

Adapting the Presentation Layer in
Rich Internet Applications

Irene Garrigós1, Santiago Meliá 1, and Sven Casteleyn2

1 Universidad de Alicante, Campus de San Vicente del Raspeig,
Apartado 99 03080 Alicante, Spain

{igarrigos,santi}@dlsi.ua.es
2 Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2,

1050 Brussel, Belgium
Sven.Casteleyn@vub.ac.be

Abstract. Rich Internet Applications offer Web surfers a richer user
experience, mainly due to better responsiveness and enhanced user interface
capabilities. In recent years, existing design methodologies targeting traditional
Web 1.0 applications were extended to also support RIAs. These extensions do
not yet cover all design concerns typically encountered in state-of-the-art Web
applications. One yet unsupported aspect is the personalization of content and
presentation to the specific user and his/her context, exploiting the extra
capabilities offered by RIAs. This article addresses this hiatus and presents an
extension of the OOH4RIA approach to include presentation personalization
support, focusing on Rich Internet Applications.

1 Introduction

Rich Internet Applications are an answer to the growing demand for Web applications
offering better responsiveness and an extended UI experience. They keep the middle
between the traditionally sober (HTML-based) Web applications and the interface,
interaction and functionality capabilities of traditional desktop applications.

When designing and implementing Rich Internet Applications, several new
requirements and concerns come into play [1, 13], complicating the task of a Web
engineer. The Web engineering community is well-aware of these difficult challenges,
extending the design methodologies that target traditional Web 1.0 applications to also
support RIAs [2, 5, 9, 12]. However, due to their relative recentness, these extensions
do not yet cover all design concerns usually encountered in state-of-the-art Web
applications. One yet unsupported aspect is the personalization of content and
presentation to the specific user and his/her context, specifically for RIAs. UIs of RIAs
are typically dependent on the context device rendering them and vulnerable to the
limitations they impose: limited screen size, more difficult interaction and poorer
multimedia support. In this paper, we aim to overcome some of these problems by
personalizing the UI depending on the specificities of the device (i.e. the device
context). This device context personalization must consider two important aspects: (1)
an interface re-organization to fit the UI layout to the device dimensions, and (2) the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16375197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

transformation of some origin widgets into specific widgets that work more efficiently
in the target device.

With this goal in mind, we present an extension to an existing RIA design method
called OOH4RIA [5, 8], to support personalization of the RIA user interface for
different devices. OOH4RIA defines a model-driven development process based on a
set of models and transformations allowing to easily introduce new concerns to the
RIA development process. We thus adapt the OOH4RIA process by (1) introducing
new personalization models (such a User Model and personalization rules), (2)
defining transformations that reduce the effort to redefine new presentation models
for each device . These extensions process allows us to obtain different device-aware
versions of the same RIA project.

The remainder of this paper is organized as follows. Section 2 discusses how
personalization gets differenced in RIA from traditional Web applications and
outlines related approaches. Section 3 presents the extensions done in OOH4RIA to
integrate personalization. Section 4 presents the main contribution of the paper: the
personalization of the RIA user interface to different contexts. Finally, Section 5
provides conclusions and future research lines.

2 Personalization: From Traditional Web Applications to RIAs

Personalization has been intensively studied in traditional Web application methods.
Typically, content, navigation and presentation are personalized to tailor to the
specific user based on his/her preferences, characteristics, context and browsing
behavior. Traditional Web applications limit the possibilities to track the user
browsing to the requests performed to the server. RIAs provide new client-side
capacities, new presentation features and different communication flows between the
server and client side. These differences with respect to traditional Web applications
must be taken into account in RIAs design, as well as in the specification of
personalization strategies.

RIA applications provide richer and more interactive user interfaces, similar to
desktop applications. They offer multimedia native support (i.e. no plug-ins are
needed to show video and audio) and support animations. As a consequence, from a
personalization point of view, the layout and look-and-feel of the application can be
personalized but also the system’s reaction to user interaction has to be specified
accordingly. Recently, existing Web design methodologies were extended to also
support RIAs. The most relevant ones are (1) OOHDM [12] which provides the use of
ADVcharts to model widget interaction. (2) WebML which extends its conceptual
modeling primitives for RIA’s [2] and provides support for distributed event-driven
RIA’s and specific interaction patterns typically occurring in RIAs. (3) RUX [9], a
method independent presentation framework for RIAs tackling presentational
specificities of RIAs. RUX has been applied to WebML and UWE, lending its
presentational capabilities to these approaches and (4) OOH4RIA which we will
extend and use as a RIA method in this article.

