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Abstract— The use of 2D features in computer vision has The remainder of this paper is organized as follows
had a great impact in lots of applications. Fornepie, the Section 2 describes the overall architecture ofpiag-
combination of those features together with 3D #hashelped g employed to analyze the detector and deseripto
to solve the Simultaneous Location And Mapping (SHA o045 for visual SLAM in 3D scenes. Section 3

problem in real time. Nowadays, there are sevettarésting briefly. d dd . ol
feature detectors and descriptors with differeratrabteristics: comments, briefly, detectors an escriptors aealyz

processing time, robustness against lightning dimrdi, Section 4 shows the eXperimentS to evaluate tlectes
changes in point of view, scale, etc., and evesyitlappears and descriptors methods presented in Section Bo8éxc
more and more. In this paper, a deeper study aewdral of shows examples of reconstruction using TORO and the

these detectors and descriptors is done. Severalesing  getectors and descriptors which have provided & b
graphs where we can separate distances with relspeds and results in Section 4. Finally, some conclusions dise
angles have been analysed. This study helps to dedisions ' !

about which are better for a given application. hedy has CuSsed.
been done with a low cost sensor as Kinect instalierobotics
arm to control the movements with accuracy. Furtiuze, Il. EXPERIMENTAL SETUP WITH KINECT DEVICE
finally, real scenario reconstruction is shown gsikinect
camera and the visual features analysed in the stud In order to realize the different experiments @ theper,
Keywords: visual features, 3D data; RGB-D data; SLAM. a robotics system has been used. A 7 degrees freedo
Mitsubishi PA-10 robot arm and a Kinect device medn
. INTRODUCTION on the robot's end-effector as an eye-in-hand gomé-

One of the central research themes in mobile roi;votition (Fig. 1) have been used to evaluate the differ
feature detectors and descriptors. This detectuisda-

is the determination of the movement performed t . ) . .
P Hay scriptors extract interest points of scene images a

robot using its sensors information, which is ulsued- identify the appearance of these points, respdgive

ferred as egomotion [1], and also as registratitime .
. . . Some movements have been planned to acquire some
method proposed in this work presents some improve-

. . ; Series of images from the scene of a laboratorgusf
ments calculating the egomotion which can be used f " . . :
) - . . University. Each serie of images have been capttoed
automatic map building and Simultaneous Locatioth an . S
) . ) . model different situations and how the movemeraca$
Mapping (SLAM) [2]. Our main goal is to perform six : . L .
. . the behaviour of Kinect in different ways. The esrof
degrees of freedom (6DoF) visual SLAM in. L
. . . . image represent sequence of movements in diffelient
semi-structured environments, i.e., man-made indogr

. . . rections such as lateral movements (x-axis andig}-ax
environments. Egomotion can be computed using two

main approaches: point-based and feature-basetieln approach movements (z-axis) which generate chahge o

. : : scale and rotation movements in all axes. All these
point-based approaches, the most widely used istthe . . . . .
movements cove all different viewpoints and illuatin

tions changes due to perspective. Thus some ditfere

tre-based (from a RGB-D camera) and using th%e|stances and angles are considered. In Sectiod 3 a

RANdom SAmple Consensus (RANSAC) method [4Eome examples of the evaluation of detectors and de
. P . . criptors extracted from each sequence images are
provide a best egomotion calculation.

commented. In addition, in Section 5, an exampléhef

. In this work we are interested in determlnlng_whlcféD visual SLAM using 6 degree of freedom is showd a
visual features provide better results for egonmtal- explained

o ot e ) e, Sriaect, - Furhemore n sk, Opency (Open s
Y, 9 Computer Vision) [7] and PCL (Point Cloud Librafg)

get a ground truth, not present in the former. rteo o have been used to detect features and represeiri-3D

rove the accuracy of our study, we follow a simép- . . .
P Y y ) . formation about the environment acquired from Kinec
proach than [6] to solve the SLAM, but incorporgtin . o . . )
Later, this spatial information of the environmentised

some improvements in the egomotion calculation. . o
P 9 to build maps, scene models for navigation and trobo
locations using the mobile robotic platform.
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image and the pixel assigned is accurate and ¢y t
keypoints which represent interest point are detkand
no false points. Furthermore, the method to detecit
be efficient and work well with changes in viewpoin
(rotations, translations, scale, perspective, €fg. 2
and Fig 3). Among they are:

