
Personalizing the Interface in Rich Internet Applications

Irene Garrigós1, Santiago Meliá 1, Sven Casteleyn 2

1 Universidad de Alicante, Campus de San Vicente del Raspeig, Apartado 99 03080
Alicante, Spain

{igarrigos, santi}@dlsi.ua.es
2 Vrije Universiteit Brussel, Department of Computer Science, WISE, Pleinlaan 2, 1050

Brussel, Belgium
Sven.Casteleyn@vub.ac.be

Abstract. Recently, existing design methodologies targeting traditional Web
applications have been extended for Rich Internet Application modeling
support. These extended methodologies currently cover the traditionally well-
established design concerns, i.e. data and navigation design, and provide
additional focus on user interaction and presentation capabilities. However,
there is still a lack of design support for more advanced functionality that now
is typically offered in state-of-the-art Web applications. One yet unsupported
design concern is the personalization of content and presentation to the specific
user and his/her context, making use of the extra presentational possibilities
offered by RIAs. This article addresses this concern and presents an extension
of the RIA design approach OOH4RIA, to include presentation personalization
support. We show how to extend the RIA development process to model the
required personalization at the correct level of abstraction, and how these
specifications can be realized using present RIA technology.

1. Introduction

Due to the growing demand for Web applications offering a rich user experience,
traditional Web applications are being replaced by the so-called Rich Internet
Applications (RIAs), which provide an interface, interaction and functionality
capabilities similar to desktop applications. RIA development has new requirements
and concerns come into play [17], complicating the task of a Web engineer. The Web
engineering community is well-aware of these difficult challenges, extending the
design methodologies that target traditional Web 1.0 applications to also support
RIAs (e.g. WebML [3], RUX [13], OOHRIA[9], OOHDM [16]). However, due to
their relative youthfulness, these new methodologies do not yet cover all design
concerns usually encountered in state-of-the-art Web applications. One yet
unsupported aspect is the personalization of content and presentation to the specific
user and his/her context, specifically for RIAs. RIA UIs are typically dependent on
the context device rendering them and vulnerable to the limitations they impose:
limited screen size, more difficult interaction and poorer multimedia support. In this
paper, we aim to overcome some of these problems by personalizing the UI
depending on the specificities of the device (i.e. the device context). To do so, we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16375199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

adapt the UI in two ways: (1) an interface re-organization to fit the UI layout to the
device dimensions, and (2) the transformation of some origin widgets into specific
widgets that work more efficiently on the target device.

In this paper, we thus extend the existing RIA design method OOH4RIA [9,12] to
support the personalization of the RIA user interface for different devices. Based on a
set of models and transformations, OOH4RIA defines a model-driven development
process that allows to easily introduce new concerns to RIA development. In this
paper, we extend the OOH4RIA process by (1) introducing a user model, a device
model and a presentation model marking and a widget mapping, (2) defining
transformations able to generate presentations for different devices, reducing the
effort to redefine new presentation models for each device and (3) integrating a new
role in the engineering process called the personalization designer, in charge of
defining the personalization models and artifacts. This extended process allows us to
obtain different device-aware versions of the same RIA project. The remainder of
this paper is organized as follows. Section 2 presents the extensions done in
OOH4RIA to integrate personalization. Section 3 presents the main contribution of
the paper: the personalization of the RIA user interface to different contexts. Section 4
shows a running example to illustrate the proposal. Section 5 points out how
personalization for RIA’s and for traditional Web applications differs, and outlines
related approaches. Finally, Section 6 provides conclusions and future research lines.

