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Abstract— The use of 2D features in computer vision has 

had a great impact in lots of applications. For example, the 
combination of those features together with 3D data has helped 
to solve the Simultaneous Location And Mapping (SLAM) 
problem in real time. Nowadays, there are several interesting 
feature detectors and descriptors with different characteristics: 
processing time, robustness against lightning conditions, 
changes in point of view, scale, etc., and every day it appears 
more and more. In this paper, a deeper study about several of 
these detectors and descriptors is done. Several interesting 
graphs where we can separate distances with respect to axis and 
angles have been analysed. This study helps to make decisions 
about which are better for a given application. The study has 
been done with a low cost sensor as Kinect installed on robotics 
arm to control the movements with accuracy. Furthermore, 
finally, real scenario reconstruction is shown using Kinect 
camera and the visual features analysed in the study. 
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I.  INTRODUCTION  

One of the central research themes in mobile robotics 
is the determination of the movement performed by the 
robot using its sensors information, which is usually re-
ferred as egomotion [1], and also as registration. The 
method proposed in this work presents some improve-
ments calculating the egomotion which can be used for 
automatic map building and Simultaneous Location and 
Mapping (SLAM) [2]. Our main goal is to perform six 
degrees of freedom (6DoF) visual SLAM in 
semi-structured environments, i.e., man-made indoor  
environments. Egomotion can be computed using two 
main approaches: point-based and feature-based. In the 
point-based approaches, the most widely used is the It-
erative Closest Point (ICP [3]), but it does not provide 
good results in the presence of outliers. Using fea-
ture-based (from a RGB-D camera) and using the 
RANdom SAmple Consensus (RANSAC) method [4] 
provide a best egomotion calculation. 

In this work we are interested in determining which 
visual features provide better results for egomotion cal-
culation.  Others works (like [5]) made a similar study, 
but we extend that study, using a robotic arm in order to 
get a ground truth, not present in the former. In order to 
prove the accuracy of our study, we follow a similar ap-
proach than [6] to solve the SLAM, but incorporating 
some improvements in the egomotion calculation. 

 
 

 
The remainder of this paper is organized as follows: 

Section 2 describes the overall architecture of the plat-
form employed to analyze the detector and descriptor 
methods for visual SLAM in 3D scenes. Section 3 
comments, briefly, detectors and descriptors analyzed. 
Section 4 shows the experiments to evaluate the detectors 
and descriptors methods presented in Section 3. Section 5 
shows examples of reconstruction using TORO and the 
detectors and descriptors which have provided the best 
results in Section 4. Finally, some conclusions are dis-
cussed. 

II.  EXPERIMENTAL SETUP WITH K INECT DEVICE  

In order to realize the different experiments of this paper, 
a robotics system has been used. A 7 degrees freedom 
Mitsubishi PA-10 robot arm and a Kinect device mounted 
on the robot’s end-effector as an eye-in-hand configura-
tion (Fig. 1) have been used to evaluate the different 
feature detectors and descriptors. This detectors and de-
scriptors extract interest points of scene images and 
identify the appearance of these points, respectively. 

Some movements have been planned to acquire some 
series of images from the scene of a laboratory of our 
University. Each serie of images have been captured to 
model different situations and how the movement affects 
the behaviour of Kinect in different ways. The series of 
image represent sequence of movements in different di-
rections such as lateral movements (x-axis and y-axis) 
approach movements (z-axis) which generate change of 
scale and rotation movements in all axes. All these 
movements cove all different viewpoints and illumina-
tions changes due to perspective. Thus some different 
distances and angles are considered. In Section 3 and 4, 
some examples of the evaluation of detectors and de-
scriptors extracted from each sequence images are 
commented. In addition, in Section 5, an example of the 
3D visual SLAM using 6 degree of freedom is shown and 
explained. 