Harris [12]: This detector searches local maxima in
rotationally invariant scalar derived from an au-
to-correlation matrix, H, called Hessian matrix.eTéi-
genvalues and eigenvectors of H, represent the ituagn

Robot Mitsubishi
PA-10

TABLE |
RUNTIME COST
Num. Num. Average
Method Type  Features Features ! 9
: Time (ms.)
(average) (min/max)
3 | Harris DT 352 254/427 43.42
: - - i ) Shi-Thomasi DT 888 735/1116 45.42
Fig. 1. System architecture to evaluate detectodsd@scriptors. MSER DT 222 163/266 208.97
) . ) o SIFT(DoG) DT 1417 1167/1715  606.2
Detection of keypoints is a task of finding groupls  surr DT 1081 904/1307 275.03
pixels and/or patches. In computer vision, the bays  SFT** DS 352 2541427 494.93
SURF** DS 352 254/427 58

detection is one of the oldest and most widely istlid
techniques, in which matching processes among isna¢ Only detector has been used _

are required, even though changes of scale andtarie _DS: Descriptor has been used with the same detéanns

. . . . The average time and average of features corresgoimdage se-
tion are prese.nt in the images. These matchingepB&S  quence of Figure 3

allow us to align some images to construct a 3D ehodand directions gradients, respectively.

which can be used to estimate camera pose likeAMS

applications. k =\ 3, —a(A+A,) = det(H)alfrace(H) (1)
In literature, there is a lot of kind of detectf@®}10].
Early techniques use as keypoints specific locatintthe Harris work well with rotations and lighting charsge

images, such as corners, points of edges, etck@fie pyt not with scales. This detector is known as gpris
points are distinguished from other features inithe&ge o Harris-Laplace [10] when Gaussian weighting weind
because they can be accurately tracked usingdeeath s ysed to do the detector invariant to scale.
techniques through a sequence of the images ofna sa  ghj-Tomasi [13]: Itis a variation of the above detector.

scene acquired from a moving camera. Nowadays, SO behavior is better than Harris when there &nges
keypoint detectors have been successfully userttact of scale. The smallest eigenvalue is used to densi
visual landmarks in visual SLAM applications. Umdw, eypoints in the image.

keypoints detectors have been almost always aatjuire
from 2D cameras. Few studies about the keypoints de k = minQ\y,\,) )
tectors and descriptors computed from 3D cameras to

build maps based on dense 3D data for SLAM hava bee \ 1R (Maximally Stable Extremal Regions) [14]: It

done [11]. is used to extract regions, blobs. The detectorsorea

In this work, we have evaluated the most popular dg,qo stable these regions were when the intensapgé.
tectors in combination with the popular descriptosed  Thjs detector is invariant to rotations, translasicand
in SLAM applications but this time, innovativelysiog a  gcale but not perspective.

RGB-D camera to acquire images with color and depth | visual SLAM is very important the tracking ofeth

A. Detectors keypoints in a sequence of images. Thus, to evalinat

detectors for visual SLAM, each detection method is

On the one hand, a corner/keypoint detector shsald applied for each image acquired from sequence of
isfy a set of basic criteria which determines it@ldy movements where the viewpoint changes. The keypoint
depending on the application. On the other harmhra detected in one of the images, &re searched in the
ner/keypoint detector should be extracted as ramidl following image in the sequence,.lfor each method. To
possible. The runtime depends on the computatwostl do this, 3D indoor scenes have been used wheramlan
of the method implemented (see Table 1) as well and non-planar objects can appear in the environmen
RGB-D device (i.e.: Kinect) and the computer us&idl. Fig. 2 and 3 show the number of keypoints thatato n
experiments were carried out on an Intel Core2 Dudisappear (i.e. points that not are lost, thabisay sur-
T7500 2.2Ghz of CPU with 2GiB of memory RAM. vivor points) when the camera changes its viewpadirg

