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Abstract. We estimate the total mass distribution of the galaxy cluster CL0024+1654 from the measured source
depletion due to lens magnification in the R band. Within a radius of 0.54 h−1 Mpc, a total projected mass of
(8.1 ± 3.2)×1014 h−1 M� (EdS) is measured. The 1σ error here includes shot noise, source clustering, uncertainty
in background count normalisation and contamination from cluster and foreground galaxies. This corresponds to
a mass-to-light ratio of M/LB = 470 ± 180. We compute the luminosity function of CL0024+1654 in order to
estimate contamination of the background source counts from cluster galaxies. Three different magnification-
based reconstruction methods are employed: 1) an estimator method using a local calculation of lens shear; 2) a
non-local, self-consistent method applicable to axi-symmetric mass distributions; 3) a non-local, self-consistent
method for derivation of 2D mass maps. We have modified the standard single power-law slope number count
theory to incorporate a break and applied this to our observations. Fitting analytical magnification profiles of
different cluster models to the observed number counts, we find that CL0024+1654 is best described either by
a NFW model with scale radius rs = 334 ± 191 h−1 kpc and normalisation κs = 0.23 ± 0.08 or a power-law
profile with slope ξ = 0.61 ± 0.11, central surface mass density κ0 = 1.52 ± 0.20 and assuming a core radius of
rcore = 35h−1 kpc. The NFW model predicts that the cumulative projected mass contained within a radius R scales
as M(<R) = 2.9 × 1014(R/1′)1.3−0.5 lg(R/1′) h−1 M�. Finally, we have exploited the fact that flux magnification
effectively enables us to probe deeper than the physical limiting magnitude of our observations in searching for a
change of slope in the U band number counts. We rule out both a total flattening of the counts with a break up
to UAB ≤ 26.6 and a change of slope, reported by some studies, from d logN/dm = 0.4→ 0.15 up to UAB ≤ 26.4
with 95% confidence.

Key words. gravitational lensing – galaxies: clusters: individual: CL0024+1654 – cosmology: dark matter

1. Introduction

The lensing cluster CL0024+1654 ranks as one of the
most highly studied clusters to date. Lying at a redshift
of z = 0.39, early measurements of the cluster’s velocity
dispersion of σ ' 1300 ± 100 km s−1 (Dressler et al. 1985)
suggested a formidable mass. The discovery of a large
gravitationally lensed arc from a blue background galaxy
by Koo (1988) has since provoked a range of studies to es-
timate the cluster’s mass based on its lensing properties.

The first lens inversion of CL0024+1654, by Kassiola
et al. (1992), noted a violation of the “length theorem”
(Kovner 1990) that the length of the middle segment of
the arc should equal the sum of the other two. The au-
thors demonstrated that a concentration of large cluster
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galaxies near the arc centre is necessary to cause this by
perturbing the cluster cusp and were thus able to constrain
the potential of the cluster and the perturbing galaxies. A
later analysis by Bonnet et al. (1994) constrained the clus-
ter’s mass profile more tightly with the first measurement
of weak shear out to a radius of 1.5h−1 Mpc. Wallington
et al. (1995) confirmed the perturbing galaxy hypothesis
of Kassiola et al. by fitting a smooth elliptical cluster po-
tential with two superimposed L∗ galaxy potentials near
the centre of the arc.

By parameterising the source and lens models and fit-
ting to six images of the lensed source galaxy, Kochanski
et al. (1996) again showed that the mass profile of
CL0024+1654 is consistent with a smooth isothermal dis-
tribution. Furthermore, they found that the cluster mass
traces light fairly well out to a radius of 0.5h−1 Mpc
and were able to rule out the existence of any significant
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substructure larger than 15 h−1 kpc in the central region.
Using HST images of the cluster, Tyson et al. (1998, TKD
hereafter) isolated eight well-resolved images of the blue
background galaxy to construct a high resolution mass
map of the cluster. Their parametric inversion concluded
that more than 98% of the mass concentration excluding
that contributed from discrete galaxies was represented
by a smooth distribution of mass with a shallower profile
than isothermal.

The most recent lensing analysis of CL0024+1654 to
date is that by Broadhurst et al. (2000, B00 hereafter)
who provide the first measurement of the redshift of the
blue background galaxy at z = 1.675. This redshift breaks
the mass-redshift degeneracy present in all mass estimates
of the cluster thus far. Their fit of NFW profiles (Navarro
et al. 1997) to the eight brightest cluster members is found
to be an adequate model to explain the positions of the
five main lensed images. This, they suggest, highlights the
possibility that sub-structure has not been erased in
the cluster.

The first of only two measurements of the cluster’s
lens magnification to currently exist was that investigated
by Fort et al. (1997). This was the first detection of de-
pletion in background galaxy number counts due to geo-
metrical magnification as predicted by Broadhurst et al.
(1995, BTP hereafter). Rather than reconstruct cluster
mass, this work concentrated on characterising the radial
distribution of critical lines to infer the redshift range of
the background populations in B and I. Using this data,
van Kampen (1998) produced an estimate of the mass of
CL0024+1654 from lens magnification.

The only other magnification analysis of the cluster
published so far is that of Rögnvaldsson et al. (2001; R01
hereafter) using R and U band observations. Their choice
to observe in U was inspired by the findings of Williams
et al. (1996) which suggested a flattening in the U band
number count slope at faint magnitudes. Such a break is
reported to occur at UAB ' 25.5−26 with a change of
slope of d logN/dm ' 0.4 → 0.15. Given suitably deep
U band imaging, this should therefore manifest itself as a
depletion in the number density of galaxies observed in the
presence of lens magnification (see Sect. 3.2). R01 claimed
to have detected depletion in U implying that a break in
the slope must be present.

Further investigation has since highlighted concern re-
garding the reliability of faint objects extracted by R01
from the R and U band observations. While this is not a
large concern for R where the depletion signal is strong,
the claim of detection of depletion in U and hence the
reported break in the number count slope is strongly
affected. A re-examination of these findings is therefore
necessary.