2. Integrating Personalization in the OOH4RIA Development
Process

OOH4RIA [9] is a proposal whose main target is to cover all the phases of the Rich
Internet Application (RIA) lifecycle development. It defines a model-driven process
that specifies the artifacts to obtain an almost complete RIA for a GWT framework
[7]. This paper presents an extension of the OOH4RIA development process with
activities and artifacts that allow us to introduce the personalization concern into RIA
development. To represent this extended process (see Fig. 1) we use the OMG
standard called Software Process Engineering Metamodel (SPEM)[11]. Specifically,
we have selected the SPEM Activity Diagram because it allows us to introduce the
sequence of activities with their input and output work products as well as separating
the responsibilities of different process roles. However, the model-driven discipline
defines a new kind of automatic activities, artifacts and roles that are not represented
by the standard SPEM notation. For this reason, we have extended the SPEM profile
introducing a ProcessRole stereotype able to represent transformation engines called
"Model Transformer" and defines a set of stereotypes of the metaclass activity to
represent different MDA transformations such as PIMToPIM, PIMToPSM,
PIMToCode, PSMToCode, etc.

The OOH4RIA process starts when the OOH designer defines the OOH domain
model in order to represent the domain entities and the relationships between them.
This model is the starting point of the three main subprocesses in which this process is
split: (1) the definition of the RIA server side where the GWT Server side
transformation generates the business logic and persistence from the domain and

navigational entities, (2) the RIA user interface that begins with the Define OOH
Navigation Model activity where OOH designer represents the navigation through the
domain concepts and establishes the visualization constraints using the navigation
model. The process continues transforming the navigation model into the presentation
model by means of the PIM2PSM transformation called Nav2Pres which establishes
the different screenshots, which represent spatial distributions of the widgets rendered
in a given moment, of the presentation model. After obtaining the container
screenshots of the presentation model, the User Interface designer completes by
placing the widgets, defining the style and establishing the spatial configuration by
means of Panels.

The personalization extension introduced by this work presents two initial
activities, which can be performed order-independent. The first is the activity Define
Device Model carried out by the Personalization Designer where the domain,
navigation and presentation models are the input work product of this activity. In the
device model, for each targeted device, a set of widget mappings is specified, which
specify the transformation of a particular widget type to another widget type, more
suitable for the targeted device type. These mappings can be selected (i.e. re-used)
from a predefined set of widget mappings (stored in the so-called Widget Mappings
Repository), or newly defined. Depending on the user browsing device, a set of
transformation rules defined inside the Press2DevicePres transformation (explained
in the next paragraphs) will be triggered performing the corresponding widget
mappings. The second activity is Define User Model, during which the
personalization designer specifies the user model. This model represents the dynamic
data structures where the information about the user and his/her context is stored
which is used to base the personalization on (e.g., device type).

The next step in the personalization process consists of marking the presentation
model. The goal of this activity is to mark which elements will be subject to spatial
rearrangement, and to provide the necessary details for the subsequent transformation.
This process (i.e. marking) has to be repeated for each target device. The markings are
defined using the marking technique defined by the MDA guide [10]. This activity
produces different sets of markings defined over the presentation model (i.e. marked
presentation model), that together with the user model and the widget mappings
specified in the device model, are the inputs of the Pres2DevicePres transformation.

The personalization process is concluded by the execution of a (fixed) set of
transformation rules, part of the OOH4RIA personalization approach. In this work,
we focus only on rules referring to presentation issues; content personalization rules
are outside the scope of this paper. These transformation rules produce a device-
specific presentation model. Concretely, the rules transform the user interface
elements that were previously defined in the user interface models in two steps. First,
the location of the user interface elements in the target application is transformed,
according to the markings made by the personalization designer. Second, widgets are
transformed, according to the mappings specified by the personalization designer.

Since the RIA possesses a rich interactive user interface similar to desktop
applications, the static features of widgets must be completed with a model that will
allow us to specify the interaction between these widgets and the rest of the system.
This model has been called orchestration model and is represented as a UML profile
of state machine diagram. The orchestration model does not have to be defined from

scratch because a model-to-model transformation called Pres&Nav2Orch allows us to
obtain the skeleton, where after the designer completes the orchestration model
introducing the events, operations and triggers of different states. The orchestration
model and the personalized presentation model are the input of the Orch2DeviceOrch
transformation, which generates a new orchestration model personalized to a specific
device, corresponding to re-organized layout and widgets.