Furthermore, in this work, OpenCV (Open source 
Computer Vision) [7] and PCL (Point Cloud Library) [8] 
have been used to detect features and represent 3D in-
formation about the environment acquired from Kinect. 
Later, this spatial information of the environment is used 
to build maps, scene models for navigation and robot 
locations using the mobile robotic platform. 
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Fig. 1. System architecture to evaluate detectors and descriptors.  
 

Detection of keypoints is a task of finding groups of 
pixels and/or patches. In computer vision, the keypoints 
detection is one of the oldest and most widely studied 
techniques, in which matching processes among images 
are required, even though changes of scale and orienta-
tion are present in the images. These matching processes 
allow us to align some images to construct a 3D model 
which can be used to estimate camera pose like in SLAM 
applications. 

In literature, there is a lot of kind of detectors [9][10]. 
Early techniques use as keypoints specific locations in the 
images, such as corners, points of edges, etc. The key-
points are distinguished from other features in the image 
because they can be accurately tracked using local search 
techniques through a sequence of the images of a same 
scene acquired from a moving camera. Nowadays, some 
keypoint detectors have been successfully used to extract 
visual landmarks in visual SLAM applications. Until now, 
keypoints detectors have been almost always acquired 
from 2D cameras. Few studies about the keypoints de-
tectors and descriptors computed from 3D cameras to 
build maps based on dense 3D data for SLAM have been 
done [11].  

In this work, we have evaluated the most popular de-
tectors in combination with the popular descriptors used 
in SLAM applications but this time, innovatively, using a 
RGB-D camera to acquire images with color and depth  

A. Detectors 

On the one hand, a corner/keypoint detector should sat-
isfy a set of basic criteria which determines its quality 
depending on the application. On the other hand, a cor-
ner/keypoint detector should be extracted as rapidly as 
possible. The runtime depends on the computational cost 
of the method implemented (see Table I) as well as 
RGB-D device (i.e.: Kinect) and the computer used. All 
experiments were carried out on an Intel Core2 Duo 
T7500 2.2Ghz of CPU with 2GiB of memory RAM. 

In general, it is important that the keypoints are robust 
in the presence of noise, they are properly located in the 

image and the pixel assigned is accurate and only the 
keypoints which represent interest point are detected and 
no false points. Furthermore, the method to detect must 
be efficient and work well with changes in viewpoint 
(rotations, translations, scale, perspective, etc.) (Fig. 2 
and Fig 3). Among they are:  

Harris [12]: This detector searches local maxima in 
rotationally invariant scalar derived from an au-
to-correlation matrix, H, called Hessian matrix. The ei-
genvalues and eigenvectors of H, represent the magnitude 

and directions gradients, respectively.  
 
 k = λ1⋅λ2 – α(λ1+λ2) = det(H)-α⋅trace(H) (1) 
 
Harris work well with rotations and lighting changes 

but not with scales. This detector is known as imp-Harris 
or Harris-Laplace [10] when Gaussian weighting window 
is used to do the detector invariant to scale.  

Shi-Tomasi [13]: It is a variation of the above detector. 
Its behavior is better than Harris when there are changes 
of scale.  The smallest eigenvalue is used to consider 
keypoints in the image. 

 
 k = min(λ1,λ2) (2) 
 
MSER (Maximally Stable Extremal Regions) [14]: It 

is used to extract regions, blobs. The detector measure 
how stable these regions were when the intensity change. 
This detector is invariant to rotations, translations and 
scale but not perspective. 

In visual SLAM is very important the tracking of the 
keypoints in a sequence of images. Thus, to evaluate the 
detectors for visual SLAM, each detection method is 
applied for each image acquired from sequence of 
movements where the viewpoint changes. The keypoints 
detected in one of the images, Ik, are searched in the 
following image in the sequence, Ik+1 for each method. To 
do this, 3D indoor scenes have been used where planar 
and non-planar objects can appear in the environment.  

Fig. 2 and 3 show the number of keypoints that do not 
disappear (i.e. points that not are lost, that is to say sur-
vivor points) when the camera changes its viewpoint due 
to movement. Therefore, when the detectors are only 
considered, SIFT detector detect more keypoints than any 

TABLE I 
RUNTIME COST 

Method Type 
Num.  