The motivation driving the paper presented here is sev-
eralfold. Firstly, there is the need to re-evaluate the exist-
ing results of R01. We take the observations from R01
but create new, more reliable R and U band object cat-
alogues. Using these, we re-calculate the depletion signal
in both bands and use this to re-fit the isothermal lens

model of R01. Secondly, we wish to extend the analysis
of R01: 1) We fit a power-law profile and a NFW model
to the depletion profiles. 2) We transform the measured
depletion into mass estimates using three recently devel-
oped magnification reconstruction methods; the local es-
timator method of van Kampen (1998) applied by Taylor
et al. (1998, T98 hereafter), the non-local axi-symmetric
solution of T98 for reconstruction of radial mass profiles
and the non-local method of Dye & Taylor (1998) for de-
termining 2D mass maps. 3) We investigate the relation-
ship between mass, light and galaxy number density in
the cluster. 4) We quantify contamination of our back-
ground source sample by cluster and foreground objects
and incorporate this into our analyses. 5) Finally, we apply
two methods to search for a change in slope in the U band
field galaxy number counts by exploiting the fact that lens
magnification enables us to effectively see deeper than the
physical magnitude limit imposed by the observations.

The following section briefly describes data acquisi-
tion, reduction, object extraction and mask generation.
Contamination of the source counts from cluster and
foreground galaxies is estimated. Section 3 details the re-
construction methods used in this paper. In Sect. 4, we
consider the properties of the R band background galaxy
population and fit cluster mass models to the measured
number count profile. This is necessary for determination
of the mass results presented in Sect. 5. In Sect. 6, we in-
vestigate the U band galaxy population and test for the
existence of a break in the number counts. Finally, we
discuss and summarise our findings in Sect. 7.

2. The data

Data acquisition and reduction are described in full detail
in R01. Here, we highlight the key deviations in the gen-
eration of the object catalogues of this paper from those
in R01:

– a Gaussian smoothing kernel with a FWHM equal to
the seeing was used to extract objects (see Sect. 2.2).
This compares with the narrower smoothing kernel of
FWHM equal to slightly larger than half the seeing
used by R01 (note the incorrect statement that their
smoothing kernel is equal to the seeing). Matching the
width of the smoothing kernel to the seeing allows op-
timal extraction in the sense that spurious detections
due to background noise are kept as small as possible
while maintaining a sufficiently large detection success
rate. This creates the most noticeable difference be-
tween this dataset and that of R01; our U and R cat-
alogues contain fewer faint objects (our total paired
object catalogue contains 29% fewer objects);

– galactic extinction corrections have been applied to
both the U and R band, brightening all objects (see
Sect. 2.1);

– a more thorough determination of the background
noise has been obtained. The mean rms back-
ground variation has been calculated within a circular
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aperture of diameter equal to the seeing FWHM. The
result of this is that the “3σ” detection limits calcu-
lated in R01 from Poisson statistics are fainter than
those in this paper by 1.3 mag in U and 1.7 mag in R
including the galactic extinction correction;

– a linear co-ordinate transformation has been applied
to the U band object positions resulting in a more ac-
curate mapping to the R band. This has improved the
position coincidence matching between both bands.

2.1. Acquisition and completeness

CL0024+1624 was observed in the Cousins U and Cousins
R bands with a 6′×6′ field of view using the Nordic Optical
Telescope in August 1999. A total integration time of 37 ks
and seeing 1.1′′ was obtained in the U band compared with
8.7 ks and 1.0′′ in the R. Following R01, we use AB magni-
tudes throughout this paper converting from the Cousins
U and R magnitudes with an offset of +0.71 mag and
+0.20 mag respectively (Fukugita et al. 1995). In addition,
we have corrected the data for galactic extinction amount-
ing to −0.15 mag and −0.31 mag in the R and U band
respectively (Schlegel et al. 1998). The limiting magni-
tudes corresponding to a signal-to-noise ratio of 3 within
a seeing disk are UAB = 25.7 mag and RAB = 25.8 mag,
with the noise level taken as the mean rms of the back-
ground. All photometry was performed using SExtractor
(Bertin & Arnouts 1996; see Sect. 2.2). Magnitudes were
measured as either total or corrected isophotal depending
on the proximity of neighbouring objects. This is man-
aged automatically via SExtractor’s MAG BEST magnitude
definition.

Completeness was estimated from the detectability of
synthetic objects of varying brightness added to the im-
ages. Further details can be found in R01. In re-applying
this process to the data of this paper, we find that the
completeness at the 3σ detection limit is 84% at UAB =
25.7 mag and 81% at RAB = 25.8 mag.

2.2. Object extraction

Objects were extracted from the final reduced images us-
ing SExtractor. With a detection threshold of 1σ above
background and a Gaussian filtering kernel of FWHM
equal to the seeing, catalogues of all objects with at least
10 connecting pixels brighter than the threshold were
generated. A total of 1887 objects in the R band and
1122 objects in the U band were detected. These totals
include stars but exclude objects classified by SExtractor
as having saturated pixels, being truncated or possess-
ing corrupt isophotal data. By matching the 30 brightest
stars between both bands, a linear co-ordinate transforma-
tion was calculated and applied to map the U band cata-
logue onto the R band. Objects were paired within a posi-
tional tolerance equal to the seeing and yielded a total of
875 objects excluding stars. Those objects with
star/galaxy classification indices larger than 0.95 were as-
sumed to be stars and excluded from the analysis below.

Fig. 1. Colour-magnitude diagrams for all 875 matched ob-
jects. Top and bottom shows selection of mask objects in the
U and R band respectively by the criteria (U −R)AB > 3 and
UAB < 24, RAB < 23.5 (dashed lines). The 3σ detection limits
UAB = 25.7 and RAB = 25.8 are shown in both plots by the
dot-dashed lines.

2.3. Object selection

Separation of the background galaxies from the foreground
and cluster galaxies must be achieved before lens magni-
fication can be evaluated. Segregation of the cluster and
foreground objects is important to enable estimation of
their background sky obscuration which affects binned
number counts.

Figure 1 shows the colour-magnitude plot of (U−R)AB

versus the UAB and RAB magnitudes for the 875 matched
objects. By matching our sample with the redshift mea-
surements of the field of CL0024+1654 by Czoske et al.
(2001b), we have found that a large fraction of cluster
members can be immediately discarded by removing ob-
jects with (U − R)AB > 3. The noticeable lack of objects
seen in the vicinity of (U − R)AB ' 3 reflects a mini-
mum in the bi-modal (U−R) distribution of cluster galax-
ies identified in the Czoske et al. sample by the criterion
0.388 < z < 0.405. Applying a further selection RAB < 22
to avoid incompleteness in both the Czoske et al. sample
and our data, we find that 65% of identified cluster objects
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Fig. 2. Number density (n = number/square arcmin) of cluster
galaxies selected either by (U −R)AB > 3 or redshift.

lie at (U −R)AB > 3. In addition, we find that 12% of ob-
jects brighter than RAB = 22 with (U − R)AB > 3 are
foreground galaxies and only 2% of objects in this selec-
tion are background objects. In summary, the selection
(U − R)AB > 3 very efficiently removes cluster galaxies,
at least up to RAB = 22, discarding a very small fraction
of background sources.

