not near the Fermi level.
In the Appendix B we give a derivation of the Fano formula

(11) for our simplified model of a nanocontact shown in Fig. 2:
The (left) tip atom where the Kondo effect is taking place is
modeled by one s level and one d level. While the s level
couples well to both electrodes (via �L,s and �R,s) and, thus,
has a nearly perfect transmission, the d level hosting the Kondo
resonance has a much weaker coupling to both electrodes (�L,d

and �R,d ). Generally, we assume that the couplings to the left
electrode are stronger than to the right electrode, i.e., �L,α >

�R,α . Additionally, there is a small hybridization Vsd between
the s and the d levels due to the crystal field.

As Meir and Wingreen showed in their landmark paper,
at zero temperature and in linear response the conductance
through a nanoscopic conductor is well described by the
Landauer formula, even in the case of a strongly interacting
system.75 The conductance G for small bias V is then given
in terms of the quantum mechanical transmission function
T (ω) as G(V ) = G0 × T (eV ), where G0 = 2e2/h is the
fundamental conductance quantum.

As shown in the Appendix B, the transmission T (ω) through
the tip atom can be decomposed into the contributions of direct
transmission through the indivdiual s and d channels, namely
Ts(ω) and Td (ω), respectively, and a mixed channel involving
hopping between both channels, Tsd (ω),

T (ω) = Ts(ω) + Td (ω) + Tsd (ω). (12)

Following Eqs. (B8) and (B9), the direct channel transmissions
Ts and Td are given by the spectral densities of the s and d

levels, respectively, and the couplings of the s and d levels to
both electrodes L and R.

The Kondo effect gives rise to the appearance of a Kondo
resonance in the the d-level spectral function ρd (ω) given by
Eq. (3). Hence, the contribution of the d channel to the total
transmission has a Lorentzian line shape,

Td (ω) = z2 �L,d�R,d

(ω − εK )2 + �2
K

= 4 �L,d�R,d

�L,d + �R,d

1

1 + x2
, (13)

where we have used �K = z(�L,d + �R,d )/2 and we have
defined the dimensionless quantity x = (ω − εK )/�K . Hence,
as pointed out above, the d-channel contribution to the
transmission can only give rise to Fano line shapes with
q → ∞.

We assume that the unperturbed s channel (i.e., without
coupling to the d level) has a featureless (i.e., flat) and almost
perfect transmission T 0

s ≈ 1. Due to the coupling Vsd to the d

level, this transmission is modified according to (see Appendix
B),

Ts(ω) = T 0
s

[
1 + 2 z V 2

sd

�s�K

(x + q0)2 − (x2 + 1)

(x2 + 1)
(
1 + q2

0

)
]

, (14)

where �s = �L,s + �R,s is the total broadening of the s level
and the dimensionless quantity q0 has been defined as the ratio
between the s-level energy and the s-level broadening: q0 =
−2εs/�s (see Appendix B for details). The second term of the
right-hand side is of the Fano form, Eq. (11), and represents
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the modulation of the almost perfectly transmitting s channel
due to the coupling to the Kondo resonance in the d channel.
Since generally 2|εs | < �s we should have |q0| � 1 and,
therefore, the s-channel contribution to the transmission (14)
can only give rise to diplike (q0 ≈ 0) or asymmetric Fano line
shapes q ≈ 1 but not to the peak line shapes where |q0| � 1.

For the mixed-channel contribution Tsd to the total
transmission we find the following expression in the
Appendix B:

Tsd (ω) = T 0
s

z2 V 2
sd

�2
K

(
�R,d

�R,s

+ �L,d

�L,s

)
1

1 + x2
. (15)

This contribution describes transmission processes where an
electron hops from one electrode to the s level of the tip atom,
subsequently to the d level via Vsd , and then to the other
electrode. Due to the Kondo peak in the d level, it gives rise
to a Lorentzian line shape in the transmission.

Hence, we have shown that our model can give rise to all
possible Fano line shapes as obtained in the experiments. More
specifically, the s-channel contribution Ts(ω) can give rise to
the diplike features (q ≈ 0) and the asymmetric Fano features
(|q| ≈ 1) while the d-channel contribution Td (ω) and the
mixed-channel contribution Tsd (ω) give rise to Lorentzian line
shapes (|q| → ∞) in the transmission. Which term dominates
depends on the specific amplitudes of the different transmis-
sion channels given by the basic parameters of our model.

It is, of course, possible to achieve the “canonical” Fano
line-shape form for the conductance as in Eq. (11) by summing
up all the individual contributions to the total transmission
(12) and reorganizing the terms. We then obtain a “new” Fano
factor q that differs from the Fano factor q0 for the pure s-
channel contribution (14). This new Fano factor will depend
on q0 and the amplitudes of the individual contributions to the
transmission and yields a relatively complicated expression in
terms of the basic parameters of our model. The same is true
for the amplitude A of the Fano feature defined by Eq. (11).

However, we can obtain quite simple expressions for q and
A in Eq. (11) in an important limit of our model, namely
when the coupling of the d level giving rise to the Kondo peak
to one of the electrodes becomes very small, e.g., �R,d → 0.
In that case, the direct transmission through the d channel
is strongly suppressed, i.e., Td ≈ 0, so now only the mixed-
channel contribution Tsd can give rise to a Lorentzian line
shape in the transmission,

q =
√

�s

�L,s

q0 = − 2εs√
�s · �L,s

, (16)

A = 1 + �s/�L,s

1 + q2
0

4 V 2
sd

�s�L,d

= 2π
�s

�L,s

�L,s + �s

�2
s + 4ε2

s

V 2
sdAK, (17)

where AK is the amplitude of the Kondo resonance in the
spectral function of the d level as given by Eq. (8). Note that
the Fano factor q0 of the s-channel transmission Ts is now
scaled by the factor

√
�s/�L,s > 1 to yield the Fano factor

q of the Fano line shape in Eq. (11), meaning that, for large
values of the ratio

√
�s/�L,s , we can obtain |q| values > 1

for 0 < |q0| � 1. Furthermore, we see that the amplitude of
the Fano resonance in the conductance is proportional to the
amplitude of the Kondo resonance and to the square of the

coupling Vsd between the s level and the d level of the tip
atom.