To the best knowledge of the authors, there is only one approach [11] that provides
personalization support specifically targeting Rich Internet Applications. This approach
is not in the context of Web engineering and performs on-the-fly adaptation over AJAX

pages. The authors combine ontologies to annotate RIAs and adaptation rules which are
derived from semantic Web usage mining techniques. This approach however, does not
contemplate the personalization of the presentation features, which is exactly the focus
of this paper. We thus present a personalization approach founded in a Web application
method, and specifically focus on the RIA-specific elements of the presentation layer.

In the next section, we explain how to integrate personalization in the OOH4RIA
development process.

3 Integrating Personalization in the OOH4RIA Development
Process

OOH4RIA [5] is a model-driven approach whose main target is to cover all the
phases of the Rich Internet Application (RIA) lifecycle development for a GWT-
based application [4]. This paper presents an extension of the OOH4RIA development
process, focusing on the models and artifacts that allow us to introduce the
personalization concern into OOH4RIA. The personalization extended OOH4RIA
process starts specifying the OOH Domain Model in order to represent the domain
entities and the relationships between them. This model is the starting point of the
main subprocesses: (1) the definition of the RIA server side where a model-to-text
transformation generates the business logic and persistence from the domain and
navigational entities, (2) the RIA user interface, defining the OOH Navigation Model
which represents the navigation through the domain concepts and establishes the
visualization constraints. Starting from the Navigation Model, the different
screenshots, which represent spatial distributions of the widgets rendered in a given
moment, of the Presentation Model are defined. A detailed overview of OOH4RIA
can be found in [5].

The personalization extension introduced by this work begins defining the OOH
User Model where the Domain, Navigation and Presentation models are taken as
input. The User Model represents the dynamic data structures where the information
about the user is stored. This information is used to personalize the website containing
information about the user preferences and widget mappings of different contexts.
The actual personalization is defined over the Presentation Model for different
devices. To do that: we have used the marking technique defined by the MDA guide
[6] to introduce information about the spatial arrangement of the layout widgets,
which are to be reorganized in the target Presentation Model. This marked
Presentation Model, together with the User Model, are the inputs to obtain one or
more presentation models according to the devices defined by the User Model. For
this aim, a set of transformation rules was defined.

On the other hand, the User Model together with the Navigation, Presentation and
Orchestration models are the input that permits to define Personalization Rules,
specifying runtime personalization strategies based on user preferences, goals and
context. To define these rules we use the PRML language [3], which was defined in
the context of OOH to extend it with personalization support. However, due to space
constraints, we do not elaborate these rules in this paper; instead, we focus solely on
presentation personalization targeting different devices.

The last step consists of defining the model-to-text transformations that will grant
us the personalized RIA implementation. The GWT Server Side transformation
generates the server code from the OOH Domain and the Navigation models, while
the GWT client side transformation generates the client side code using a specific
GWT framework. These model-to-text transformations are written in the MOFScript
language which follows the OMG ModelToText RFP for the representation of model-
to-text transformations.

4 Device Context Adaptation of the Presentation Model

In this work, we are focused on the device context personalization of the Presentation
layer of a RIA, and for this purpose, we must reorganize the layout widgets in the user
interface depending on the screen size, and some widgets may need to be transformed
into others that better fit the new device screen dimensions.

In OOH4RIA, the layout of the RIA is represented by the Presentation Model, so
the adaptation of its elements should be done in order to cope with these issues. As
explained, the OOH4RIA Presentation Model is based on the GWT framework, which
is composed of widgets and panels (i.e. layout widgets) where the widgets are placed.
For personalization purposes, the designer has to specify how these panels and
widgets are transformed and/or reorganized for the target application (i.e. specific
device). For instance, one screenshot element specified in the original Presentation
Model may be split into different screenshots in a mobile screen device. As already
explained, we reduce the effort to redefine new presentation models for each device,
including these transformations in the OOH4RIA development process.

The OOH4RIA device context adaptation is made up of following steps:

• Marking the Presentation Model in order to determine the spatial arrangement
of the panels in the target Presentation Model

• Define the User Model with the purpose of specifying the target device(s) and
to provide specific information on how to transform certain widget types in
order to influence the set of transformation rules to be performed.

a) Marking the Presentation Model
The first step the designer has to do is to mark the Presentation Model in order to
mark how the elements will be reorganized. Depending on these markings a set of
transformation rules will be executed for modifying the spatial arrangement of the
elements. Other rules have to be explicitly selected by the designer or are selected
depending on the data stored in the User Model (this will be further developed in the
ongoing section).