Fig. 1. Simplified Personalization Extended Process of OOH4RIA

Afterwards, the user model together with the domain, navigation and presentation
models are the input that permits to realize the activity Define Personalization Rules.
This activity defines the personalization rules that establish the different
personalization strategies that will personalize the website to the user preferences,
goals and context. To define these rules we use the PRML language [6] which was
defined in the context of OOH to extend it with personalization support. These rules
can be modified at runtime to modify the personalization strategies (this is out of the
scope of the present work).

The last step consists of defining the model-to-text transformations that will grant
us the personalized RIA implementation. The GWT Server Side transformation
generates the server code from the OOH domain and the navigation models, while the
GWT client side transformation generates the client side code using a specific GWT
framework. These model-to-text transformations are written in the MOFScript
language which follows the OMG ModelToText RFP for the representation of model-
to-text transformations.

3. Device Context Adaptation of the Presentation Model

In this work, we are focused on the device context personalization of the presentation
layer of a RIA, and for this purpose, we must reorganize the layout widgets in the user
interface depending on the screen size, and some widgets may need to be transformed
into others that better fit the targeted device screen dimensions.

In OOH4RIA, the RIA presentation elements and their layout is represented by the
presentation model. As explained, the OOH4RIA presentation model is based on the
GWT framework, which is composed of widgets and panels (i.e. layout widgets)
where the widgets are placed. For personalization purposes, the designer has to
specify how these panels and widgets are transformed and/or reorganized for the
target application (i.e. specific device). For instance, one screenshot element (which
represent spatial distributions of the widgets rendered in a given moment) specified in
the original presentation model may be split into different screenshots in a mobile
screen device. As already explained, we allow the personalization designer to add
device dependency support using a mark-and-transform approach. By providing pre-
defined mappings, and supporting the overall personalization transformation process
in the OOH4RIA development process, we significantly reduce the effort for the
designer.

The OOH4RIA device context adaptation is made up of following steps:
• Defining the User Model, containing user and context variables (e.g., device

type), to store runtime information on the user and his/her context.
Personalization will be based on the runtime information stored in the user model
(e.g., the device type).

• Defining the Device Model, by selecting and instantiating existing widget
mappings from the Mapping Repository or defining custom mappings. A widget
mapping specifies how to transform one widget type (e.g., a Tree) to another
widget type (e.g., a MenuBar). The device model consists of different sets of
mappings, each targeting a particular device type.

• Marking the Presentation Model, in order to determining the spatial arrangement
of the panels in the target presentation. As for the widget mappings, different sets
markings are specified, each containing markings targeting one particular device
type.

• Perform personalization transformations, by executing a pre-defined set of
transformation rules. The personalization transformation takes as input the
presentation model, the user model, the device model and the markings, to
generate the personalized presentation model. This transformation is fully

automated, and can be performed at runtime (depending on the device type of the
user), or at design time, pre-transforming n personalized presentation models, one
for each targeted device. In our implementation, we elected the latter approach, to
avoid runtime performance overhead.

We now discuss the different steps in more detail.
a) Defining the User Model
In the user model, information regarding the user characteristics, interest, preferences
or context is stored. In our case, as we focus on device dependency, we store
information regarding the device context of the user in order to select, at runtime,
which presentation model variant is to be used in the Web application.
b) Marking the Presentation Model
In the following step, the designer marks the presentation model in order to indicate
how the elements will be reorganized. For each targeted device type, a new marked
presentation model is defined. These sets of markings together with the device model
data will drive the transformation rules (explained next), which modify the spatial
arrangement of the elements, and transform widgets from one type to another.

To allow the designer marking the elements, the metamodel of the presentation
model is extended: each of the panels has a new attribute called Location which
indicates whether the panel will be placed in a new screenshot or it will be shown in
an existing one (in Section 5 we can see an example on marking a presentation
model). The location attribute can have different values:
• inherits: this is the default value for all the panels. The panels are nested, all the

nested panels will be placed in the same screenshot as their upper panel unless
the designer specifies a different value.

• new: in this case the designer specifies that the panel will be placed in a separate
screenshot.