In Fig. 2, we plot the number density of cluster galaxies
defined as objects with colour (U −R)AB > 3 or by their
redshift for (U−R)AB < 3. Figure 4 shows how the number
counts of galaxies meeting these criteria vary with mag-
nitude in the U and R. In Fig. 3 we plot the distribution
of light from these selected cluster galaxies. The surface
flux density shown in this plot is scaled to the restframe
B band for easy comparison of the mass-to-light ratio we
calculate later with other authors. This scaling was car-
ried out using the K and colour corrections presented in
Fukugita et al. (1995). Both distributions are compared
with the reconstructed cluster mass map in Sect. 5.1. The
fact that both distributions are relatively concentrated
around the known cluster centre indicates that we have
reliable selection criteria for the (bright) cluster members.

Our foreground and cluster objects are therefore cho-
sen as a combination of objects identified in the Czoske
et al. sample with z < 0.405 as well as those satisfying
(U − R)AB > 3 and an additional RAB < 23.5 for the
R band sample or an additionalUAB < 24.0 for the U band
sample. The choice of R and U limits here are chosen to be
optimal in the sense that they select as many background
objects as possible while preventing too high a degree of
contamination from cluster and foreground objects (see
Sect. 2.4). Extracted parameters such as size, ellipticity
and orientation of the cluster and foreground objects are
used to generate an obscuration mask as Sect. 2.5 details.

Rather than perform our analyses on the associated
object catalogue (i.e. containing only objects with paired
U and R mags) which would miss faint objects detected

Fig. 3. Distribution of light (surface flux density L con-
verted to the restframe B band and expressed in units of
1013 L� Mpc−2 h2) from cluster galaxies selected either by
(U − R)AB > 3 or redshift. Contours are separated by equal
flux intervals.

in only either the U or R band, we take our background
source list for each band from the individual complete
U and R catalogues. To obtain our source list, we re-
move objects from each complete catalogue identified as
cluster members and foreground objects using the colour-
magnitude and redshift criteria above.

For our U band break analysis in Sect. 6, removal of
contaminants causes a slight dilemma. Although we would
like our U band sample to be contamination free so that
any lensing signal present is maximised, we also wish to
remain consistent with existing U band studies to pre-
vent our search for the break from being biased in some
way. It turns out that since the Czoske et al. redshift sur-
vey extends to only relatively shallow U band magnitudes,
we only identify and remove 5 foreground objects which
fall within the colour-magnitude selection criteria for our
background sample. We have therefore introduced only a
negligible inconsistency with other U band number count
studies and yet have removed all we can in terms of known
foreground objects. We know that there are more fore-
ground objects in our background sample than we have
been able to remove (see Sect. 2.4.1) so we are forced to
allow for these as a contamination error in our lensing
analysis. As far as removal of objects with (U −R)AB > 3
is concerned, this simply removes the majority of surplus
cluster galaxies which aren’t present in published number
count studies anyway.

In the R band, this does not pose a problem. We do
not have to ensure that our R band data is consistent
with any other sample since our depletion is normalised to
counts near the edge of the field rather than independent
measurements. Removal of as many foreground and cluster
objects as possible is therefore the ideal. As with the U
band sample, we can not achieve this fully so must resort



16 S. Dye et al.: Lens magnification by CL0024+1654 in the U and R band

Fig. 4. Number counts as a function of magnitude for the
U band (top) and R band (bottom). Plotted are counts of
galaxies in the background sample (solid) and cluster galaxies
(dashed). Errors account for shot noise only.

to treating the remainder as a source of error in the mass
reconstructions.

After removal of cluster and foreground objects from
our full U and R catalogues, we find a total of 863 back-
ground galaxies remaining in the U and 1367 in the R.
Figure 4 plots the number counts of both these samples
as a function of magnitude. Notice how the U band counts
are significantly steeper than in R. All subsequent magnifi-
cation analysis will be performed on these two catalogues.

2.4. Contamination of background source samples

We discussed in the previous section that ∼65% of clus-
ter galaxies lie at (U − R)AB > 3 for RAB < 22. For the
R band sample, this does not provide a useful means of
removing cluster galaxies as the background source selec-
tion limit of RAB ≥ 23.5 prevents inclusion of objects with
(U −R)AB > 3 anyway due to the U band detection limit
of UAB = 25.7. By including objects from the full R band
catalogue, faint objects with (U−R)AB > 3 will inevitably
fall into the background R sample. Additionally, the clus-
ter galaxies which lie at (U − R)AB < 3 will contaminate

both U and R samples along with any foreground galaxies.
This contamination must be quantified.

2.4.1. Foreground galaxy contamination

To estimate the foreground galaxy contamination ex-
pected within our chosen magnitude ranges, we use the
luminosity functions measured by the CNOC2 field galaxy
redshift survey (Lin et al. 1999). The CNOC2 survey is
ideal for our purposes being the largest intermediate red-
shift survey to date with multicolour UBV RI photometry.

The number of objects N which exist within the ap-
parent magnitude range m1 < m < m2 and the redshift
range z1 < z < z2 can be estimated as

N =
∫ z=z2

z=z1

dV (z)
∫ M2(z)

M1(z)

φ(M) dM (1)

where dV (z) is the comoving volume element, φ(M) is the
luminosity function and the absolute magnitudes M1(z) &
M2(z) correspond to the apparent magnitudes m1 and m2

at a redshift z. The fraction of objects which lie closer than
a redshift zf in a sample of galaxies observed within the
magnitude range m1 < m < m2 is therefore given by,

N(m1 < m < m2, z < zf )
N(m1 < m < m2)

· (2)

The denominator here is the total number of galaxies
within m1 < m < m2 integrated over all redshifts.
Using this equation, we estimate the fraction of galax-
ies within our U and R background samples lying at
z < 0.405, allowing for an early+intermediate mixed
galaxy K-correction (Fukugita et al. 1995) for the magni-
tudes in Eq. (1).