Features 
(average) 

Num.  
Features 

(min/max) 

Average 
Time (ms.) 

Harris DT 352 254/427 43.42 
Shi-Thomasi DT 888 735/1116 45.42 
MSER DT 222 163/266 298.97 
SIFT(DoG)* DT 1417 1167/1715 606.2 
SURF* DT 1081 904/1307 275.03 
SIFT** DS 352 254/427 494.93 
SURF** DS 352 254/427 58 

*Only detector has been used 
** DS: Descriptor has been used with the same detector: Harris 
The average time and average of features correspond to image se-

quence of Figure 3 
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other. However, SIFT lost about 40% (displacements) 
32% (rotations) of those when the initial data are com-
pared with the final data. Otherwise, Shi-Tomasi has 
similar percentages (42% and 27%) but it also has a 
runtime of 45ms. versus 606ms. of SIFT for rotation 
movements. 

A perfect detector should detect the same points any-
where in the image sequence and its runtime should be as 
small as possible to ensure the real time execution. 

 
 

Fig. 2.  Movements as path of displacements in the three axes.  

 

 
 

Fig. 3.  Movements as path of rotations in the three axes.  
 

B. Descriptors 

SIFT (Scale-Invariant Feature Transform) [15] is based 
on the detector DoG (Difference of Gaussians) plus de-
scriptor. The method uses a pyramidal structure which is 
obtained from the difference of the image convolved with 
different scale Gaussians. Later, local maxima and 
minimum of this pyramidal structure are used as key-
points. The orientation of this keypoints and their 
neighboring points in a local environment are used as 
descriptor. Thus, the descriptor of each keypoint is de-
fined by a gradient orientation histogram.  

SURF (Speeded Up Robust Features) [16] is based on 
Hessian matrix for the detection of  keypoints. In addition, 
similarly to SIFT, this method uses a scale space by 
means of pyramidal structure of image convolved with 
Gaussians of different size. The descriptor is composed 
of orientations of keypoints. These orientations are 
computed in the vicinity of keypoint. To do this, this 

neighborhood masks are convolved with 2D Haar 
wavelet filter in different directions and after they are 
summed.  

III.  PERFORMANCE EVALUATION FOR 3D SCENES 

The descriptors define the appearance of keypoints. SIFT 
and SURF implements its own descriptor. However, the 
descriptors of SIFT and SURF can be used combined 
with other detectors (Fig. 2). So, each of these descriptors 
can be jointly used with a foresaid detectors (see section 
3).  In this section, the features are extracted with the 
detectors previously discussed and combined with the 
descriptors of SIFT and SURF to add information of 
neighborhood of the keypoint.  The evaluation of these 
combinations is done using the criterion of repeatability.  
Whether, the set {f1,f2,..fN} represents the features ex-
tracted of a set of images {I1,I2,..,IN}, the i-step represents 
what images are matched then for example, the matching 
among images applying step of i=2 can be defined as a set 
of matching from f1-f3, f2-f4 until fN-2+fN. Thereby, the 
criterion of repeatability can be made dependent of  i-step, 
as follows: 

 
iN

nf/ff
)i(r

k
iN

1k
ikk

−

∑ −
=

−

=
+

⋅100/ ∀i=1…N (3) 

where |fk-fk+i| are the number of pairwise features tracked 
from the image 1 to the k-image with i-step.  In addition, 
nfk is the number of features of the k-image for each 
matching. Moreover, the number of samples according 
the step, N-i, has to be considered in percentage format.  