In general, it is important that the keypointsareust to movement. Therefore, when the detectors are only
in the presence of noise, they are properly locatétde considered, SIFT detector detect more keypoints aing
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other. However, SIFT lost about 40% (displacementsieighborhood masks are convolved with 2D Haar
32% (rotations) of those when the initial data emen- wavelet filter in different directions and afterethare
pared with the final data. Otherwise, Shi-Tomass hasummed.
similar percentages (42% and 27%) but it also has a
runtime of 45ms. versus 606ms. of SIFT for rotation Ill. PERFORMANCE EVALUATION FOR 3D SCENES
movements.

A perfect detector should detect the same poings al
where in the image sequence and its runtime sHuoubs

nThe descriptors define the appearance of keypdhhEst

and SURF implements its own descriptor. Howeveg, th
small as possible to ensure the real time execution ~ descriptors of SIFT and SURF can be used combined
I with other detectors (Fig. 2). So, each of thesedjgtors

1000 S can be jointly used with a foresaid detectors &tion
\ o 3). In this section, the features are extracteith tie
== detectors previously discussed and combined wi¢h th
descriptors of SIFT and SURF to add information of
. surf neighborhood of the keypoint. The evaluation @fsth
combinations is done using the criterion of repaititp.
- Whether, the set {ff,,..fy} represents the features ex-
S bcnsasiis tracted of a set of images {l,..,I\}, the i-step represents
M what images are matched then for example, the match
H'““‘*'---Hﬂﬂ_.ﬂ_."“ﬂ" among images applying step of i=2 can be definedsat
. . i - o ‘ of matching from ff3, f-f4 until fy,+fy. Thereby, the
criterion of repeatability can be made dependeritsiép,
as follows:
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Fig. 2. Movements as path of displacements inthtee axes.

N-i
3 ffi = ficai|/ nfic

¥ hars r(i) = K= : 100/0i=1..N  (3)
\ —B—mser N —i
1o shitomasi ~ Where [f-f,.;| are the number of pairwise features tracked
§ e \ it from the image 1 to the k-image with i-step. Imligidn,
%m = o surf nf, is the number of features of the k-image for each
S o e ™ " \ matching. Moreover, the number of samples according
2 S - the step, N-i, has to be considered in percentagest.
% 200 N\ In order to evaluate the different combination ef d
g """**---r‘--;.%é tector-descriptor, 6 sequences of images have aeen
T, ~..  quired (Fig. 4 and 5). Displacements in the x-aadsl
W y-axis as well as rotations in any axis define yieimt
04—t = — L : . changing among images. The displacements in zaaxis

12345678 9‘101112 151415‘151? 18‘1920 212223 24‘25 26‘2728 2930 rotatlons |n X'aX|S and y_ax's deflne SCale Ch@l@.nd
Angle (degress) . 4
perspective. On the one hand, each sequence tibrota
images consists of 30 images (1 image- 1 degreg) an
) each image has been captured with the camera faljow
B. Descriptors a semicircular trajectory until 30 degrees. On dkteer

SIFT (Scale-Invariant Feature Transform) [15] is basefiand, each sequence of displacement images coasists
on the detector DoG (Difference of Gaussians) ples 30 images (1 image - 0.025m.) so the total dispiere
scriptor. The method uses a pyramidal structurehvis of th? camera between first and last 'mage 1S Oiﬂﬁm
obtained from the difference of the image convohuét addition all images haven been captured withoufiugr