We use the early+intermediate (Cousins) R and
(Cousins) U luminosity functions from the CNOC2 sur-
vey for calculation of N in Eq. (1). These predict that the
contamination due to foreground galaxies is 3% in the U
band sample and 2% in the R band assuming an EdS cos-
mology. For the case Ω = 0.3, Λ = 0.7, these fractions drop
only very slightly. We find that this result is insensitive to
the choice of K-correction mix.

2.4.2. Cluster contamination and the cluster
luminosity function

To determine the cluster contamination fraction, we need
to be able to predict the number of cluster members ex-
pected within the magnitude range spanned by the se-
lection magnitude and the detection limit in both bands.
This requires knowledge of the cluster luminosity function
(CLF) for CL0024+1654.

We fit our own CLF to the cluster counts determined
by matching with the Czoske et al. cluster members (see
Sect. 2.3) in both the U and R. We use the likelihood
method of Sandage et al. (1979) and check the consis-
tency of our results with several published CLFs. In the
R band, we compare with three recent studies of the
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Table 1. Schechter parameters of the CLF/CCLFs used for
estimation of cluster contamination, C, expressed as the per-
centage of objects expected to be cluster members within
23.5 < RAB < 25.5 for r or 24.0 < UAB < 25.5 for Uc. Note
that the contamination fractions calculated from the CLFs of
this work are weighted averages (see text).

CLF/CCLF Band M∗ α C (%)

Paolillo CCLF r −22.2 −1.01 15

Piranomonte CCLF r −22.0 −0.91 13

Garilli CCLF r −22.1 −0.60 5

This work CLF r −21.9 −0.70 19

Beijersbergen CLF Uc −19.4 −1.54 8

This work CLF Uc −21.5 −1.41 9

composite CLF (CCLF): Paolillo et al. (2001) who con-
struct a CCLF from 39 Abell clusters, Piranomonte et al.
(2000) whose CCLF is constructed from 86 Abell clus-
ters and Garilli et al. (1999) who use 65 Abell and X-ray
selected clusters to calculate a CCLF. All three studies
use observations in the Gunn r filter so we must apply
a K-colour-correction for the absolute magnitude conver-
sion MRAB →Mr. Since ∼60−70% of galaxies within clus-
ters are E/S0 types (Dressler et al. 1997; see also Smail
et al. 1997 for specific case of CL0024+1654), we calculate
this correction using an elliptical galaxy spectrum taken
from Kinney et al (1996).

In the U band, publications on CLFs are rare and there
are no known U band CCLFs to date. Applying K-colour-
corrections to convert redder-band magnitudes to the U
band when the galaxy type mix is not known accurately is
not reliable. We therefore choose the most heavily studied
cluster in the U band, the Coma cluster, and compare our
fit with the CLF from the recent study by Beijersbergen
et al. (2001). In a similar manner to the R band, we apply
a correction to take absolute UAB magnitudes at z = 0.39
to rest-frame absolute Cousins U magnitudes.

Figure 5 plots the various CLFs/CCLFs, all of which
are described by a Schechter function (Schechter 1976)
with parameters given in Table 1. For the r band CCLF
from each study, we have taken Schechter parameters cor-
responding to the rich subsample of clusters for consis-
tency with CL0024+1654. All luminosity functions are
normalised to our cluster counts which are superimposed
in both plots. Absolute magnitudes assume q0 = h0 = 0.5.
For correct normalisation, we must ensure that the Czoske
et al. matched sample for each band does not suffer
from incompleteness. We therefore limit the matched U
band counts to the magnitude range 21.8 < UAB < 24.0
(−22.4 < MU < −20.2) and the matched R band counts
to 19.9 < RAB < 22.1 (−23.3 < Mr < −21.1).

Integrating over each of the CLFs/CCLFs, we are able
to calculate the number of cluster galaxies expected. For
the published luminosity functions presented here, this is
a straight-forward integral. For our own fitted CLFs how-
ever, we incorporate the uncertainty arising from their fit

Fig. 5. Luminosity functions of CL0024+1654 galaxies. Top:
U band Schechter LF from Beijersbergen et al. (2001) for the
Coma cluster (dashes) and the best fit LF determined in this
work (solid). Bottom: r band CCLFs for rich clusters from
Paolillo et al. (2001, dots), Piranomonte et al. (2000, dashes),
Garilli et al. (1999, dot-dashes) and the best fit from this work
(solid).

to obtain a more fair level of contamination. We calculate
the number of cluster galaxies as

nc = A

〈
φ∗(M∗, α)

∫ Mb

Ma

dMφ(M ;M∗, α)

〉
M∗,α

(3)

where the angular brackets denote averaging over each re-
alisation ofM∗ and α weighted by the corresponding prob-
ability from the CLF fit. A is a normalisation constant
calculated as the inverse of the sum of these probabilities.
The absolute magnitudes Ma and Mb correspond to the
apparent magnitude ranges 23.5 < RAB < 25.5 for r or
24.0 < UAB < 25.5 for Uc. These ranges are chosen to ex-
tend slightly less deep than the 3σ detection limits, allow-
ing comparison with a more complete background sample
to give a more accurate estimation of contamination.

Within the appropriate magnitude ranges given above,
the last column of Table 1 lists the predicted number
of cluster galaxies as a percentage of the total number
of galaxies detected. In R, the estimated contamination
from the published luminosity functions ranges between
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5% and 15%. The weighted average predicted contamina-
tion from our own R band CLF is higher at 19%. In the
U band, the contamination levels are not as high since
the known Czoske cluster galaxies have been discounted
in the calculation. We find that the Coma CLF predicts
that 8% of objects in our background sample are cluster
objects, compared with our CLF which gives a weighted
average of 9%.

The total contamination predicted from both fore-
ground and cluster galaxies therefore has a relatively wide
spread in the R band of 7% to 21% compared to between
11% and 12% in U . Unfortunately, none of the published
CLFs/CCLFs presented here extend sufficiently deep to
be able to reliably predict the number of cluster objects
in CL0024+1654 at the faint end of our sample. In ad-
dition, some CLF studies (e.g. Driver et al. 1994; Wilson
et al. 1997) indicate the possibility of steeper faint end
slopes which would increase the fraction of cluster con-
taminants. In light of this, we therefore assume the gener-
ous contamination levels predicted from our fitted CLFs
in the analysis which follows in this paper.