• none: this value is assigned when the designer wants to exclude the panel, so it
will not be visible (and all what is contained in it) from the target application.

• all: the designer assigns this value when he wants to include this panel in all the
screens of the target application.

• containerID: this value denotes another concrete panel (designated by its
containerID) in which the current panel should be nested.

c) Defining the Device Model
In order to deal with the personalization at widget level, the personalization designer
selects widget mappings from a predefined set of mappings, and instantiates them,
complementing them with the necessary details for the specific presentation model
(e.g., height and width of an element), If needed, he can define new, custom widget
mappings. This results in several sets of mappings, each targeting a specific device
type. Each mapping specifies the conversion of a widget (type) to another widget,
giving it similar functionality in the target device. In Fig. 3 we can see one set of
mappings, targeting a vertical type mobile device for the running example RIA of
Section 5.
d) Performing the Personalization Transformation
The activity diagram represented in Fig. 3 establishes the general execution workflow
of transformation rules that constitute the Pres2DevicePres transformation introduced
in the OOH4RIA process (see Fig. 1). A fixed set of transformation rules

automatically transforms the presentation model to a personalized presentation model.
The input of the transformation is the defined set of widget mappings for a specific
device and a marked presentation model, which steer the generic transformation
process indicating which widgets to transform, and how to relocate panels. As there
are n sets of widget mappings, and n presentation markings, the Pres2DevicePres
transformation is performed n times, each producing a specific personalized
presentation model for a specific targeted device type.

Fig. 2. The Device Model of GWT Mail application

The execution starts with the root rule called CreatingPresModelForEachDevice
which creates the presentation model element for each device defined in the device
model. When the dimensions (height and width) of the device are larger than the
definition, the transformation invokes the CreatingIdenticalScreenShot rule, which
creates Screenshots identical to the destination model. On the contrary, if the device
dimensions are smaller, than the CreatingScreenShotFromRoolPanel rule establishes
a Screenshot from the container panel with the dimensions adjusted to the device.

Here begins the reorganization of the containers or panels where the transformation
checks whether the root panel contains inside panels. If it does, the
CheckingContainedPanels rule is executed and it decides the destination of the panel
according to the value of the location attribute. (1) If location is equals to new then the
panels requires a new Screenshot, thus executing the CreatingNewScreenshot rule. (2)
If the location is equal to the ID of a pre-existing panel or is equal to intherits then a
new Screenshot will be created within it. (3) However, if we want to eliminate the
panel (location equal to none), we execute RemovingContainedPanel rule. (4) Finally,
if we want the panel to appear in all the Screenshots (location equal to All), the
PlacingPanelScreenshot rule is executed.
Figure 4 gives specific details of the rule CreatingNewScreenShot using the QVT
graphical notation. There are two checkeable domains, i.e. two metamodels are
checked to see if these domain patterns comply with them.

Fig. 3. Rule Map of the ObtainSpecificDevicePres QVT Transformation

Fig. 4. Example of Pres2Device: CreatingNewScreenShot QVT Transformation Rule

On the one hand, the rule confirms that there is a p panel containing a cp panel, its
location attribute being new. Also, it confirms that there is a Device element in the
device model, from which we request name and dimensions. A Screenshot element is
now created in the enforceable domain, with the name derived from the panel and its
contained-panel (pname + “_”+ cpname). Additionally, the rule creates a root panel

called cp2 inside this Screenshot containing the elements of the original Screenshot.
Finally, the rule executes the where part which checks whether the panel in its turn
contains other panels. If this is the case, the rule recursively invokes the
CheckingContainedPanels rules; otherwise, the workflow goes to point B starting the
simple Widgets transformation side.

Point B in the Pres2DevicePres transformation is where the widget
transformations start. Here, the transformation checks if there is a WidgetMapping
into the device model for the current Widget. If it does not, the original Widget is
copied into the target presentation model by the CopyingSameWidget rule. If it does,
the CreatingNewWidget rule is executed, which transforms the widget according to
the corresponding mapping from device model.