In order to evaluate the different combination of de-
tector-descriptor, 6 sequences of images have been ac-
quired (Fig. 4 and 5). Displacements in the x-axis and 
y-axis as well as rotations in any axis define viewpoint 
changing among images. The displacements in z-axis and 
rotations in x-axis and y-axis define scale changing and 
perspective. On the one hand, each sequence of rotation 
images consists of 30 images (1 image- 1 degree) and 
each image has been captured with the camera following 
a semicircular trajectory until 30 degrees. On the other 
hand, each sequence of displacement images consists of 
30 images (1 image - 0.025m.) so the total displacement 
of the camera between first and last image is 0.75m. In 
addition all images haven been captured without varying 
lighting conditions and an indoor environment. Moreo-
ver, there were no moving objects in the scene, with the 
exception of the robot which was programmed to move 
the Kinect camera and capture the images, autonomously. 
The images were captured at 640x480 pixels/30fps with 
IR and RGB sensors. They have 6.1mm and 2.9mm of 
focal length, respectively, according [18] so the calibra-
tion matrix K of Kinect is known. Moreover, Kinect has 
useful range of working distance between 0.5m. and 5m. 

A. Moving as pure translation 

Fig 4 shows the percentage of survivor features when the 
camera is moved as pure translations in one of the three 
axes. The movement occurs in step of 2.5cm.  
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Fig. 4.  a) x-displacement. b) y-displacement. c) z-displacement. 

 
In general, Harris with SIFT or SURF are the best 

combinations in terms of repeatability for all the tests of 
movements. Both provide the highest percentage of sur-
vivor points. The following best combinations are 
ShiTomasi-SIFT and SURF-SIFT.  

The comparison of repeatability shows instability 
when there are fewer samples to average. This case oc-
curs when i-step is quite high, e.g. i>20 for rotations (Fig. 
5).  

B. Rolling as a pure rotation 

Fig 5 shows the percentage average of survivor features 
when the camera is moved as pure rotations in one of the 
three axes. The movement occurs in step 1 degree.  
 

 
 

 
 

 
 

Fig. 5.  a) x-rotation (pitch). b) y-rotation (yaw). c) z-rotation (roll). 
 

The methodology to test the detectors and descriptors, 
previously, commented in the section is as follows: 

 
Algorithm 1: Test detectors-descriptors  
 
-For k=0 to N/∀ N robot positions 

a. The robot is moved to k-position /Tk∈{Transformation of 
displacement or rotation} 

b. The images, Ik, from Kinect are acquired/K is matrix of 
calibration of Kinect and where Ik is a depth map from IR, zi, 
and colour map from RGB, ci /∀ pixel-i � Ik. 
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c. The features as keypoints-descriptors, fk, are extracted from 
Ik. 

-In order to compare the features, fk, which are maintained throughout 
the sequence of the images, Ik/ k=1…N when Tk is applied to the robot, 
this is done: 

a. The matching between images is done using the descriptors. 
Thus the matched features fk’ and fk-1’ are obtained. 

b. The matched features fk’  of Ik are reprojected to Ik-1 as  
fk

’=Tk
-1⋅fk-1 

c. The reprojection error is used to check the matching among 
features. This is computed as the Euclidean distance, |fk’-fk| 
<dmax .  

d. The percentage of survivors features are computed 
according Eq(3) 

IV.  RESULTS IN 3D VISUAL SLAM 

To evaluate our system, we have used Shi-Tomasi’s de-
tector, because the percentage of survivor features is 
similar to SIFT and SURF detectors and it also is much 
faster than those (13 and 6 times faster than SIFT and 
SURF, respectively). Moreover, Shi-Tomasi is as fast as 
Harris detector and it provides more features than that 
(2.5 times). 
 Investing the influence of descriptors combinated 
with the detectors, we observed that SIFT combined with 
Harris or ShiTomasi provides good results (see Section 
3).  However, these combinations are slow compared with 
the same detectors with SURF when the mapping must be 
performed in real time with Kinect. Furthermore, Harris 
or ShiTomasi detectors with SURF provide a combina-
tion very stable in terms of repeatibility when the image 
sequences are very different (e.g. large displacements and 
rotations).  
 SLAM with both combinations, Harris-SURF and 
ShiTomasi-SURF have been made. We have preferred to 
choose ShiTomasi-SURF instead of Harris-SURF be-
cause it ensures a greater set of features for each image. 
This way, the computing of pose is more reliable and we 
avoid the positioning loss during the mapping in re-
al-time.  