IV. EXPERIMENTAL DETAILS

The experiments were performed using a home-made STM
operated in a He cryostat at 4.2 K. Two pieces of the same metal
wire (Fe, Co, or Ni) of 0.1 mm of diameter were scratched and
sonicated in acetone and isopropanol before being mounted
as “tip and sample” in the microscope. The conductance
between the two pieces of metal is obtained in a two-terminal
configuration by measuring the current at a fixed bias voltage,
in this case, 100 mV. In these conditions, we can record traces
of conductance wile changing the distance between the two
metals [a typical trace is shown in Fig. 1(a)] in a similar fashion
as performed in other break-junction experiments.40 The sam-
ples are then prepared at low temperatures by indentation until
no traces with subquantum events are shown. The histograms
[Fig. 1(b)] are similar to those at mechanically controlled
break-junction (MCBJ) experiments where a fresh surface is
formed at cryogenic vacuum when breaking a notched wire by
the controlled bending of a elastic substrate (see, e.g., Ref. 40
for details). This shows that our measurements are performed
over a clean spot of our samples. A strong indentation between
the two electrodes is performed between the fabrication of
consecutive atomic contacts to ensure the cleanliness. Our
STM setup has imaging capabilities; however, our surfaces
are not atomically flat due to preparation and in order to
acquire a large number of contacts to analyze and no imaging
is performed between contact formation.

As described in Sec II, traces show plateaus coming from
the atomic rearrangement of the wire while pulling and the last
plateau around the quantum of conductance is associated with
the formation of a single atom contact. Once the conductance
of the one-atom contact has been determined by the position of
the first peak of the conductance histogram, we can fabricate
monoatomic contacts by stopping the breaking process of
the contact at the desired value of conductance within the
range defined by the conductance histogram. The stability of
our system allows us to maintain such an atomic contact for
hours. We study the transport spectroscopy of these contacts
in a similar way as performed in other transport experiments
either in tunneling or high-conductance regimes (e.g., the case
of quantum dot devices or the spectroscopy of adatoms by
STM). We sweep the bias voltage from −100 to 100 mV
while recording the dI/dV signal with the help of a lock-in
amplifier when adding a 1-mV ac excitation at a frequency
about 1 kHz to the applied bias voltage.

V. RESULTS

The fabrication of atomic contacts by using a STM (or
MCBJ) offers the possibility of studying a high number of
different contact configurations in a reasonable amount of
time. We fabricated hundreds of atomic contacts of Fe, Co,
and Ni and performed electron spectroscopy measurements as
described in Sec. IV. About 80% of these curves showed clear
asymmetric profiles centred at zero bias as the ones plotted in
Fig. 5.
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FIG. 5. (Color online) Representative differential conductance
curves for atomic contacts of Fe, Co, and Ni. A characteristic
resonance associated with the Kondo effect appears at small bias.
The corresponding fit to the Fano line shape is shown in black for
each of these resonances. Due to the large differences in the width of
the resonances, the fitting range is chosen so it is possible to fit the
whole range of the resonance to the Fano line shape. The selected
curves exemplify different symmetry cases, from the more symmetric
(q � ∞ and q � 0, respectively) to the clearly asymmetric ones
(q � ±1). While all possible symmetries seem to happen for the three
materials, the width of the resonance which is associated with the
Kondo temperature differs for the three materials, especially for Ni.

Similar asymmetric zero-bias anomalies (ZBA) were re-
ported for ferromagnetic atomic contacts and attributed to the
existence of conductance fluctuations76 or to the existence of a
magnetic domain wall.77 On the other hand, these asymmetric
profiles resemble the data reported for single magnetic adatoms
in the contact regime, not only in shape but also in the energy
scale of the features.29,30

In our previous work we have shown clear evidence of the
Kondo effect being responsible for these ZBA.38 Recently,
ZBA profiles, possibly of similar origin, have been reported in
Refs. 78 and 79 for nanocontacts made from other materials
and also show the Kondo-related ZBA in adatoms contacted
by ferromagnetic tips.36,37

As in other Kondo systems, the asymmetric line shapes
can be fitted to the Fano equation (11). From this fitting, we
extract the values for the different parameters that describe the
Kondo effect. As sketched in Fig. 4, the width of the resonance
is directly related to the Kondo temperature (TK ). The Fano
parameter q contains information about the symmetry of
the line shape. We denote by εK the energy at which the
resonance is centered. As introduced in Sec. III, this parameter
is associated with the energy position of the Kondo resonance
and, therefore, to the occupation of impurity level nd , Eq. (6).
Finally, A is the amplitude of the Fano profile and goff the
conductance offset of the curve from the resonance.

Each realization of the contact leads to a slightly different
configuration. The statistical distributions of the different
parameters of the Fano equation described above will reflect
the subtle differences in the electronic structure of each

contact. We present below a statistical analysis of each of
these parameters for hundreds of contacts of Co, Fe, and Ni.
This novel statistical analysis (since in our previous work38 we
analyzed only briefly the shape and mean value of the Kondo
temperature) together with theoretical considerations brings
new insight into the physics of Fano-Kondo resonances. We
present now the distributions of these parameters and compare
the results among materials.