Clearly, the contamination is dominated by the cluster
members. This means that the variation in contamination
across the field of view is governed by their density profile.
Since this increases toward the centre of the cluster and
since the background number counts fall off toward the
centre where the magnification is strongest (see Sect. 4.3)
the observed number density of objects in the background
sample is affected most by contamination at small radii.
This distribution will have a strong fall-off as one moves
away from the cluster centre. Fortunately, this reduces
the impact of the contamination on the cumulative mass
measurements (Sect. 5.3) at large radii where the strongest
mass contribution comes from.

An approximate contamination profile can be obtained
by assuming that the cluster mass distribution and hence
the number density of galaxies is described sufficiently ac-
curately (for this purpose at least) by an isothermal sphere
(see Sect. 4.3). The radial dependence of the error on the
surface mass density, κ, can thus be written

σκ(r) =
k

2nr(β − 1)µβ(r)
(4)

where n is the background number density in the absence
of lensing, µ(r) is the magnification given by Eq. (24) and
β is the number count slope (see Sect. 3.1). We have ap-
proximated the number density profile of the cluster galax-
ies as k/r where k is set by normalising to the contami-
nation fractions given earlier in this section.

In all reconstructions of κ found later in this paper, we
add the error given by Eq. (4) in quadrature to the sum
of the other errors, including the error due to foreground
galaxy contamination. The effect of contamination on the
search for the U band break is discussed separately in
Sect. 6.

2.5. Obscuration masks

To account for obscuration of the background sky by clus-
ter members and foreground objects, we create a mask.
Without giving consideration to obscuration, the ratio of
observed objects to expected objects used later in our
analysis would be biased to lower values. This is especially
true of bins near the cluster centre where relatively heavy
obscuration occurs due to large central cluster galaxies.

Figure 6 shows the obscuration mask produced us-
ing the SExtracted parameters of mask objects selected
in Sect. 2.3. The top half shows the U band mask
(grey ellipses), U band background source positions (black
crosses) and the position of the annular bins used in
Sects. 4.3 and 6 to bin counts radially. The lower half
of Fig. 6 shows the corresponding R band mask and back-
ground sources with the grid used in Sect. 5.1 for 2D bin-
ning. Note the horizontal phase of the bins with respect to
the field of view to allow placement of bin (7, 5) directly
over the cluster centre, aligning it with the area encom-
passed by the critical line.

3. Mass reconstruction theory

In this section, we outline the process used for the deter-
mination of magnification from number counts. We then
detail the three different methods used to transform from
magnification to surface mass density.

3.1. Lens magnification: Single power-law number
counts

A background population of galaxies whose integrated
number counts follow the standard power-law n(<m) ∝
100.4βm will be observed under a lens magnification factor
µ to have the number count n′(<m) given by (BTP, T98);

n′ = nµβ−1(1 + δnl) = λ(1 + δnl). (5)

The quantity δnl accounts for perturbations in n due to
non-linear clustering and we define λ as the expected num-
ber of sources in the absence of clustering. We model the
fluctuation δnl with a lognormal distribution and combine
this with the additional uncertainty due to shot noise to
give a Poisson-lognormal distribution (e.g. Coles & Jones
1991; BTP). Unlike a Gaussian distribution, the lognormal
distribution accounts for non-linear clustering of the back-
ground probed by our small field of view and is positive-
definite.

The Poisson-lognormal distribution can be defined as
a compound distribution formed from a Gaussian distri-
bution G of a linearised field and a Poission distribution
D as

PLN[n|λ(µ)] =
∫ ∞
−∞

dδ D[n|λ eδ−σ
2/2]G(δ). (6)

Here, δ is the linear density fluctuation which relates to
the non-linear fluctuation as 1 + δnl = eδ−σ

2/2 with σ the
linear clustering variance. Following the method of T98
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Fig. 6. Top: U band mask (grey ellipses) with source posi-
tions (black crosses) and annular bins used in Sects. 4.3 and 6.
Bottom: corresponding R band mask with grid used for 2D
maps in Sect. 5.1. Observed arcs lie along the outer heavy
dashed circle in both plots. The inner dashed circle shows the
critical line determined from the isothermal sphere model fit
to the R band number counts (see Sect. 4.3).

but applied to the R band correlation function of Hudon
& Lilly (1996), we calculate the non-linear clustering vari-
ance. Averaging the angular correlation function over a
circular area of radius θ gives,

σ2
nl = 1.5× 10−2z−1.8(θ/1′)−0.8. (7)

The linear clustering variance is calculated from the non-
linear variance using σ2 = ln(1 + σ2

nl).

Equation (6) gives the probability distribution for the
lens magnification in a given bin containing n galaxies.
This directly gives the most probable magnification for
that bin with its associated error taken as the width of
the distribution. The integral in Eq. (6) must be evaluated
numerically.

3.2. Lens magnification: Dual power-law number
counts

In Sect. 6.1, we discuss evidence which suggests the pres-
ence of a break in the U band number count slope at faint
magnitudes. Section 4.1 also highlights the possibility of a
break in the R band counts. To account for the effect this
has on the magnification calculated from number count
depletion, we modify Eq. (5) to incorporate a second slope
applicable beyond some break magnitude mb.

Writing the observed differential number counts as a
dual power-law,

n(m) =

{
a100.4β1m , m < mb

b100.4β2m , m ≥ mb

(8)

where the normalisation coefficients a and b are con-
strained by continuity, the integrated number counts up
to some limiting magnitude mu > mb for µ ≥ 1 can be
expressed as

n′(< mu) = µ−1 [n1(< mb)+
n2(< mu)µβ2 − n2(< mb)

]
. (9)

Here, n1 and n2 denote number counts integrated up to
a limiting magnitude over a constant slope of β1 and β2

respectively. The clustering term which features in Eq. (5)
has been omitted here for clarity but is used in our analysis
later.

If the limiting magnitude of observations matches the
break magnitude then

n2(< mu) =
β1

β2
n1(< mu). (10)

Equation (9) can thus be simplified to

n′ = nµ−1

[
1 +

β1

β2

(
µβ2 − 1

)]
, (µ ≥ 1) (11)

where n = n1(< mu) here, is the unlensed surface number
count density observed, for example, at the edge of the
field of view. If β1 = β2 and hence there is no break,
Eq. (11) becomes Eq. (5). For the case when µ < 1, Eq. (5)
must be reverted to.