To allow the designer marking the elements, the metamodel of the Presentation
Model is extended: each of the panels has a new attribute called Location which
indicates whether the panel will be placed in a new screenshot or it will be shown in
an existing one. The location attribute can have different values:

• inherits: this is the default value for all the panels. The panels are nested, all the
nested panels will be placed in the same screenshot that their upper panel unless
the designer specifies a different value.

• new: in this case the designer specifies that the panel will be placed in a separate
screenshot.

• none: this value would be assigned when the designer wants to exclude the panel,
so it will not be visible (and all what is in it) from the target application.

• all: the designer would assign this value when he wants to include this panel in
all the screens of the target application.

• containerID: the designer may also want to show the panel within of another
concrete panel of the website.

CreatingPresModelForEachDevice

CreatingIdenticalScreenShot

CreatingScreenShotFromRootPanel

[Device.height >=ScreenShot.height
and

Device.width >= ScreenShot.width]

[else]

[self.widgets->Exist
(oclIsTypeOf(Panel)) = true]

CheckingContainedPanels

B
[else]

B

CreatingNewScreenShot

RemovingContainedPanel

PlacingPanelintoExistingScreenshot

A

PlacingPanelIntoAllScreenShots

[location = new] [location = all]
[location = none]

[location = containerID
or

Location =inherits]

A B

[self.widgets->Exist
(oclIsTypeof(Panel)) = true] [else]

CreatingNewWidget CopyingSameWidget

[Device.mappingWidget-
>Exist(origin =

widget.name) = true]

B

[self.widgets->isEmpty()) =
false]

[else]

[else]

Fig. 1. Rule Map of the ObtainSpecificDevicePres QVT Transformation

Depending on the markings done in the Presentation Model different transformation
rules are to be performed. They allow to convert a generic Presentation Model into a
specific device Presentation Model. Fig. 1 presents an activity diagram that establishes
the execution workflow of the transformation rules defined for this purpose. The
execution starts with the root rule called CreatingPresModelForEachDevice which
creates the Presentation Model element for each Device defined in the User Model.
When the dimensions (height and width) of the device are larger than the definition, the
transformation invokes the CreatingIdenticalScreenShot rule which creates Screenshots
identical to the destination model. On the contrary, if the device dimensions are smaller,
then the CreatingScreenShotFromRoolPanel rule establishes a Screenshot from the
container panel with the dimensions adjusted to the device.

Here begins the reorganization of the containers or panels where the transformation
checks whether the root panel contains in turn inside panels. If this is the case, the
CheckingContainedPanels rule is executed and it decides the destination of the panel
according to the value of the location attribute. (1) If location is equals to new then the
panels requires a new Screenshot, thus executing the CreatingNewScreenshot rule. (2)
If the location is equal to the ID of a pre-existing panel or is equal to intherits then a
new Screenshot will be created within it. (3) However, if we want to eliminate the
panel (location equal to none), we execute RemovingContainedPanel rule. (4) Finally,
if we want the panel to appear in all the Screenshots (location equal to All), the
PlacingPanelScreenshot rule is executed.

b) Specifying the User Model
In the User Model, information regarding the user characteristics, interest, preferences
or context is stored. In this case we store information regarding the device context of
the user.

Fig. 2. The User Model of GWT Mail application

In Fig. 2 we can see the User Model needed for defining a sample mobile-aware
RIA. In order to deal with the personalization at widget level, the personalization
designer must introduce the WidgetMapping concept into the User Model which
proposes the widget conversion to another widget, giving it similar functionality in
the target device. Thus, by defining the User Model, the designer provides
information that influences which set of rules is to be executed.

Let’s recover the Pres2DevicePres transformation at point B where the
transformation of simple widgets starts. Here, the transformation checks if there is a
WidgetMapping into the User Model for the current Widget, if this is the case, the
CreatingNewWidget (Fig. 3) rule is executed converting a Widget into another one.
However, when there is not a WidgetMapping defined, the original Widget is copied
into the target Presentation Model.

