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ABSTRACT

In this work a set of simplified theories for predicting diffraction efficiencies of diffraction phase and triangular gratings
are considered. The simplified theories applied are the scalar diffraction and the effective medium theories. These
theories are used in a wide range of the value A/A and for different angles of incidence. However, when 1 < A/A < 10, the
behaviour of the diffraction light is difficult to understand intuitively and the simplified theories are not accurate. The
accuracy of these formalisms is compared with both rigorous coupled wave theory and the finite-difference time domain
method. Regarding the RCWT, the influence of the number of harmonics considered in the Fourier basis in the accuracy
of the model is analyzed for different surface-relief gratings. In all cases the FDTD method is used for validating the
results of the rest of theories. The FDTD method permits to visualize the interaction between the electromagnetic fields
within the whole structure providing reliable information in real time. The drawbacks related with the spatial and time
resolution of the finite-difference methods has been avoided by means of massive parallel implementation based on
graphics processing units. Furthermore, analysis of the performance of the parallel method is shown obtaining a severe
improvement respect to the classical version of the FDTD method.
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1. INTRODUCTION

In this paper, we show the results obtained by a set of several theories that predict the diffraction properties of two
different optical components, such as binary phase gratings and triangular gratings. Specifically, the gratings have been
studied in the resonance domain having periods ranging from one to ten wavelengths. Binary phase gratings are of wide
interest owing to many applications in quantum electronics, integrated optics, spectroscopy, and holography'~.
Triangular gratings are promising for applications requiring antireflection, polarization selection and spreading, which
are best explained in terms of diffractive optics rather than ray optics”.

Different rigorous electromagnetic vector theories are frequently applied to yield exact diffraction performances. The
accuracy of these theories is insensitive to the feature size of the Diffractive Optical Elements (DOE). However, the
rigorous vector methods are more complicated than some simplified theories and usually are computationally intensive.

The Scalar Diffraction Theory (SDT) and the Effective Medium Theory (EMT) are considered as a good alternative for
predicting diffraction efficiency of DOEs. These simplified theories are valid under several conditions related with the
physical parameters of the DOE. In Jing et al.” a full analysis of the accuracy of both methods is detailed with the Fourier
Modal Method (FMM) as reference. Although the FMM is classified inside the group of rigorous electromagnetic vector
theories, the accuracy of this method depends on the number of spatial harmonics used to represent the periodic
electromagnetic field. In addition, it is known that the convergence of FMM, as the Rigorous Coupled Wave Theory
(RCWT), is high for TE polarization, but it exhibits poor convergence for TM polarization. The Finite-Difference Time
Domain (FDTD) method is considered here as the reference instead of FMM. FDTD also belongs to the rigorous EM
theories, and it is frequently applied to yield exact predictions of DOEs. However, FDTD has been considered difficult to
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use and it is computationally intensive. Because of that, in this work a parallel FDTD approach has been considered;
which has been also accelerated by Graphic Processing Units (GPUs), avoiding the disadvantage of the time costs related
with the finite difference methods. Moreover, the application of this numerical method gives us the opportunity to
analyze higher orders and manufacturing deficiencies in the DOE.

As mentioned above, the comparison between different theories applied to binary phase gratings and triangular gratings
is shown. The shape of the electromagnetic field is also included for both structures by means of the FDTD method. This
method is considered here as reference because of its potential in obtaining all the information of the electromagnetic
fields and also the possibilities of simulating with the same performance different polarizations and spatial structures.

2. THEORY

2.1 Scalar Diffraction Theory

In Fig. 1 A4'y h represent the period and groove depth, respectively, and n, and n, are the refractive indices of the incident
medium and the grating, respectively. The light wave propagates from air (n, = 1.00) through the surface into the
substrate material (n,= 1.50).
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Figure 1. (a) Schematic diagram of diffraction phase grating. (b) Schematic diagram of diffraction triangular grating.

The scalar diffraction efficiency of the SDT can be calculated by using the scalar Kirchhoff diffraction theory, which
neglects the vectorial and polarized nature of light. This theory provides reasonably accurate results when the periodicity
of the surface profile is much larger than the wavelength of the incident light’. Specifically, when A/4 > 20, physical
optics according to Fresnel and Snell’s laws can explain the behavior of the diffraction efficiency of these optical
elements™*. This simplified theory is based on the general equation for diffraction efficiency # in scalar approximation
for a periodic structure as™”