In this section, we present the results and the accuracy 
of our SLAM algorithm when ShiTomasi-SURF is cho-
sen. Algorithm 2 presents the method followed to solve 
the SLAM. First, we detect the features in two consecu-
tive images and calculate the descriptors. Then, only the 
best features are selected. Selecting the best features 
follows a elimination criteria based on: Euclidean dis-
tance between descriptors must be below a given thresh-
old; a feature only must be matched with one feature in 
the other image, if not, the feature is not selected; if a 
feature is matched with other feature, the other feature 
must be matched only with the former one; given two 
features matched, the matching must follow a similar 
projection that the whole set (outlier rejection). From 
these features, we calculate the whole set of possible 
transformations, using all the possible transformations 
between all the features in both images. Each transfor-
mation is evaluated using a Euclidean distance between 
the feature coordinates in one image and the reprojection 
(applying the transformation being evaluated) of the 
features coordinates from the other image to the current. 
The transformation with less total Euclidean distance is 

selected. The transformation provides the egomotion 
done by the robot between the two consecutive poses. 
However, this transformation has an error which must be 
reduced using a SLAM method. 

In order to solve the SLAM, we apply the Tree-based 
netwORk Optimizer (TORO) method [17]. This method 
uses a tree structure to define and efficiently update local 
regions at each iteration by applying a variant of sto-
chastic gradient descent. The nodes of the structure are 
the robot poses and the edges between nodes are the 
transformations obtained in the last step. TORO, once 
applied, provides the corrections of the errors accumu-
lated in the path. Figure 7 shows an example of recon-
struction. At the left part we can observe the reconstruc-
tion without the SLAM correction and right part after 
SLAM was applied.  

 
Algorithm 2: SLAM 
 
-To detect the features for each two images (fk-1 and fk) 
-To search the matching between consecutive images (pairwise image): 

a. According to the criteria commented in section 4, the features 
are filtered and voted. 

b. The best n=15 filtered features are chosen. 
-To compute the transformation between consecutive images (pairwise 
image) with filtered features: 

a. The r-combinations from the given set of n=15 filtered features 
are computed by: C(n,r)=n!/r!(n-r)! where r=7. 

b. The transformation T for each C(n,r) is calculated. 
-To make the matching between images, the whole set of 
transformations T for each set of 7 points is evaluated as follows: 

 a. fk’=Tk
-1⋅fk-1 is done for each T of C(n,r). 

b. The reprojection error, |fk
’-fk| is used to check the T. 

c. The T which minimizes the Euclidean distance between fk’ 
and fk is chosen. 

-To build the graph for SLAM, each edge is created as a transformation 
T for these matched features. 
-TORO is computed to optimize the alignment of transformations 
among images  

V. CONCLUSIONS AND FUTURE WORK  

In this work we have presented a study of different visual 
detectors and descriptors, showing its validity for the 
egomotion calculation. The study uses a robotic arm in 
order to get a ground truth. The use of the robotic arm 
allows us to separate errors in the 6 degrees of freedom: 
translation and rotation, with three main axes each.  

Several detector and descriptors have been tested, 
not only with their accuracy but also their computation 
time. The number of features returned is also an important 
key factor, as less number of them could provide bad 
matching. As a result of the study, the combination of 
ShiTomasi detector together with SURF descriptor pro-
vides the best results.  

We have used that combination for building a 
complete SLAM application, in which we use the 
matching process with those features as the way for 
egomotion calculation. Results of the SLAM show the 
validity of our method. 
 As future work, we plan to continue incorporating 
new detectors and descriptors, in order to obtain the 
limitations of each of them. We also plan to speed up the 
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complete SLAM problem, using some promising GPU 
implementation of some detectors. 
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