A. Kondo temperatures

As described in Sec. III, the zero-bias resonances observed
in the conductance characteristics of Kondo systems are
directly related to the resonances developed in the spectral
density of the system. As explained in Sec. III, the width of
this resonance is determined by the energy scale of the Kondo
screening, the so-called Kondo temperature TK . Thus, the
width of the observed Fano line shapes must be proportional
to the Kondo temperature of the system. More precisely, we
define the Kondo scale as the half width of the Fano line shape:
�K = kBTK . The width of the measured Kondo resonance is
strongly affected by a finite temperature of the system: In
addition to the standard thermal broadening of any differential
conductance feature, the Kondo resonance presents an intrinsic
thermal broadening.24 This results in a considerable extra
broadening of the resonance at temperatures on the order of
magnitude of TK . In our case, since the width of our resonances
excesses in more than an order of magnitude the experimental
temperature of 4.2 K and the bias voltages used are low
enough,35 we can disregard thermal effects and consider that
we can extract the Kondo temperature for each contact directly
from the width of the Fano resonance.

As we have already described in Ref. 38, the distribution
of Kondo temperatures fits a logarithmic normal distribution
for the three materials Co, Fe, and Ni, meaning that the
logarithm of TK is normally distributed (presented in Fig. 6).
This peculiar behavior is easily understood when interpreted
in terms of the Kondo effect: Since many different atomic
configurations result in single-atom contacts, their electronic
properties, such as conductance (Fig. 1), density of states,
and the associated energy scales, are expected to be normally
distributed. On the other hand, following Eq. (4) the Kondo
temperature depends exponentially on the typical energy scales
of the problem. Hence, ln TK for different contacts should
follow a normal distribution if the relevant energy scales of
the problem are normally distributed.

By just looking at the resonances, as, for example, the ones
shown in Fig. 5, it can be observed that the Fano features in the
conductance spectra of Ni contacts are considerably broader
than the ones for the cases of Co and Fe. As shown in Fig. 6
and summarized in Table I, the histograms yield most frequent
values for the resonance widths of TK = 90 K, 120 K, and
280 K for Fe, Co, and Ni, respectively, following the same
trend T Fe

K < T Co
K < T Ni

K as in the case of adatoms of these
elements deposited on nonmagnetic surfaces25 and diluted
alloys of Cu containing the same concentration of magnetic
atoms.80 In simple terms, the Kondo temperature decreases as
the size of the screened magnetic moment increases as we go
from Ni to Fe.
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FIG. 6. (Color online) Histograms of values of logarithm of
Kondo temperature for Fe, Co, and Ni. The histograms are normalized
to the total number of counts. The distribution of values for the ln(Tk)
is clearly narrower for Ni than for Fe and Co in spite of the higher
value of Kondo temperatures for Ni, as summarized in the inset. The
most frequent value of the Kondo temperature is determined with an
error of 10 K.

Figure 6 shows the distribution for ln(TK ) fitted to a
Gaussian distribution. Surprisingly enough, in spite of the
considerably higher values of Kondo temperatures, the distri-
bution of Ni when plotted in logarithmic scale is considerably
narrower than in the cases of Fe and Co (see also inset of
Fig. 6). This suggests that, in the case of Ni, the characteristics
of the Kondo screening differ markedly from the cases of Co
and Fe, possibly indicating a different mechanism for the case
of Ni and the cases of Co and Fe.

The higher Kondo temperatures for Ni as well as their
narrower distribution could well be connected to the different
chemical valence and the resulting magnetic moment in
comparison to Co and Fe: While Ni basically has one hole in
the 3d shell and, therefore, features an atomic spin of 1/2, Co
and Fe have two and three holes in their 3d shells associated
with atomic spins of 1 and 3/2, respectively. Hence, in the
cases of Co and Fe, the possibility exists that the full atomic

TABLE I. A comparison of Kondo temperatures in the case of
magnetic impurities in bulk Cu, magnetic adatoms in the tunneling
regime, and for the ferromagnetic contacts (Fe, Co, and Ni) in this
work. The different values of the Kondo temperatures in the case
of adatoms correspond to measurements performed over different
substrates. Also shown are the magnetic moments of isolated atoms
and in bulk.

Fe Co Ni

TK (K) in bulk Cu80 10–50 300–700 �1000
TK (K) adatoms — 53–9223 12025

TK (K) this work 90 120 280
matom(μB) 3 2 1
mbulk(μB) 2.22 1.72 0.60

FIG. 7. (Color online) Histograms of the d-level occupations nd

for contacts of Fe, Co, and Ni. The colored lines show the fitting of
these distributions to a Gaussian peak. Surprisingly, the distribution
for Ni is narrower than that for the other two, in spite of the fact
that this material shows a broader distribution of the parameter εK .
(Inset) Distribution of εK for hundreds of contacts of Fe, Co, and Ni.
This parameter accounts for the deviation of the center of the Fano
resonance from zero bias and is related to the position of the localized
magnetic moment in the Kondo model.

spin S > 1/2 is only partially screened while the spin-1/2 in
the case of Ni is fully screened by the conduction electrons.
The cases of Co and Fe would then resemble the situation of an
underscreened Kondo lattice where the remaining unscreened
spin couples ferromagnetically to the spins on neighboring
atoms, as discussed in Ref. 63. As explained in Sec. III, such
an underscreened Kondo effect is characterized by sharper
resonances in comparison to the normal fully screened Kondo
situation and, hence, results in lower Kondo temperatures in
the analysis. In this sense, the Kondo temperatures may be
underestimated in the cases of Co and Fe. We discuss this in
detail in the discussion Sec. VI together with the distribution
of other parameters.

B. Resonance energy (εK ) and d-level occupation

Another important parameter to study is the position of the
Kondo resonance εK , which accounts for the deviation of the
center of the Fano resonance from zero bias and is related to
the energy of the effective Kondo level with respect to the
Fermi energy.23 The inset of Fig. 7 shows the distribution of
this parameter for hundreds of contacts of the three materials
under study. These distributions fit a Gaussian line shape which
is considerably broader for the case of Ni than for Co and Fe.

Most interestingly, from the values of εK and TK it is
possible to extract the occupation of the d level (giving rise to
the Kondo resonance) from the experimental data, assuming
a Fermi liquid approximation as explained in Sec III, Eq. (6).
This approximation should be valid here since we are well
below the Kondo temperature of our system. As explained
in Sec. III, this relation is even valid for the underscreened
Kondo effect in the multiorbital Anderson model (although,
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TABLE II. Most frequent value of resonance energy and d-level
occupations and their respective width of their Gaussian distributions
for Fe, Co, and Ni.