2

n(A) = ‘i [ * 1) exp(—2jmx / A)dx| | 1)
A 0

where #(x) is a function defined as the ratio of transmitted (or reflected) and incident wave amplitudes at location x, and
m is the diffracted order. Taking into account (1) and the geometry of the problem fully detailed in Fig 1a, the diffraction
efficiencies for the zero and first order can be easily derived™

n, = (n, cos@ /n,cos0,) 7" (0,)[1—2/ (1~ f)(1—cos Ap)], )

—(n, c0s0, /n, cos8,)7*(8,)|(1/ m*z* ) (1- cos@mz f)) (1 - cos Ap)], 3)
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whith 6, being the angle of incidence. The rays inside the grating have an angle respect to the x axes ¢, that can be
obtained via Snell’s Law. The Fresnel transmission coefficient is included by means of ©(6), and Ap=2mh/A(n.cos Op-
nycos Oy) is the phase difference between two parallel rays incident on the grating at an angle 6.

Regarding triangular gratings, the diffraction efficiency for the zero and first order for normal incidence is
n, =sin’ (zh(n, —n))/ ) (xh(n, —n)/ 1), 4)
2
2mh(n, — no)cos<7rh(n/g —n,)/ 2/1)

N, = : )
- zh(n, —n;)— an’

2.2 Effective Medium Theory

The EMT takes a subwavelength grating as an anisotropic optical thin film with effective refractive indices. These
indices are obtained from series expansions of transcendental functions, in terms of A/2®. Here, the zeroth-order and the

Proc. of SPIE Vol. 8429 84291U-2



second-order EMT are used to predict the diffraction efficiencies compared with the results calculated by the RCWT and
the FDTD.

1/2
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To apply the EMT, the diffraction gratings shown in Fig. 1 can be approximated by a large number of lamellar layers,
modeling the new structure as a stack of homogenous thin films. Each layer of the stack is defined by a characteristic
matrix that can be combined with the N layers of the assembly for building the characteristic matrix of the system.

| b

where 0,=2nhn(q)rscosf,/NJ is the phase of the gth layer, n(q)7z represents the effective indices of refraction of the gth
layer and #5,=non(q)rzcostd, for TE polarization, 7, is the optical admittance in free space (7o = (eoit0)"™), and 7 is the
optical admittance in the substrate material. As detailed above, the angles 6, can be calculated form Snell’s Law.
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The vector diffraction theory described can also be applied to surface relief gratings. The triangular surface relief grating
can be decomposed into planar gratings®” as shown in Fig. 2. Each layer has an effective refractive index that can be
obtained by means of (6)-(7).
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Figure 2. Planar gratings resulting from the decomposition of the surface-relief grating into N thin gratings.

2.3 Rigorous Coupled Wave Theory

In order to understand how light propagates inside a periodic medium, many numerical methods have been developed,
such as the modal theory, first proposed by Wang and Tamir®'? et al. and applied to holography by Burkhardt'' or the
Coupled Wave Theory'>". CWT proposed by Kogelnik'* predicts very accurately the response of the efficiency of the
first and second order for volume phase gratings. Nonetheless, the accuracy decreases when more than two orders are
present in the grating. The Rigorous Coupled Wave Theory doesn’t disregard second derivatives in the CW equations
and allow more than two orders. The RCW introduced by Moharam and Gaylord"*"” has accomplished the task of
explaining a great number of physical situations associated with diffraction gratings of different kinds. Since the RCW is
well known only a brief description is given here.

We will study the propagation of light inside binary phase gratings and triangular gratings. In all cases the conductivity
inside the grating is supposed to be zero and the relative permittivity in the hologram is expressed as:

g, = (l—f)nj —l—fn;, 9
€, :(n; —nj)w, (10)
np

with f being the duty cycle of the square pattern illustrated in Fig.1 and p the index of the Fourier component of the
permittivity. In all cases it has been assumed a value of /= '2. Fig 3 shows the pattern of binary and triangular gratings as
a function of the number of harmonics considered in the Fourier series. As can be seen in Fig 3, a fewer number of
harmonics reproduces better the profile of the triangular grating than that of the binary grating that needs more
harmonics for an accurate reproduction of the boundaries of the grating.
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Figure 3. Dielectric permittivity for binary (a) and triangular (b) gratings as a function of the number of harmonics
considered in the Fourier series.

Following the CW and RCW approaches the electric field inside the hologram is supposed to be an infinite sum of orders
in the form:

E, =208, ()exp(-jk ), (11)

1/2

U, (2)exp(—jk ), (12)
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where S,; and U,; are the amplitude of the ith diffracted order and k,; is the propagation vector defined by the Floquet
theorem

k, =k, [n,sing, —i(1/ N)]]. (13)

X

Taking into account the Maxwell’s curl equations for TE polarization and Eq. (9)-(10) a 2N system of equations can be
established in matrix form as follows

S
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where the upper dot represents the derivative with respect to variable z. The matrix A is related with the propagation
vector of each diffraction order considered (13) and with the Fourier series of the permittivity (9-10). The band structure
of this matrix and the boundary conditions applied are fully detailed in the work of Neipp et al'®.