. ) . Igghting conditions and an indoor environment. More
different scale Gaussians. Later, local maxima an

minimum of this ovramidal structure are used as- kever, there were no moving objects in the scend thie
inimu IS pyrami uctu u )éxception of the robot which was programmed to move

points. The orientation of this keypoints and thei{he Kinect camera and capture the images, autonsiou
neighboring points in a local environment are uasd The images were captured at 640x480 pixels/30fgis wi
descriptor. Thus, the descriptor of each keypantié- |R and RGB sensors. They have 6.1mm and 2.9mm of
fined by a gradient orientation histogram. focal length, respectively, according [18] so tiaibra-
SURF (Speeded Up Robust Features) [16] is based @8n matrix K of Kinect is known. Moreover, Kinebas
Hessian matrix for the detection of keypointsaditlition, useful range of working distance between 0.5m.5mnd
similarly to SIFT, this method uses a scale spage b
means of pyramidal structure of image convolvechwit
Gaussians of different size. The descriptor is amsad Fig 4 shows the percentage of survivor featureswthe
of orientations of keypoints. These orientationg aicamera is moved as pure translations in one ofhiee
computed in the vicinity of keypoint. To do thisig axes. The movement occurs in step of 2.5cm.

Fig. 3. Movements as path of rotations in theelaxes.

A. Moving as pure trandation
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B. Rolling as a pure rotation

—#—harris - sift . .
4 s FIQ 5 shows the percentage average of survivourest
—a—mser-sift when the camera is moved as pure rotations in btieo
70 R mer-suf three axes. The movement occurs in step 1 degree.
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Fig. 4. a) x-displacement. b) y-displacement.-d)splacement. Angle (degrees

Fig. 5. a) x-rotation (pitch). b) y-rota%tion (yawe) z-rotation (roll).
In general, Harris with SIFT or SURF are the best i
combinations in terms of repeatability for all lests of ~ The methodology to test the detectors and desesipto
movements. Both provide the highest percentageimf s previously, commented in the section is as follows:
vivor points. The following best combinations are
ShiTomasi-SIFT and SURE-SIFET. Algorithm 1: Test detectors-descriptors

The comparison of repeatability shows instability —
. -For k=0 to N¥ N robot positions
when there are fewer samples to average. Thisaase

. . . . . . . The robot is moved to k-position {I{Transformation of
curs when i-step is quite high, e.g. i>20 for riotas (Fig. displacement or rotation}

5). b. The images,«l from Kinect are acquired/K is matrix of
calibration of Kinect and whergik a depth map from IR;,z
and colour map from RGB; £v pixel-i [1 .
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c. The features as keypoints-descriptogsafe extracted from
Ik.
-In order to compare the featureg\fhich are maintained throughout
the sequence of the imagegk=1...N when Tis applied to the robot,
this is done:

a. The matching between images is done using theigess:

Thus the matched featuresdnd f..;’ are obtained.

b. The matched featureg fof Ix are reprojected to.l as
fie =T e
The reprojection error is used to check the matchimong
features. This is computed as the Euclidean distgdhefy|
<dma><-
The percentage of survivors features are comput
according Eq(3)

C.

IV. RESULTS IN 3D VISUAL SLAM

To evaluate our system, we have used Shi-Tomasi's q

tector, because the percentage of survivor featisres
similar to SIFT and SURF detectors and it also isim
faster than those (13 and 6 times faster than Sukd
SURF, respectively). Moreover, Shi-Tomasi is a$ &&s
Harris detector and it provides more features ttieat
(2.5 times).

Investing the influence of descriptors combinate
with the detectors, we observed that SIFT combimitul
Harris or ShiTomasi provides good results (seei@ect
3). However, these combinations are slow compaitd
the same detectors with SURF when the mapping baust
performed in real time with Kinect. Furthermore,riia

or ShiTomasi detectors with SURF provide a combinag.—ro

tion very stable in terms of repeatibility when iheage
sequences are very different (e.g. large displants@and
rotations).