Fe Co Ni

Mean εK (mV) − 1.0 0.6 0.3
FWHM εK (mV) 14.7 16.3 25.4
Mean nd 1.07 0.97 0.99
FWHM nd 0.79 0.74 0.52

strictly speaking, we then have a singular Fermi liquid) where
nd now refers to the the d level whose spin is screened by the
conduction electrons and εK and TK refer to the position and
width of the Kondo resonance of the underscreened Kondo
effect. Figure 7 shows the distribution of positions and the
resulting calculated occupations nd for Fe, Co, and Ni which
again follow a normal distribution.

As summarized in Table II, the mean value for the three
materials is close to 1. Interestingly, in spite of the broader
distribution of values of εK , the occupations for Ni contacts
clearly show a narrower distribution. Numerically, this can
be explained by the much narrower distribution of ln(TK ).
Physically, the reason behind the narrower distribution of
Kondo temperatures and occupations in the case of Ni might
be that charge fluctuations become stronger with an increasing
number of active levels, as already discussed in the seminal
work of Nozieres:62 In the case of Ni, we are most likely
dealing with a single active impurity level due to a single
hole in the 3d shell of Ni. Hence, the charge in this level
is quite well defined, and the occupation is very close to one
electron. In the cases of Co and Fe, on the other hand, we should
have more than one active impurity level and, therefore, the
variation in the occupation of the level giving rise to the Kondo
resonance is much stronger. Relatedly, a broader distribution
in the occupation of the impurity level giving rise to the Kondo
resonance should also give rise to a broader distribution in the
Kondo temperatures since charge fluctuations strongly alter
the width of the Kondo resonance.6

C. Amplitudes

At first glance, the distribution of amplitudes in Fig. 8
shows no clear differences between the three materials. The
most frequent value of the amplitude is approximately 0.1
2e2/h, i.e., about 10% of the conductance of the contact. On
the other hand, we find that the square root of the amplitude
indeed follows a normal distribution, as can be seen from
the inset of Fig. 8, which shows the statistical distributions
of the square root of the amplitude for the three materials.
A possible explanation is that following expression (17) the
amplitude depends quadratically on the coupling Vsd between
the s and d levels of the tip atom. Vsd is expected to vary
strongly when the atomic configuration of the contact changes
since it is induced by disorder in the contact region and is
absent for perfect crystalline order. Hence, if Vsd is normally
distributed and is the parameter determining A that is most
strongly affected by changing the atomic configuration of the
contact, one would expect

√
A to be normally distributed.

FIG. 8. (Color online) Distribution of amplitudes extracted from
the fitting of characteristics of hundred of contacts of Fe, Co, and
Ni to the Fano equation. The distributions are similar for the three
materials, with the amplitudes being about a 10% of the conductance
of the contacts. The inset shows the distribution of

√
(A) and its fit to

a Gaussian. This distribution could reflect the quadratic dependence
of amplitude in different coupling terms.

Furthermore, one can seen that the distributions of
√

A for
the three materials are centered at quite similar values and also
have similar widths. However, we can make out a subtle trend
(Table III): The mean amplitude and the mean value of the
square root of the amplitude both are slightly higher for Fe
contacts than for the other two materials, and, moreover, both
distributions are slightly broader for Fe than for Co and Ni.
However, this trend is not as clear as the trend observed in the
distributions of Kondo temperatures TK for the three materials
(Fig. 6). Thus, it is difficult to draw any further conclusions
from it. Moreover, we would like to point out that a similar
trend is observed in the distributions of the conductances (see
Fig. 1 and Table III): Fe has a higher average conductance
than Ni and Co. More data would be needed to extract further
conclusions from this analysis.

Far more interestingly, the plot of the amplitude versus
the Kondo temperature presents an intriguing trend, as can
be seen from Fig. 9: For all three materials there seems to
be an approximately linear dependence of the amplitude on
the Kondo temperature with respect to the Kondo temperature.
Moreover, when normalizing the amplitudes and Kondo
temperatures to the respective mean values (Table III), one
obtains a universal dependence, suggesting that A ∝ f (TK ).

TABLE III. Mean values of amplitudes and width of the the
Gaussian distributions of

√
A and mean conductances for Fe, Co,

and Ni.

Fe Co Ni

Mean A from
√

A 0.13 0.088 0.10
Mean

√
A 0.36 0.30 0.32

FWHM
√

A 0.31 0.24 0.27
Mean G from Fig. 1 2.0 1.2 1.6

075447-10



ANALYSIS OF THE KONDO EFFECT IN FERROMAGNETIC . . . PHYSICAL REVIEW B 86, 075447 (2012)

FIG. 9. (Color online) (Left) Scattered plot of the amplitude of
the resonance versus the Kondo temperature obtained for hundreds of
contacts of Fe, Co, and Ni. The plot shows a clearly similar (linear)
trend for the three materials. When divided by the most probable
value of the Kondo temperature for each material, the distributions
overlap each other, as shown in the right panel.

This universal behavior seems to reflect some kind of
universality in the relation between the basic parameters U , εd ,
and �d that ultimately determine the Kondo properties of our
system. Said in another way, the basic parameters U , εd , and
�d are not independent of each other but are linked together
in such a way that universal scaling between the amplitude
AK and the Kondo temperature TK results. For example, it is
conceivable that both �d (the coupling of the impurity level
to the conduction electrons) and U (the effective Coulomb
repulsion of the impurity level) are related since a change in the
coupling �d implies a change in the localization of electrons
in the impurity level and, hence, can result in an alteration of
the screening of the effective Coulomb interaction U . Further
theoretical work is necessary in order to achieve a rigorous
interpretation of these results.