Fig. 5. CreatingNewWidget QVT Transformation Rule

Figure 5 presents the CreatingNewWidget rule, converting one widget into another
one by gathering the information from the WidgetMapping defined in the device
model. Firstly, this rule checks that the source Widget is not a panel in the When
sentence. From here, the rule creates a new widget that maintains the same name,
position and isDisable properties. However, the rule introduces the personalization
information from the device model (see Fig. 2), where the WidgetMapping defines a
new Widget by means of the typeTarget attribute, and establishes the new location of
the widget with the posX and posy, and the new dimension with height and width
attributes. Finally, the rule checks if the Widget contains other nested Widgets in the
Where clause of the QVT rule, in this case, this rule is invoked recursively in order to
transform the contained widgets.

In the next section we present the different artifacts generated during the process
applying them to a clear and simple case study: the GWT Mail application [12]. In
essence, this case study demonstrates how to construct a relatively complex user
interface, similar to many common email applications, and how to easily adapt this
user interface to a smaller device such as PDA.

4. Running example

Figure 6 shows the presentation model for the GWT Mail case study. This example
was also used in [9] where a complete description of all the design models is
presented. In this paper we only focus on the presentation model and we are going to
adapt this model so it is suitable for a mobile device. To model the needed device
personalization the designer has to follow the steps explained in Section 3:

Fig. 6. Marked Presentation Model of the GWT Mail application

a) Defining the User Model
The user model is defined storing information regarding the device context of the user
in order to select, at runtime, which presentation model variant is to be used in the
Web application. In our case, the user model contains a variable “DeviceType”,
storing the device type of the user.
b) Marking the Presentation Model
Following the OOH4RIA development process, the designer marks, for the targeted
device, the different panels depending on where he wants to locate them in the target
application. In this case, the designer decides the north panel will be eliminated in the
target website; the center panel will inherit1 the location of its upper panel (in this
case the rootpanel called MailReader). The content panel will be located in a new
screenshot. Finally, the west panel is relocated in the same screenshot as the center
panel (so the location value is its containerID, e.g center). The marked presentation
model for the running example is shown in Fig.6.

1 As explained before inherits is the default value so it is not needed to explicitly specify it, but

we show it here for clarity purposes.

c) Defining the Device Model
After marking the presentation model, the designer specifies the transformations for
the desired widgets. In our example, he instantiates the existing TreeToMenuBar
mapping from the Mapping Repository and specifies the target position of the widgets
(in the target panels) and their size. Furthermore, he defines a custom mapping to
transform a NavigationalGrid to a MenuBar.

The device model for this case study is shown in Fig 2. In this case two main
WidgetMapping classes are specified, namely Tree (originated from the Mapping
Repository) and NavigationalGrid. These classes represent the tree widget located in
the vertical panel called west of the source presentation model and the
navigationalGrid widget located in the vertical panel called Center of the same model
respectively. In the case of the tree widget the designer specifies that it is transformed
into a MenuBar widget. In the same way, the widgets contained in the tree (i.e.
TreeItems) are mapped into MenuItems. In the case of the NavigationalGrid widget,
the designer specifies its target widget as a MenuBar widget. The NavigationalGrid is
a custom widget (the reader can consult the metamodel of the presentation model in
[8]), and in this case it contains other widgets to be mapped: buttons which are
mapped as MenuItems, and a Grid that is mapped into a Horizontal panel.

Fig. 7. Screenshots of the Presentation Model of the GWT Mail for PDA

d) Performing the Personalization Transformation
Given the marks done in the presentation model and having the device and user
models specified, the set of transformation rules specified in Fig. 3 is executed. First,
as the screen of the target device is smaller than the one of the source device, a new
screenshot is created from the root panel called MailReader
(CreatingScreenShotFromRootPanel rule). The next step checks the panels of the
source presentation model based on the marks done by the designer. For the upper
panel (i.e. north) the location is none, so the RemovingContainedPanel rule is
executed. This panel will not be present in the target application. As such, the marks
of all panels are inspected, applying the appropriate transformation rules. For
example, the panel called content has location=new which means that the rule

CreatingNewScreenShot is performed, creating a new screenshot where the panel
content is placed.