3.3. Local mass estimator

The simplest means of arriving at a mass estimate given
a measurement of magnification is by assuming a local
relationship between the convergence and shear. Such a



20 S. Dye et al.: Lens magnification by CL0024+1654 in the U and R band

relationship can be derived once a model is chosen to de-
scribe the mass distribution. Since magnification depends
on the convergence, κ, and shear, γ, as

µ =
∣∣(1− κ)2 − γ2

∣∣−1
, (12)

this gives a directly invertible relation for µ in terms of κ
and hence allows κ to be estimated.

For simplicity, we use the “parabolic estimator” sug-
gested by the cluster simulations of van Kampen (1998)
which relates γ to κ via

γ = |1− c|
√
κ/c. (13)

As in T98, we adopt the value c = 0.7 corresponding to a
profile which lies between that of a homogeneous sheet of
matter (κ = constant) and an isothermal profile (κ ∝ r−1,
r the distance from the cluster centre). The magnification
can therefore be written

Pµ−1 = [(κ− c)(κ− 1/c)] , (14)

where P = ±1 accounts for image parity on either side
of the critical line implied by the modulus in Eq. (12).
Rearranging this equation for κ gives

κ =
1
2c

(
(c2 + 1)− S

√
(c2 + 1)2 − 4c2(1−Pµ−1)

)
. (15)

The second parity S is due to the parabolic nature of
Eq. (14) which permits a second critical line and thus
higher values of κ. Since there is no evidence for the ex-
istence of a double critical line in CL0024+1654, we will
adopt S = +1 throughout this paper.

Given that the parabolic estimator requires only lo-
cal κ and γ, it finds application to both radial and 2D
magnification distributions in this paper.

3.4. Self-consistent axi-symmetric mass estimator

The second method which we use to estimate cluster mass
is the so-called self-consistent axi-symmetric mass estima-
tor introduced by T98. The non-local nature of this esti-
mator allows the magnification Eq. (12) to be solved for
a self-consistent κ and γ radial profile. Although the esti-
mator is valid only for axi-symmetric mass distributions,
it can be applied to data binned in any self-similar set of
contours centred on the peak of the mass distribution.

In a given annular bin i, the shear can be expressed as

γi = |κi − κi| (16)

where κi is the convergence in the bin and κi is the con-
vergence averaged over the area interior to and including
the bin. Substituting this into Eq. (12) gives for the mag-
nification in bin i

Pµ−1
i = (1− κi)(1− 2κi + κi). (17)

Dividing κi into two terms, one for bin i and the other,
which we denote ηi−1, for all interior bins, so that

κi = ηi−1 +
2

i+ 1
κi (18)

allows rearrangement of Eq. (17) to give

κi =
(i+ 1)

4i
{
i+ 1− (i− 1)ηi−1

−S[(i− 1− (i+ 1)ηi−1)2 + 4iPµ−1
i ]1/2

}
· (19)

The parities P and S have the same function as in
Sect. 3.3.

Using Eq. (19), κ is calculated iteratively. The only
freedom is choice of η0 which as Eqs. (16) and (18) show,
is γ1, the shear in the first bin. To avoid non-physical solu-
tions, γ2

1 ≥ Pµ−1
1 must be enforced leaving only a sensible

range of values. As T98 discuss, the overall mass and shear
profile obtained with the self-consistent axi-symmetric es-
timator proves to have only a minor sensitivity to the
choice of γ1.

3.5. Self-consistent 2D mass estimator

The final reconstruction method we apply in this paper is
that discussed by Dye & Taylor (1998). By pixellising the
image into a rectangular grid of pixels, the components of
the shear in any pixel n can be expressed as

γni = Dmn
i κm, i = 1, 2 (20)

where summation over index m is implied for all N pixels
on the grid. The matrices D1 and D2 are simple geometri-
cal functions of the different combinations of positions of
pixels m and n (see Dye & Taylor 1998 for details).

Writing Eq. (12) in its pixellised form and substitut-
ing the expression for shear in Eq. (20) gives the vector
equation

1− 2κ+ κGκt −Pµ−1 = 0 (21)

where P is again the image parity from Sect. 3.3, µ−1 is
the N -dimensional vector of pixellised inverse magnifica-
tion values, κt is the transpose of the vector κ of pixellised
convergence values and 1 is the vector (1, 1, 1, ...). G is an
N ×N ×N matrix with the elements

Gpqn = δpnδqn −Dpn
1 Dqn

1 −D
pn
2 Dqn

2 (22)

where δij is the Krönecker delta, and summation occurs
only over indices p and q in Eq. (21).

We solve Eq. (21) for κ using a hybrid Powell method
provided by the NAG routine C05PCF.

4. Cluster model constraints from number counts

Before application of the theory presented in Sect. 3, the
properties of the background population must be under-
stood. Our initial attention is turned toward the R band
population of background galaxies since this proves to be
the most suitable for the application of lens magnification
owing to its shallower number count slope. In this section,
we use the radially binned number counts of the sample to
fit an isothermal, power-law and NFW profile. We defer
discussion of the U band sample properties until Sect. 6.
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4.1. R band sample characteristics

The characteristics of the R band background source
galaxy population must be constrained before we can ap-
ply our lensing analysis to the source counts. Specifically,
the unlensed surface number density nR and the number
count slope must be determined.

T98 estimate the unlensed surface number density
from deep number counts of field galaxies observed inde-
pendently of their work. We opt for the alternative choice
here of taking nR from our field where the lens effect of
the cluster is expected to be small. This eliminates poten-
tial biasing of the reconstructions which arise from differ-
ing completeness characteristics between the lensed field
and the reference unlensed field (Gray et al. 2000). This
is particularly important for the U band break search in
Sect. 6.2. In an annular region centred on the cluster and
bounded by the radial limits 120′′ < r < 180′′, we measure
nR = 43± 2 arcmin−2 in the R. This value is assumed in
our subsequent analysis.

Ideally, this normalising annulus should be further
away from the centre of the cluster than we have chosen.
However, as we discuss in Sect. 5, the edge of our field is
somewhat noisy due to the presence of some bright stars.
This causes a drop in the number counts at larger radii
so that normalising here would force a large over density
of counts at medium radii and hence negative mass. An
alternative explanation is that such an overdensity could
be caused by contaminating cluster galaxies. In fact, it
is most likely that both effects jointly contribute. Since
our reconstructions include the uncertainty due to cluster
contaminants, any bias as a result of normalising out this
effect falls within our error budget. We therefore expect
only a small bias to remain from the underestimation of
background counts at large radii.