D. Fano parameters

The Fano parameter q accounts for the symmetry of the
Fano resonances, recovering the perfect Lorentzian shape
for q → ∞ and its inverse for q = 0. As already noted
above, all possible symmetries are found for each material.
A histogram of the values of q for the three materials is
shown in Fig. 10. Since q ranges from 0 to ∞, an alternative
representation where q = tan(α) is chosen for simplicity. In
this representation, α = 0 corresponds to the dip and α = π

to the peak line shapes. The totally asymmetric cases are
represented by α = π/2 (q = 1) and α = 3π/2 (q = −1).
There is a remarkable preference towards the symmetric cases
over the more asymmetric ones in the cases of Fe and Co,
and, in particular, the diplike (q = 0) line shapes seem to
prevail. For Ni, the occurrence of asymmetric cases (|q| ∼ 1)
is considerably higher, and, overall, the Fano factors seem to
be more evenly distributed than in the cases of Fe and Co.

In the case of adatoms in tunneling, the symmetry is well
understood in terms of the ratio between the probability of
transmission through the d or the s channels.20 Nevertheless,

π/2

π/4

0

3π/4

Acot (q)

)stinu yrartibra( stnuo
C 

   Fe
   Co
   Ni

q = 1

q = 0

q = -1

q = ∞

FIG. 10. (Color online) The so-called Fano parameter q ranges
from 0 to ∞, but it can be expressed as q = tan(α) with α between
0 and π , for simplicity in the representation. α = 0 corresponds to
the deep, α = π to the peak, and α = 1, −1 the totally asymmetric
cases. The histograms are normalized to the total number of data.

in the point contact regime and in our case, the system presents
a higher complexity. There is a totally open s channel and
the nature of the orbitals and couplings contributing to the
interference is not completely clear. The distribution of the q

parameters should contain information about the contributions
from the different channels to the interference which might be
extracted with the help of an appropriate theoretical treatment.

In Fig. 11 we plot the evolution of a single Co contact
when stretching the junction. The symmetry of the curve
changes as the contact rearranges in a different manner,
which translates into a different conductance of the curve
(the curves are not offset). When stretching the contact of
the hoppings among different orbitals, the electronic structure
and, hence, the conductance varies, and this affects the

FIG. 11. (Color online) Evolution of the dI/dV characteristics
of a single Co contact as stretching the junction. As the conductance
of the contact decreases, the symmetry of the curve, that is, the Fano
parameter, q, also changes as a consequence of the different electronic
structures of the different arrangements.
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interference between the conduction channels and also the
Kondo resonance responsible for the Fano line shapes. This
evolution is probably specific for each contact since an attempt
to find a statistical relation between q and the conductance
offset results in a random distribution of points. More work is
needed to fully clarify this effect.

E. Summary

In summary, the statistical analysis of the Fano-Kondo line
shapes extracted from hundreds of atomic contacts shows the
following.

(i) The statistical distribution of Kondo temperatures for
each material is a log-normal distribution, i.e., the logarithm
of the Kondo temperatures is normally distributed. This is
expected in the context of the Kondo effect since the Kondo
temperature depends exponentially on the different electronic
properties and couplings of the system. These properties are
likely to be normally distributed for the slightly different
atomic configurations of the contacts. Hence, the log-normal
distribution of Kondo temperature presents further evidence
that the Kondo effect is responsible for the zero-bias anomalies
in the conductance.

(ii) The mean value for the Kondo temperatures is consider-
ably higher for Ni than for Co and Fe, whereas the distribution
of the logarithm of the Kondo temperature for Ni is narrower
than for Co or Fe. This finding suggests that possibly a different
mechanism is responsible for the Kondo screening in the case
of Ni than in the cases of Co and Fe.

(iii) The distribution of the resonance energies εK is
Gaussian and is centered around zero for all three materials. In
the case of Ni this distribution is much broader than in the cases
of Fe and Co where the distribution widths are similar. This
again points to different mechanisms for the Kondo screening
for Ni, on the one hand, and for Co and Fe, on the other hand.

(iv) The occupations nd of the impurity level giving rise
to the Kondo resonance calculated from TK and εK by
Eq. (6) again follow a Gaussian distribution centered around
occupation 1. This distribution is narrower for Ni than for
Co and Fe. This can be understood by considering that most
likely for Ni only a single d level is active while for Fe and
Co several d levels must be active. This leads to stronger
charge fluctuations and, hence, a larger variation in the d-level
occupations in the cases of Co and Fe.

(v) The distribution of the Fano curve amplitudes does not
show significant differences between the materials. We find
that the square root of the amplitudes is normally distributed.
This again can be understood by a normal distribution of the
characteristic parameters of the nanocontacts on which the
amplitude depends quadratically.

(vi) The plot of the amplitudes against the Kondo tem-
peratures follows a similar (almost linear) trend for the three
materials. When divided by the mean values for each material
the data lines are perfectly on top of each other, showing a
universal scaling behavior of the amplitude with the Kondo
temperature.

(vii) There are more asymmetric Fano line shapes in the case
of Ni than for Co and Fe. The distribution of Fano parameters q

again is similar for Fe and Co but differs for Ni. Co and Fe show
a clear preference for the diplike q = 0 line shapes while for

TABLE IV. Summary of the different parameters extracted from
the statistical analysis of hundreds of atomic contacts for each of the
three materials Fe, Co, and Ni.

Fe Co Ni

Mean TK 90 120 280
FWHM ln(TK ) 0.96 0.91 0.73
Mean εK (mV) − 1.0 0.6 0.3
FWHM εK (mV) 14.7 16.3 25.4
Mean nd 1.07 0.97 0.99
FWHM nd 0.79 0.74 0.52
Mean A from

√
A 0.13 0.088 0.1

FWHM
√

(A) 0.31 0.24 0.27

Ni the distribution of the Fano parameters is somewhat more
uniform.

Table IV shows a summary of the parameters extracted from
the statistical analysis of the Fano-Kondo line shapes for the
all three materials.