SLAM with both combinations, Harris-SURF and

selected. The transformation provides the egomotion
done by the robot between the two consecutive poses
However, this transformation has an error whichtrbes
reduced using a SLAM method.

In order to solve the SLAM, we apply the Tree-based
netwORk Optimizer (TORO) method [17]. This method
uses a tree structure to define and efficientlyat@docal
regions at each iteration by applying a variantstaf
chastic gradient descent. The nodes of the stricite

Jhe robot poses and the edges between nodes are the

transformations obtained in the last step. TORQeon
applied, provides the corrections of the errorsuaee
lated in the path. Figure 7 shows an example afrrec
struction. At the left part we can observe the nstaic-
ion without the SLAM correction and right part exft
SLAM was applied.

Algorithm 2: SLAM

-To detect the features for each two images &hd f)
-To search the matching between consecutive im@@gésvise image):
d a. According to the criteria commented in sectipthé features
are filtered and voted.
b. The best n=15 filtered features are chosen.
-To compute the transformation between consecitiages (pairwise
image) with filtered features:
a. The r-combinations from the given set of n=16red features
are computed by: C(n,r)=n!/rl(n-r)! where r=7.
b. The transformation T for each C(n,r) is calcedat
make the matching between images, the whole dfet
transformations T for each set of 7 points is extdd as follows:
a. & =Ty i1 is done for each T of C(n,r).
b. The reprojection errorffy| is used to check the T.
c. The T which minimizes the Euclidean distancevkeh {
and fis chosen.

ShiTomaSi'_SURF have bee.n made. We haV_e preferred_ifg build the graph for SLAM, each edge is created transformation
choose ShiTomasi-SURF instead of Harris-SURF be-for these matched features.

cause it ensures a greater set of features foriegwde.
This way, the computing of pose is more reliabld ae

-TORO is computed to optimize the alignment of $farmations
among images

avoid the positioning loss during the mapping in re

al-time.

In this section, we present the results and tharacg
of our SLAM algorithm when ShiTomasi-SURF is cho
sen. Algorithm 2 presents the method followed tlveso
the SLAM. First, we detect the features in two @ms
tive images and calculate the descriptors. Thely, the
best features are selected. Selecting the beafrésat
follows a elimination criteria based on: Euclidedis-
tance between descriptors must be below a givesstiir
old; a feature only must be matched with one feainr
the other image, if not, the feature is not seliciea
feature is matched with other feature, the othatuie
must be matched only with the former one; given tw
features matched, the matching must follow a simil
projection that the whole set (outlier rejectioRyom
these features, we calculate the whole set of plessi
transformations, using all the possible transfoiomast
between all the features in both images. Each foens
mation is evaluated using a Euclidean distance dxiw
the feature coordinates in one image and the regtion
(applying the transformation being evaluated) of th
features coordinates from the other image to theenot
The transformation with less total Euclidean distais

V. CONCLUSIONS AND FUTURE WORK

In this work we have presented a study of diffexesial
detectors and descriptors, showing its validity foe
egomotion calculation. The study uses a robotic @rm
order to get a ground truth. The use of the robati
allows us to separate errors in the 6 degreesetirm:
translation and rotation, with three main axes each
Several detector and descriptors have been tested,
not only with their accuracy but also their compiota
time. The number of features returned is also goant
key factor, as less number of them could providd ba
matching. As a result of the study, the combinatién
ShiTomasi detector together with SURF descriptor pr

Qides the best results.

We have used that combination for building a
complete SLAM application, in which we use the
matching process with those features as the way for
egomotion calculation. Results of the SLAM show the
validity of our method.

As future work, we plan to continue incorporating
new detectors and descriptors, in order to obth& t
limitations of each of them. We also plan to spepdhe
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Fig. 7. a) Egomotion of frame to frame tracking (oop closures). b) Result after optimization witRO (loop closures)

complete SLAM problem, using some promising GPUL0] K. Mikolaiczyk, T. Tuytelaars, C. Schmid, A. Zissen, J.
implementation of some detectors.
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