Mail ReaderMail Reader
Inbox

Menu

Santiago Meliá 14/01/2009

Hello

Sandy Pérez 14/01/2009

Hi everybody

Irene Garrigós 14/01/2009

How are you doing?

Reply
New

Forward

ContentContent
okFrom: Santiago Meliá

To: example@domain.com

Subject: Hello

Ehh, I like this project XD

Best regards
Santi

Fig. 8 ScreenShots of the implementation of the GWT Mail for PDA

The vertical panel called center inherits its location from the upper panel
(MailReader) so it is placed in the same screenshot (already created). Finally the
vertical panel called west is also located in the same screenshot because its location is
the same as the center panel (i.e. containerID=center).

After the transformation of panels is performed, widgets are checked. In this case
the indicated widgets (Tree and NavigationalGrid) are transformed in the device
model performing the CreatingNewWidget rule. In Fig. 7 we see the generated
presentation model and in Fig.8 two screenshots of the generated application.

5. Related Work

Personalization has been intensively studied in traditional Web application methods.
Typically, content, navigation and presentation are personalized to tailor to the
specific user based on his/her preferences, characteristics, context and browsing
behavior. Traditional Web applications limit the possibilities to track the user
browsing to the requests performed to the server. RIAs provide new client-side
capacities, new presentation features and different communication flows between the
server and client side. These differences with respect to traditional Web applications
must be taken into account in RIAs design, as well as in the specification of
personalization strategies. Moreover due to the richer set of events that can be
contemplated (e.g. drag and drop, scroll, mouse over, etc…) interaction with the user
gets richer too and as a consequence, new and more accurate personalization
possibilities arise.

In this paper, we focus on the presentation layer, where a RIA website gets more
distinctive from a traditional website. In the context of traditional Web applications
we can find several approaches treating the personalization of the interface [1, 4, 5,
8]. We highlight two approaches: [1] and [5] in which the layout is personalized
depending on the user access device. As explained, presentation in traditional

websites is very limited. RIA applications provide richer and more interactive user
interfaces, similar to desktop applications. They offer multimedia native support and
support animations. As a consequence, from a personalization point of view, the
layout and look-and-feel of the application can be personalized but also system
reaction to user interaction has to be specified accordingly. Recently, existing Web
design methodologies were extended to also support RIAs. The most relevant ones are
(1) OOHDM[16] which provides the use of ADVcharts to model widget
interaction[14]. (2) WebML which extends its conceptual modeling primitives for
RIA’s [3] and provides support for distributed event-driven RIA’s and specific
interaction patterns typically occurring in RIA’s[2]. (3) RUX [13], a method
independent presentation framework for RIA’s, allowing it to tackle presentational
specificities of RIA’s. RUX has been applied to WebML and UWE, lending its
presentational capabilities to these approaches and (4) OOH4RIA which we will
elaborate and use as a framework in this article.

To the best knowledge of the authors, there is only one approach [15] that provides
personalization support specifically targeting Rich Internet Applications. This
approach is not in the context of Web engineering and performs on-the-fly adaptation
over AJAX pages. The authors combine ontologies to annotate RIAs and adaptation
rules which are derived from semantic Web usage mining techniques. This approach
however, does not contemplate the personalization of the presentation features, which
is exactly the focus of this paper. We thus present a personalization approach founded
in a Web application method, and specifically focus on the RIA-specific elements of
the presentation layer.

6. Conclusions and future work

In this paper, we presented an approach that allows achieving device-dependence in
Rich Internet Applications, by extending the existing Web design method OOH4RIA
with personalization support. We herein focused on the enhanced presentational
capabilities of RIA’s. We positioned the personalization design activity in the overall
RIA design process, and explained it in detail. Our approach consists of two main
steps. During the first step, the personalization designer marks the presentation model
for spatial rearrangement of widgets in the targeted device. This marking needs to be
done for each targeted device. The second step consists of the definition of the device
model, by specifying widget mappings: one set of mappings for each device,
specifying which and how the different widgets should be mapped onto other widgets
for a targeted device. The designer does so either by selecting existing widget
mappings, and instantiate them for particular use (i.e., specifying concrete values for
generic parameters, such as height or width), or creating custom ones. Based on the
markings and the mappings, specific (device-dependent) presentation models are
automatically derived. This is done by a set of transformations specified as part of the
OOH4RIA development process.