VI. DISCUSSION

The picture of the Kondo effect in ferromagnetic atomic
contacts that emerges from our statistical analysis and theo-
retical considerations is as follows: The low coordination and
disorder of the atoms in the contact region in connection with a
higher effective Coulomb repulsion can lead to the localization
of a single spin in an individual d level of an atom in the contact
region.38 Now, due to disorder in the contact region, it can be
that this d level couples only very weakly to the spin-polarized
d levels on neighboring atoms but instead it has an effective
coupling to the basically spin-unpolarized s-type conduction
channel. In this situation, the Kondo effect can take place and
screen the spin in that d level.

In the case of Ni there is one hole in the 3d shell and,
therefore, a spin-1/2 associated with it. If the spin becomes
localized in a d level that predominantly couples to the
spin-unpolarized s-type conduction electrons, this spin can be
fully screened. Hence, for Ni we should have a normal Kondo
effect where the full spin-1/2 is screened. In the cases of Fe
and Co the atomic spin is higher due to three and two holes,
respectively, in the 3d shell of these atoms. This might explain
why the measured Kondo temperatures are higher in the case of
Ni than for Co and Fe since the Kondo temperature decreases
with increasing spin of the impurity.81,82 However, one would
then also expect a significantly lower Kondo temperature for
Fe than for Co which is not the case.

The scenario that we propose instead for Co and Fe is
an underscreened Kondo effect where the full atomic spin
S > 1/2 is only partially screened by the conduction electrons.
More precisely, only the spin-1/2 within the d level that
predominantly couples to the s-type conduction electrons will
be screened while the rest of the spin S − 1/2, which is
likely to be localized in d levels that couple more strongly
to the spin-polarized d levels on neighboring atoms, remains
unscreened. This scenario fits very well with our results: In
particular, it explains why the average Kondo temperature is
very similar for Fe and Co but is considerably higher for Ni as
the underscreened Kondo effect is characterized by a cusplike
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resonance much sharper than the Lorentzian-type resonance
of the normal fully screened Kondo effect. An underscreened
Kondo effect for Fe and Co contacts would also explain why
the occupations can be calculated from Eq. (6) derived for the
single-level Anderson impurity model.

Recent work by Néel et al.37 shows how the Kondo temper-
ature increases for a cobalt impurity when it is contacted by
an Fe tip compared to the case of using a Cu tip. These results
and their interpretation are in good agreement with the results
presented here: differences in the composition and geometries
of the junctions lead to different electronic structures of the
contact which determines the Kondo screening. By studying a
specific system with a well-characterized geometry, Neel et al.
can extract the change in hybridization and the corresponding
occupation of the d level as the main cause of the observed
increase in Kondo temperatures. We study here instead a
large variety of possibilities. Changes in the hybridization
are probably responsible for the broad distribution of Kondo
temperatures in our data, but other parameters, such as the
occupancy of the 3d shell, may also change in our system
from contact to contact.

Finally, we discuss the connection to a related work by
Bork et al.36 with the results presented here: In the work of
Bork et al., the Fano-Kondo line shapes of a system consisting
of two Co atoms, one on a Cu surface and the other attached to
a Cu STM tip, are recorded while the distance between the two
Co atoms is decreased from the tunneling regime to the contact
regime. The authors report a splitting of the Fano-Kondo line
shapes when the contact regime is entered due to the formation
of a spin-singlet state between the two Co atoms.

In some cases, the Fano-Kondo line shapes of the
ferromagnetic contacts measured here could also be
interpreted as a splitting of the Kondo resonance. For example,
the evolution of the Fano line shape of a Co nanocontact being
stretched (Fig. 11) possibly shows a small splitting for the
curve with the lowest conductance. However, if this specific
feature really shows a splitting of the Fano-Kondo resonance,
it actually occurs in the opposite direction as for the system
studied by Bork et al., i.e., it occurs when the nanocontact is
pulled apart and not when the tip atoms are brought together as
in the case of Bork et al. In any case, we have not observed very
frequently such curves that could be interpreted as splittings,
and the focus of this work is a statistical analysis of a large
number of different configurations of atomic contacts while the
work of Bork et al. focuses on a very specific system. On the
other hand, we also would like to point out that conductance
oscillations in the spectroscopy at the atomic scale83 further
complicate the interpretation of these kinds of curves.

Still one might wonder why splitting of the Fano-Kondo
line shapes in the atomic contacts studied here are not
observed more frequently. The reason might be that indeed
the d level on a tip atom giving rise to the Kondo effect just
does not couple very well to the d levels of the other tip atom
due to the disorder in the contact region. Hence, the splitting
is probably very weak compared to the Kondo temperature
and, therefore, not observed, as also shown in Ref. 37, where
the Kondo resonance remains unsplitted even when the Co
adatom is contacted by a ferromagnetic tip. Another possible
explanation could be that the weak coupling between the d

levels giving rise to the Kondo effect localized on different

tip atoms is compensated by the weak spin polarization of
the conduction electrons, similarly to the case of a double
quantum dot coupled to ferromagnetic leads.84

VII. CONCLUSIONS

Atomic contacts are unique systems that allow us to
understand the dramatic consequences of low coordination and
disorder on the electronic transport and magnetic properties at
the nanoscale. The emergence of the Kondo effect in atomic
contacts is a good example of this.38 Here we have extended our
previous work in several aspects in order to gain new insights
into the nature of the Kondo effect in ferromagnetic one-atom
contacts: We have presented an exhaustive statistical analysis
of the Fano resonances in the spectroscopy of ferromagnetic
one-atom contacts. In particular, we have analyzed not
only the distribution of Kondo temperatures but also of
the resonance energies, amplitudes, and Fano parameters.
Such an exhaustive statistical analysis provides us with new
information on the nature of the Kondo effect in these systems.