Figure 3 presents the CreatingNewWidget rule which converts a Widget into
another one gathering the information from the WidgetMapping defined by the User
Model. Firstly, this rule checks that the source Widget is not a panel in the When
sentence. From here, the rule creates a new widget that maintains the same name,
position and isDisable properties. However, the rule introduces the personalization

Fig. 3. Example of Pres2Device: CreatingNewWidget QVT Transformation Rule

information from the User Model (see Fig. 2), where the WidgetMapping defines a
new Widget by means of the typeTarget attribute, and establishes the new location of
the widget with the posX and posy, and the new dimension with height and width
attributes. Finally, the rule checks if the Widget contains other nested Widgets in the
Where clause of the QVT rule, in this case, this rule is invoked recursively in order to
transform the contained widgets.

5 Conclusions and Future Work

In this paper, we presented, in the context of the existing Web design method
supporting Rich Internet Applications OOH4RIA, a personalization approach
specifically targeting the enhanced presentational capabilities of RIA’s. We
elaborated on the models and artifacts needed to support personalization in the overall
RIA design process. Our approach consists of two steps. During the first step, the
personalization designer marks in the Presentation Model which elements will be
subject for transformation and what will be their target designation. The second step
consists of rule selection. This is done partly automatically, for general rules, based
on the information specified in the User Model.and partly manually, for specific rules
that will personalize the interface at runtime for each specific user which is out of the
scope of the present paper.

Currently, we are developing the OOH4RIA tool which is based on the Eclipse
Graphical Modelling framework (GMF). This tool is being completed with the
specified personalization transformations presented in this work. Furthermore, we are
working on defining the transformation rules that should be performed over the
Orchestration Model to complement the work described here.

Acknowledgements

We would like to thank our colleague Sandy Pérez for his pointers on implementation
issues and his comments on the work presented.

This work has been co-supported by the ESPIA project (TIN2007-67078) from the
Spanish Ministry of Education and Science and the DEMETER (GVPRE/2008/063)
project from the Valencia Ministry of Enterprise, University and Science (Spain).

References

1. Bozzon, A., Comai, S., Fraternali, P., Carughi, G.T.: Conceptual Modeling and Code
Generation for Rich Internet Applications. In: 6th International Conference on Web
Engineering (2006)

2. Comai, S., Carughi, G.T.: A Behavioral Model for Rich Internet Applications. In: Baresi,
L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 364–369.
Springer, Heidelberg (2007)

3. Garrigós, I. A-OOH.: Extending Web Application Design with Dynamic Personalization,
Phd thesis, University of Alicante (2008)

4. Google. Google Web Toolkit (GWT), http://code.google.com/webtoolkit
5. Meliá, S., Gómez, J., Pérez, S., Diaz, O.: A Model-Driven Development for GWT-Based

Rich Internet Applications with OOH4RIA. In: Eighth International Conference of Web
Engineering, Yorktown Heights, USA (2008)

6. Object Management Group (OMG). MDA Guide (version 1.0.1) (June 2003),
 http://www.omg.org/docs/omg/03-06-01.pdf

7. Object Management Group (OMG). Software Process Engineering Metamodel (version
1.1) (January 2005), http://www.omg.org/docs/formal/05-01-06.pdf

8. Pérez, S., Díaz, O., Meliá, S., Gómez, J.: Facing Interaction-Rich RIAs. In: The
Orchestration Model Eighth International Conference of Web Engineering, Yorktown
Heights, USA (2008)

9. Preciado, J.C., Linaje, M., Comai, S., Sánchez- Figueroa, F.: Designing Rich Internet
Applications with Web Engineering Methodologies. In: 6th International Conference on
Web Engineering (2006)

10. Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A.: Refactoring to Rich Internet
Applications. A Model Driven Approach. In: Proceedings of the Eighth International
Conference of Web Engineering, ICWE (2008)

11. Schmidt, K., Stojanovic, L., Stojanovic, N., Thomas, S.: On Enriching Ajax with
Semantics: The Web Personalization Use Case. In: Franconi, E., Kifer, M., May, W. (eds.)
ESWC 2007. LNCS, vol. 4519, pp. 686–700. Springer, Heidelberg (2007)

12. Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the Interface of Rich Internet
Applications. In: 5th Latin American Web Congress (2007)

13. Wright, J.M., Dietrich, J.B.: Requirements for Rich Internet Application Design
Methodologies. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.)
WISE 2008. LNCS, vol. 5175, pp. 106–119. Springer, Heidelberg (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