As far as the number count slopes are concerned, the
R band slope determined by Hogg et al. (1997) over 21 <
RAB < 25 is βR = 0.83, in agreement with Smail et al.
(1995) who measure βR = 0.80 over the same magnitude
range. This is consistent with the slopes in the V and I
from the Hubble Deep Field data of Pert et al. (1998) with
βV ' 0.9 and βI ' 0.8 over 23 < (V, I)AB < 26. However,
over the fainter magnitude range 26 < (V, I)AB < 29,
they measure a shallower slope of βV,I < 0.5 and find the
trend that flattening of the number count slope is more
pronounced in shorter wavelength bands. The fact that
this is seen at all in the I band therefore suggests that
flattening most probably also occurs in R at these faint
magnitudes. This is fortified by the more recent R band
counts of Metcalfe et al. (2001) from the William Herschel
Deep Field, which suggest a slope of βR ' 0.6 fainter than
RAB ' 26.

Our R band observations tantalisingly extend to ap-
proximately the depth where the apparent break occurs.
We compare in Sects. 4.3 and 5.3 the difference between
the results obtained using the single and dual slope mod-
els. In the analysis hereafter, for the single slope model, we

take βR = 0.80 and for the dual slope model, βR1 = 0.80
and βR2 = 0.5 with a break magnitude of R = 26.

4.2. Magnification profiles

In the case of lens magnification, the least biased method
of determining the best fit mass model is to fit depletion
curves to the number count profile. In this way, the lensing
signal is used in its purest form before potential biases are
introduced by calculation of the κ profile.

To fit the depletion profile from a given mass model, its
lens magnification must be determined. We choose to fit
an isothermal sphere, a power-law mass model and a NFW
profile, all of which have analytical forms for their mag-
nification. In the case of the isothermal sphere, the mass
profile is completely determined by its critical radius rcrit,

κ(r) =
r

2rcrit
, (23)

giving a magnification of

µ(r) = |1− rcrit/r|−1 . (24)

The power-law model we choose is that of Schneider et al.
(1993) which gives a smooth, non-singular surface mass
density distribution with a κ profile given by

κ(x) = κ0
1 + ξ x2

(1 + x2)2−ξ · (25)

Here κ0 is the peak surface mass density at the centre, ξ
is the power-law slope and x = r/rcore with rcore the core
radius. For this distribution to remain positive definite at
large radii and so that it is a declining function of radius,
the valid range of slopes is 0 < ξ < 1. At r � rcore, this
physically corresponds to a range of mass models span-
ning a homogeneous sheet (ξ = 1) through an isothermal
sphere (ξ = 0.5) all the way up to κ ∝ 1/x4 (ξ = 0). The
magnification resulting from such a profile is (Schneider
et al. 1993)

µ(x) =
[
1− κ0

(1 + x2)1−ξ

]−1

×
[
1− κ0

(1 + x2)2−ξ
{

1 + (2ξ − 1)ξ2
}]−1

. (26)

Finally, the NFW model has a κ profile given by
(Bartelmann 1996)

κ(y) = 2κs
f(y)
y2 − 1

(27)

where

f(y) =


1− 2√

y2−1
tan−1

√
y−1
y+1 , (y > 1)

1− 2√
1−y2

tanh−1
√

1−y
1+y , (y < 1)

0 , (y = 1)

(28)

and y = r/rs. The scale radius, rs, and surface den-
sity normalisation, κs, are free parameters of the model.
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Fig. 7. Number of counts as a ratio of expected counts versus
radial distance from cluster centre in the R band. Error bars
account for the error in nR and shot noise. Superimposed are
the isothermal (dashes, rcrit = 15′′), power-law (dot-dashes,
κ0 = 1.52, ξ = 0.61, rcore = 11′′) and NFW (dots, rs = 1.75′,
κs = 0.23) models fit to the first 9 points.

The magnification of the NFW model comes from
Jacobian determinant of the lens mapping for axisymmet-
ric lenses (Schneider et al. 1992);

µ−1(y) =
(

1− m(y)
y2

)[
1− d

dy

(
m(y)
y

)]
(29)

where

m(y) = 2
∫ y

0

dy′y′κ(y′). (30)

4.3. Number count profile fits

Using Eq. (5) for the single slope model (and neglecting
the clustering term for now) with the three forms for µ
from Sect. 4.2, we perform a χ2 fit to the observed deple-
tion profiles. Figure 7 shows the R band radial number
counts expressed as a fraction of the intrinsic background
counts. The degree of obscuration by foreground objects
is taken into consideration by adjusting nR in each bin.
The 1σ error bars plotted account for the uncertainty in
nR and shot-noise.

Superimposed on the observed R band number counts
in Fig. 7 are the isothermal, power-law and NFW profiles
obtained from fitting to the first 9 data points. We discuss
in Sect. 5.1 that the outer profile is affected by noisy fea-
tures at the edge of the field of view. The final model fits
therefore omit the last 3 points although we also fit to all
12 points to investigate the variation in fitted parameters.

For the isothermal profile, a best fit critical radius of
rcrit = 15′′±1′′ is obtained using either the first 9 points or
all 12 points. Note that this is somewhat smaller than the
estimate of rcrit = 25′′ in the R band from R01. This dis-
crepancy arises partly from the different object selection
and extraction criteria used by R01, detailed in Sect. 2,
and also from our different radial bin width. The error of
±1′′ we quote here is solely the error from the χ2 fit which

does not include any uncertainty to allow for the choice
of binning. Variation in bin width and also the radius at-
tributed to a given bin adds further error. In Fig. 7, the ra-
dial position of a given bin is taken as the radius which di-
vides that bin into two equal areas. Since the isothermal fit
is dominated by the radius of the first data point, adopt-
ing different binning strategies affects the fitted value of
rcrit substantially. Measuring the variation in fitted val-
ues of rcrit with different binnings, we find that a further
error of ±10′′ should be included to give an overall fit of
rcrit = 15′′ ± 10′′.

The observed radius of the large arcs, rarc = 30′′,
is also somewhat larger than our fitted critical radius.
One explanation for this would be that the background
population we select lies at a lower redshift on average
than the lensed background galaxy forming the arc at
z = 1.675 (B00). In fact, knowing the amount of mass
contained within the arcs (see Sect. 5.3), one finds that a
critical radius of rcrit = 15′′ ± 10′′ corresponds to a back-
ground population with a mean redshift lying within the
range 0.40 < zmean < 0.82 (EdS or Ω = 0.3, Λ = 0.7).
Note that although this range appears to permit only
quite low mean redshifts, it depends sensitively on the
confidence interval. For example, expanding the interval
from 68% quoted above to merely 80% results in a range
0.40 < zmean < 1.19. Clearly, the large error on rcrit pre-
vents an accurate measurement of zmean.