From this analysis, we have, for example, obtained the
distribution of d-level occupations, and the dependence of the
amplitudes of the Fano resonance on the Kondo temperature.
We also point out the widths of the parameter distributions as
an indicator on the robustness of the Kondo screening in one-
atom contacts of the different materials. Additionally, we have
further developed the theory in order to explain the observed
qualitative differences between Ni, on the one hand, and Co
and Fe, on the other hand. Furthermore, we have devised a
simple microscopic model which allows us to understand the
occurrence of different Fano line shapes for the same material
in terms of variations of the microscopic interactions.

Our statistical analysis shows clear differences in the Kondo
characteristics of different ferromagnetic materials, i.e., of Fe
and Co versus Ni. These differences can be explained by
the different valences, leading to different Kondo scenarios.
Although this might not be a unique explanation for the
observed phenomenology, the reported results seem to fit well
with an underscreened Kondo effect for the cases of Fe and Co
and a standard spin-1/2 Kondo model for the case of nickel.

While the different screening conditions might account
for the differences in Kondo temperatures and occupation,
the complexity of atomic contacts, especially of transitions
metals, where many different channels contribute to the
transport, makes it difficult to fully understand the details
for each single contact. A simple interpretation for certain
parameters as the exact shape of the curves (Fano parameter)
or the amplitude of the resonances is difficult to achieve as
the spectroscopy also might contain information about other
phenomena, such as quantum oscillations, due to interferences
between nonresonant conduction channels, inelastic processes
as phonon excitations, and so on.

In the recent past, the combination of molecular dynamics
simulations and ab initio transport calculations and experiment
has proven to be a successful path for understanding the
atomic, electronic, and magnetic structures as well as the
transport properties of nanocontacts.39,50,59 Further work in
this direction in combination with more sophisticated many-
body techniques capable of describing the Kondo effect, such
as the dynamical mean-field theory,60,85 should contribute to
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fully understand Kondo physics and the presence of magnetism
in these systems and in atomic-size structures in general.
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APPENDIX A: TWO-LEVEL ANDERSON
IMPURITY EIGENSTATES

Here we briefly discuss the many-body eigenstates of
the isolated two-level Anderson impurity model and the
fluctuations between them that lead to the underscreened
Kondo effect as discussed in Sec. III C.

The isolated impurity Hamiltonian ĤI of the 2AIM (9) is
easily diagonalized. The empty impurity state is denoted by
|d0〉 and has energy E0 = 0. For single occupation, the four
eigenstates and energies are trivially given by

|d1; iσ 〉 = d
†
iσ |0〉, E1 = 〈iσ |ĤI |iσ 〉 = ε. (A1)

For double occupation, the eigenstates can be separated into
spin-singlet (total impurity spin S = 0) and spin-triplet (S =
1) states. The latter are given by

|d2; S = 1; M〉 = |1,2〉− ⊗

⎧⎪⎨
⎪⎩

|↑, ↑〉 (M = 1)

|↑, ↓〉+ (M = 0)

|↓, ↓〉 (M = −1)

, (A2)

where M is the projection of the total impurity spin onto the
spin quantization axis. The triplet states are all degenerate with
energy ET = 2ε + U ′ − JH/4. The spin singlet states can be
written as

|d2; S = 0; ij 〉 = |i,j 〉+ ⊗ | ↑, ↓〉−. (A3)

The corresponding eigenenergies are E12
S = 2ε + U ′ + 3

4JH

and E11
S = E22

S = 2ε + U . Typically, U ≈ U ′ + JH , and,
therefore, E11

S = E22
S > E12

S . Due to Hund’s rule coupling, the
triplet states are lower in energy by an amount (E12

S − E)T =
JH . In Fig. 12 we show the corresponding energy-level
diagram for the 2AIM. U and U ′ are assumed to be big enough
to prevent triple and full occupation of the impurity. Hence,

E0, |d0

E1, |d1; iσ

Eij
S , |d2; S = 0; ij

ET , |d2; S = 1;M

JH

FIG. 12. Schematic energy-level diagram for the (isolated) two-
level impurity described by HI in Eq. (9).

the triplet states comprise the ground-state manifold of the
isolated impurity system.

Now in the situation of the underscreened Kondo effect
where only one of the impurity levels is coupled to the conduc-
tion electron bath, hopping processes between the impurity and
the bath can only lead to a spin flip in the impurity level that is
coupled to the bath as illustrated in Fig. 3. These spin-flip pro-
cesses can only lead to fluctuations between states with M = 1
and M = 0 and between states with M = −1 and M = 0.

For example, |S = 1; M = 1〉 = |1 ↑,2 ↑〉(−) d1↑−→ |2 ↑〉 d
†
1↓−→

|1 ↓,2 ↑〉(−) d1↓−→ |2 ↑〉 d
†
1↑−→ |1 ↑,2 ↑〉(−). Hence, the total spin

of the impurity is only partially screened by these processes.
This is the essence of the underscreened Kondo effect.

APPENDIX B: DERIVATION OF THE FANO FORMULA
FOR MODEL CONTACT

We assume the simplified model of a nanocontact described
in Sec. III and shown in Fig. 2. We concentrate on one of the
tip atoms of the nanocontact, which, in our model, consists of
an (almost) perfectly transmitting s level and the d level where
the Kondo effect takes place. Hence, the Greens function (GF)
of the tip atom can be written as

GA(ω) =
(

Gs Gsd

Gsd Gd

)
, (B1)

where Gd is the Green’s function of the d level which in the
Kondo regime is given by Eq. (2) and, thus, yields a Kondo
resonance in the corresponding spectral function as described
by Eq. (3) at energy εK , half-width �K , and the quasiparticle
weight z.