The solution of the amplitude of the different orders can be obtained in terms of the eigenvalues and eigenvector of the
matrix A imposing the adequate boundary conditions'®.

2.4 Finite Difference Time Domain Method

In 1966, Yee proposed a numerical method of solving Maxwell’s equations by continuously stepping forward in time in
discrete steps and solving a series of linear equations'*°. The FDTD technique is a robust analysis tool applicable to a
wide variety of complex problems. Specifically, it is useful when nonlinearities exist and transient analysis is required.
Nonetheless, the analysis of the diffraction pattern of diffractive optical elements is interesting because of the potential of
the method in visualize the electromagnetic field pattern at different time steps and also the possibility of consider
different polarizations and spatial schemes without too much effort. The range of physical phenomena which a FDTD
algorithm can emulate is a result of how precisely Maxwell’s equations are implemented. The equations here considered
are the following Maxwell’s time-dependent equations:

oD 1 ViH

@ «H,

> @;;: (15)
D(®) = ¢ (0)E(w) (16)
oH 1 .

;:—MVXE

where ¢ is the electrical permittivity in farads per meter, ¢, is the medium’s relative complex permittivity constant, that

’ an

has been assumed real, x is the magnetic permeability in henrys per meter. The flux density is denoted by D and both,

D and E are normalized respect to the vacuum impedance no=(ule)”.

The FDTD algorithm used here is based on the Yee' lattice. The electric field components E and the magnetic field
components H are centered in a bi-dimensional cell so that every E component is surrounded by four circulating H
components, and every H component is surrounded by four circulating E components® 2. As a result, the Maxwell’s
curl equations can be discretized and solved by using the central-difference expressions, for both the time and space
derivatives. Theses equations can be easily derived from the Maxwell’s equations, and are fully detailed in the works of
Sullivan et al.?', Frances et al** and Oh et al**, for instance. In order to simulate unbounded free space a simplified
version of the Perfectly Matched Layers (PML) developed by Berenger™’ has been implemented and related with the
illumination method, a Total Field/Scattered Field*'***® formulation has been also considered.

Regarding the FDTD implementation in the GPU it must be said that, electromagnetic field update is performed by
several CUDA (Compute Unified Device Architecture) cores focused on solving each field component. This architecture
provides de possibility of invoking a large number of threads in order to execute operations over a big amount of data.
These threads are arranged into blocks of 256%2, and the number of blocks is established by the resources of the GPU.
The difference between modern multi-core CPUs and GPUs architecture is illustrated in Fig. 4. A CUDA program is
initialized by the CPU in the host and all data to be processed is transmitted via bus PCI-Express into the GPU. The next
step is to execute the application inside the GPU and download the results from the GPU back to the host memory.
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Figure 4. Comparison between CPU and GPU architectures.

Table 1 shows the processing time of the FDTD method accelerated with GPU and with basic CPU processing. The ratio
of improvement achieved shows a great impact in time processing as the simulation size increases being in the worst
case near of 20 times faster than the basic CPU version.

Table 1: Time simulation of the sequential version of the FDTD method compared with the GPU implementation.

MCells | Tcpu(s)  Tepu(s)  Tapu/Teru

0.452 2.900 0.096 30.12
1.721 18.752  0.070 26.971
3.810 | 55.154  2.154 25.610
6.720 | 121.084 5.240 23.112
10.446 | 231.212 10.081 22.955

3. RESULTS
3.1 Binary phase gratings

The results related with the analysis carried out with the different theories described are summarized in Fig 5. In all cases
only TE polarization has been considered. The comparison between the diffraction efficiencies obtained with SDT,
RCWA and FDTD methods as a function of the 4/4 parameter are shown in Fig 5a, 5S¢ and 5e, which corresponds with
different normalized grating periods: 2, 5 and 8 respectively. As can be seen in these graphs, the RCWA and FDTD
methods provide similar results in all cases. However, the accuracy of the scalar treatment degrades as the depth
increases. More specifically, the validity of the zero order SDT prediction improves along the normalized depth (4/1) for
greater values of A/A. The vector calculations for the +1 order are quite close to the scalar approximation for A/A =5, A/A
= 8 and for A/A =2 when the normalized depth is less than 0.5.