Our approach was illustrated using a case study, consisting of GWT mail
application, which we personalized for (small screen) PDA devices.

Currently, we are integrating the personalization transformation in the OOH4RIA
tool, which is based on the Eclipse Graphical Modelling framework (GMF) and
supports the overall development process. Furthermore, we are currently working on
defining the transformation rules that should be performed over the orchestration
model to complement the work described here.

References

1. Carughi, G. T., Comai, S., Bozzon, A. and Fraternali, P.: Modeling Distributed Events

in Data-Intensive Rich Internet Applications. In 8th International Conference on Web
Information Systems Engineering, 2007.

2. Comai, S. and Carughi, G. T. A Behavioral Model for Rich Internet Applications. In 7th
International Conference on Web Engineering, 2007.

3. Dolog, P. and Stage, J. Designing Interaction Spaces for Rich Internet Applications with
UML. In 7th International Conference on Web Engineering (ICWE), 2007.

4. Fiala, Z., Frasincar, F., Hinz, M., Houben, G.J., Barna, P. and Meissner, K.. Engineering
the presentation layer of adaptable web information systems. In Web Engineering 4th
International Conference (ICWE), 2004,

5. Garrigós, I. A-OOH: Extending Web Application Design with Dynamic
Personalization, Phd thesis, University of Alicante, 2008.

6. Google. Google Web Toolkit (GWT). Online at http://code.google.com/webtoolkit.
7. Houben, G.J., Van der Sluijs, K., Barna, P., Broekstra, J., Casteleyn, S., Fiala, Z.,

Frasincar, F. Hera, Chapter 10 in Web Engineering: Modelling and Implementing Web
Applications, Human-Computer Interaction Series, 2007.

8. Martínez, F. J., Muñoz, J. Vanderdonckt, J. and González, J. M. A First Draft of a
Model-Driven Method for Designing Graphical User Interfaces of Rich Internet
Applications. In 4th Latin American Web Congress (LA-Web), 2006.

9. Meliá, S., Gómez, J., Pérez, S., Diaz, O. A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. Eighth International Conference of Web
Engineering, Yorktown Heights, USA, 2008.

10. Object Management Group (OMG). MDA Guide: (version 1.0.1). Published at
www.omg.org/docs/omg/03-06-01.pdf, June 2003.

11. Object Management Group (OMG). Software Process Engineering Metamodel, version
1.1. Published at http://www.omg.org/docs/formal/05-01-06.pdf, 2005.

12. Pérez, S., Díaz, O., Meliá, S. and Gómez, J. Facing Interaction-Rich RIAs: The
Orchestration Model, 8th International Conference of Web Engineering, USA, 2008.

13. Preciado, J.C., Linaje, M., Comai, S. and Sánchez- Figueroa, F. Designing Rich Internet
Applications with Web Engineering Methodologies. In 6th International Conference on
Web Engineering, 2006.

14. Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A. Refactoring to Rich
Internet Applications. A Model Driven Approach. 8th International Conference of Web
Engineering, USA, 2008.

15. Schmidt, K., Stojanovic, L., Stojanovic, N. and Thomas, S. : On Enriching Ajax with
Semantics: The Web Personalization Use Case. ESWC '07: Proceedings of the 4th
European conference on The Semantic Web. Innsbruck, Austria, 2007.

16. Urbieta, M., Rossi, G., Ginzburg, J. and Schwabe, D. Designing the Interface of Rich
Internet Applications. In 5th Latin American Web Congress, 2007.

17. Wright, J. M., Dietrich, J.B.: Requirements for Rich Internet Application Design
Methodologies. Proceedings of the 9th international conference on Web Information
Systems Engineering, (WISE), 2008.