The unperturbed s-level GF (i.e., without coupling Vsd to
the d level) is given by

G0
s (ω) = 1

ω − εs + i�s/2
≈ 1

−εs + i�s/2
, (B2)

where εs is the energy of the s level and �s = �L,s + �R,s the
width due to coupling to both electrodes. Since the energies we
are interested in are on the order of the Kondo scale, |ω| ≈ �K

and �K � �s , we neglect the ω dependence of G0
s in the last

step of Eq. (B2).
Due to the coupling Vsd of the s level to the d level, the full

GF Gs of the s level is modified according to

Gs(ω) = G0
s (ω) + G0

s (ω) Vsd Gd (ω) Vsd G0
s (ω). (B3)

The off-diagonal term Gsd describes the interference
between both channels due to the coupling Vsd and is given by

Gsd (ω) = VsdG
0
sGd (ω). (B4)

As was shown by Meir and Wingreen in their seminal
work,75 at zero temperature and in linear response, the exact
result for the conductance and current through an interacting
region reduces to the Landauer result where the transmission
function can be calculated from the Caroli formula.86 Using
the Caroli formula we can calculate the coherent transmission
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via the tip atom as

T (ω) = Tr[�LG†
A�RGA], (B5)

where �L and �R are the so-called coupling matrices de-
scribing the coupling of the tip atom A to the left and right
electrodes,

�α =
(

�α,s 0
0 �α,d

)
with α ∈ {L,R}. (B6)

Hence, we find for the transmission T (ω) through the tip atom,

T (ω) = Ts(ω) + Td (ω) + Tsd (ω), (B7)

where Ts is the direct transmission through the s channel
and Td the corresponding one through the d channel while
Tsd describes the transmission involving hopping processes
between the s and d channels,

Ts(ω) = 2π
�L,s�R,s

�s

ρs(ω), (B8)

Td (ω) = 2π
�L,d�R,d

�d

ρd (ω), (B9)

Tsd (ω) = (�L,s�R,d + �L,d�R,s)|Gsd |2. (B10)

In order to calculate the contribution of the s channel to the
total transmission, we need to know the spectral density of the
s level, which is given by the imaginary part of the s-level GF
given by Eq. (B3),

ρs(ω) = − 1

π
Im

[
G0

s (ω)
]

︸ ︷︷ ︸
ρ0

s (ω)

−V 2
sd

π
Im

[(
G0

s (ω)
)2

Gd (ω)
]

︸ ︷︷ ︸
δρs (ω)

(B11)

where ρ0
s is the spectral function of the unperturbed s level,

which in our model is constant, ρ0
s = �s/2π (�2

s /4 + ε2
s ).

δρs(ω) is the change in the spectral density due to the coupling
to the d level with the Kondo peak. For the latter we find

δρs = −V 2
sd

π

{
Im

[(
G0

s

)2]
Re[Gd ] + Re

[(
G0

s

)2]
Im[Gd ]

}
= −V 2

sd

π

{
2Re

[
G0

s

]
Im

[
G0

s

]
Re[Gd ]

+ (
Re

[
G0

s

]2 − Im
[
G0

s

]2)
Im[Gd ]

}
. (B12)

The real and imaginary part of Gd are given by

Re Gd (ω) = z (ω − εK )

(ω − εK )2 + �2
K

= z

�K

x

x2 + 1
, (B13)

−Im Gd (ω) = z �K

(ω − εK )2 + �2
K

= z

�K

1

x2 + 1
, (B14)

where we have defined x ≡ (ω − εK )/�K . Plugging this into
Eq. (B12), we find

δρs = − z V 2
sd

π �K

1

x2 + 1

{
2xRe G0

s Im G0
s − [

Re G0
s

]2

+ [
Im G0

s

]2}
. (B15)

We now define the ratio q between the real and imaginary
parts of G0

s ,

q ≡ −Re G0
s

Im G0
s

≈ −2εs

�s

. (B16)

With this we find for the expression in curly brackets in
Eq. (B15)

2xRe G0
s Im G0

s − [
Re G0

s

]2 + [
Im G0

s

]2

= [
Im G0

s

]2

{
2x

Re G0
s

Im G0
s

−
[

Re G0
s

Im G0
s

]2

+ 1

}

≈ 4

�2
s

1

(1 + q2)2
{−2qx − q2 + 1}

= −4
(x + q)2 − (x2 + 1)

�2
s (1 + q2)2

. (B17)

Hence, we obtain for the change δρs in the spectral density of
the s level due to the coupling to the d level,

δρs(ω) = 4 z V 2
sd

π �K �2
s

(x + q)2 − (x2 + 1)

(x2 + 1)(1 + q2)2
. (B18)

Summing up, we find for the s-channel contribution to the
transmission (14)

Ts(ω) = T 0
s + 2π

�L,s�R,s

�s

δρs(ω)

= T 0
s

[
1 + 2 z V 2

sd

�s�K

(x + q)2 − (x2 + 1)

(x2 + 1)(1 + q2)

]
, (B19)

where T 0
s = 2π ρ0

s (�L,s�R,s)/�s is the transmission via the
unperturbed s channel.

For the d-channel contribution to the total transmission we
find, according to Eqs. (B7) and (3),

Td (ω) = 4
�L,d�R,d

�2
d

1

x2 + 1
. (B20)

Finally, for the sd-coupling contribution to the transmission
we need to calculate the absolute square of the off-diagonal
matrix element Gsd of the atomic GF,

|Gsd (ω)|2 = V 2
sd

∣∣G0
s

∣∣2|Gd (ω)|2 = V 2
sd z2

�2
K (1 + x2)

. (B21)

Hence, we find

Tsd (ω) = T 0
s

z2 V 2
sd

�2
K

(
�R,d

�R,s

+ �L,d

�L,s

)
1

1 + x2
. (B22)
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29N. Néel, J. Kröger, L. Limot, K. Palotas, W. A. Hofer, and R. Berndt,
Phys. Rev. Lett. 98, 016801 (2007).

30L. Vitali, R. Ohmann, S. Stepanow, P. Gambardella, K. Tao,
R. Huang, V. S. Stepanyuk, P. Bruno, and K. Kern, Phys. Rev.
Lett. 101, 216802 (2008).
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