Fig 4b shows the comparison of vectorial theories for A/A = 1 and Bragg angle of incidence also for the zero and first
orders. The degree of similarity between both curves is significant and in this case the SDT has been not included due to
its poor behaviour for this value of the A/A parameter.

The relative error of the RCWA theory as a function of the number of harmonics in the Fourier series of the grating
profile is represented in Fig 4e. The error is calculated referred to the solution obtained with 41 harmonics and it is
represented as a function of the normalized depth for A/A = 2 at normal incidence. As can be seen, the results obtained
with 15 harmonics could be considered valid, since the degree of improvement compared with 7 harmonics is
considerable.
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Figure 5. Results for binary phase gratings as a function of the normalized depth. (a), (c) and (d) shows the comparison
between SDT, FDTD and RCWA of the diffraction efficiency for different values of A/A. (b) Analysis of the RCWA and
FDTD results for A/A =1 and Bragg angle of incidence. (d) Relative error as a function of the number of harmonics
considered in the Fourier series. (f) Comparison between EMT and FDTD. In all cases the FDTD parameters are the
following: 2048x2048 cells, Ay = 633 nm, A = 15/40 and At = A(equo) /2.
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Figure 6. Results for triangular gratings as a function of the normalized depth. (a) Comparison between SDT, FDTD and
RCWA of the diffraction efficiency for A/A = 10. (b) Analysis of the RCWA and FDTD results for A/A =1 and Bragg
angle of incidence. (c) Comparison between EMT and FDTD. (d) Relative error as a function of the number of
harmonics considered in the Fourier series. (f). Distribution of the irradiance as a function of the space for a triangular
grating with A/A = 10 and #/A = 3. In all cases the FDTD parameters are the following: 2048x2048 cells, 4o = 633 nm, A
= 20/40 and Az = A(gquo) /2.
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Regarding EMT theory, the results for high spatial frequency gratings with EMT are compared with the FDTD method.
Specifically, the results shows a good agreement as a function of 4/4 for A/A = 0.6 and both versions of the EMT, 0"
order and 2™ order respectively. When the period of the diffraction phase grating is much smaller than the wavelength of
the incident light, only the zero order diffraction wave exists, and the EMT is valid to estimate the diffraction efficiency.

3.2 Triangular gratings

The results related with the analysis of triangular gratings are represented in Fig. 6. In this case, Fig. 6a represents the
diffraction efficiency obtained via scalar approximation, RCWA and FDTD for the zero and first order as a function of
the normalized depth for A/A = 10. The results of these theories agree in great manner due to the large A/A here
considered. As presented below, the diffraction efficiency obtained by means of the RCWA and the FDTD method for
A/A =1 are shown in Fig 6b. A good agreement between these theories is also achieved in this case. Fig 6c¢ illustrate the
degree of similarity between the results obtained with the RCWA and EMT theory also for A/A = 0.6. In this case the
results are not as good as those obtained in section 3.1. This disagreement between these theories can be related with the
discretization of the triangular profile with subwavelength layers.

Fig 6d shows the relative error of the RCWA prediction for the specific case A/A = 1 as a function of the normalized
depth and for different number of harmonics. As in Fig. 5d the error is reduced as the number of harmonics becomes
greater. However, for triangular profiles the error obtained by the same number of harmonics is lower than for the binary
profile. This trend is also corroborated with the similarities of the profiles in Fig 3, where it can be identified a better
approach with less harmonics for the triangular grating shown in Fig. 3b.

In addition, it has been included in Fig 6e a distribution of the square of the electric field component (E,), since this
magnitude is proportional to the irradiance. This capture corresponds to a simulation with the parameters listed in Fig. 4
caption with A/2 = 10. The time step simulation selected ensures that the steady-state has been reached. This illustration
summarizes the potential of the FDTD method and its capability of obtaining much more information than the diffraction
efficiency parameter. Polarization effects, such as the tunneling light phenomena can be easily identified with this
method.

4. CONCLUSIONS

The results obtained with different vectorial theories and scalar approximations applied to analyze binary phase gratins
and triangular gratings are presented. The results show the accuracy of the formalisms and their range of applicability.
Some results obtained by Jing et al’ have been corroborated and other theories such as RCWA and FDTD method have
been included. Moreover, triangular profiles have been also analyzed achieving good results between the theories
implemented. For the specific case of RCWA, the number of harmonics considered in the Fourier series of the grating
profile has been analyzed identifying that the triangular profile is less restrictive and can be easily modeled with less
harmonics than the binary phase grating. The potential of the FDTD theory with GPU computing provides quite good
results compared with the RCWA analysis providing much more information and more flexibility for modeling different
DOEs.
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