However, considering the redshift survey of Cohen
et al. (2000) in the Hubble Deep Field North region, this
indicates a median redshift of zmedian = 0.79+0.30

−0.31 in their
deepest bin at RAB ' 24. Extrapolating their zmedian ver-
sus magnitude plot by a further 1.5 mags to coincide with
our 3σ detection limit and weighting by the expected num-
ber counts over this interval, one obtains an approximate
mean redshift expected for our background R sample of
zmean ∼ 1.2. Therefore, although our lens-inferred mea-
surement of zmean is a little low, it is not significantly
inconsistent.

The choice of bin width of 20′′ means that our abil-
ity to constrain the small scale core radius in the power-
law profile is very limited. In fitting to the power-law, we
therefore hold rcore = 11′′ determined by the shear study
of CL0024+1654 by TKD which has superior resolution in
the centre of the cluster. Fitting the remaining two param-
eters to the first 9 points then yields κ0 = 1.52± 0.20 and
ξ = 0.61± 0.11 with 1σ errors accounting for the fit and
binning variation. This compares to κ0 = 1.42 ± 0.21
and ξ = 0.67±0.11 obtained when the remaining 3 points
are included.

Finally, fitting the NFW model to the first 9 points
yields the parameters rs = 1.75′ ± 1.02′ and κs = 0.23±
0.08. Including all 12 points, these become rs = 2.50′ ±
1.32′ and κs = 0.19± 0.08. The large errors here reflect a
strong degeneracy between κs and rs.

Although close to isothermal with a slope of ξ = 0.61,
the power-law model provides a better fit to the number
counts than the isothermal sphere. The NFW and power-
law models are clearly very similar however the reduced χ2
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of 0.41± 0.53 from the NFW model (assuming Gaussian
statistics to obtain the error) quantifies the fact that it is a
better fit to the data than the PL model with a reduced χ2

of 0.62± 0.53 including the first nine bins. For comparison,
the isothermal sphere model fits to the data with a reduced
χ2 of 1.33 ± 0.50. This agrees with the findings of TKD
who concluded that although the NFW profile predicts
too much mass within the inner arc region, there is little
to distinguish this from a power-law profile at larger radii.
In fact, with all 12 bins in the fit, the PL model fares best
with a reduced χ2 of 1.08 ± 0.45 compared with that of
the NFW model of 1.24± 0.45.

Our magnification profile fits prove to be consistent
with fits to shear-derived mass profiles from other work.
TKD find that the mass profile of CL0024+1654 is best
described by a power-law model with ξ = 0.57 ± 0.02
and a central surface mass density of Σ0 = 7900 ±
100 hM� pc−2. We can compare this central surface
mass density with our estimate of κ0 by integrating our
fitted power-law model for κ over the disk enclosed by
the observed arcs. Comparing this with the real pro-
jected mass contained within this area from Sect. 5.3
allows the normalisation of the model to be calculated.
This requires a central surface mass density of Σ0 =
9000 ± 1800h M� pc−2, slightly higher than the TKD
estimate but consistent given the error budget.

Similarly, B00 find that their azimuthally averaged
mass profile for CL0024+1654 is close to the NFW predic-
tion for massive clusters with an overdensity of δc ' 8000
and rs ' 400h−1 kpc (NFW, Ghigna et al. 1998). Using
the fact that δc = κsΣCR/(rs ρcrit) (Bartelmann 1996)
where ΣCR is the critical lens surface mass density (see
for example Blandford & Narayan 1992) and ρcrit is the
critical density of the Universe, this converts to κs ' 0.2
with a scale radius rs ' 2′. The findings of this paper are
therefore in good agreement with the NFW expectation.

Finally, we have also applied the dual slope model to
fit the three profile forms with magnification calculated
using Eq. (11). We find that this gives fitted model pa-
rameters within a few percent of those presented above.
As expected, this negligible difference indicates that the
lensing signal in the R band is dominated by galaxies in
the R < 26 mag range where the steeper slope applies,
despite flux magnification of objects by CL0024+1654.

5. Cluster mass reconstructions

In this section, we present the results of the 2D and ra-
dial mass reconstructions obtained using the R band back-
ground galaxy sample.

5.1. 2D mass maps

Using the 12 × 12 grid of bins shown in Fig. 6 and
the associated R band obscuration mask, source numbers
were binned across the field of view and used to calcu-
late magnifications using Eq. (6). Applying both the local
estimator and the self-consistent reconstruction method

Fig. 8. Mass reconstruction from the R band data. Top: es-
timated κ from parabolic estimator. Bottom: iterated self-
consistent κ. Contours in both plots are separated by intervals
of δκ = 0.1. North is up, East is left.

assuming single slope counts, we derive the mass maps
shown in Fig. 8. The top half of this figure shows the
locally estimated κ for comparison with the lower half
showing the self-consistent mass distribution.

Both maps exhibit a very similar mass structure
demonstrating that the local estimator works well. The
peak of the distribution in the self-consistent map is
slightly higher than in the estimated map and is more
distinct from the surrounding mass fluctuations. This is
especially true at the edge of the field where noisy fea-
tures in the estimated map have been suppressed by the
non-local solution provided by the self-consistent method.
In particular, the features seen in the lower left and lower
right corners due to a large degree of obscuration by the
two brightest stars in the field (which is difficult to prop-
erly account for) have been suppressed significantly. In
addition, the large dip seen in the top left corner caused
by an excessive number of background sources has been
slightly reduced.
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The error map calculated from the width of the proba-
bility distribution in Eq. (6) indicates that the significance
of the peak in the self-consistent map is 6σ. If we include
the extra uncertainty due to contamination by cluster ob-
jects at the predicted level of 19% as well as the error in the
unlensed surface number density, this significance drops to
4σ. Note that the peaks in both plots appear lower than
the peak value implied by the radial analyses. This is a
direct consequence of the relatively low resolution of the
12 × 12 grid of bins which has averaged over the central
cluster region and effectively smoothed out the peak. This
same reason describes the apparent discrepancy with the
shear-derived mass maps of TKD and B00, both of which
cover a much smaller field of view (∼1.5′× 1.5′) and both
of which imply a peak of κ ' 1.3.

This resolution effect in the maps does not affect the
shape of the radial mass profiles because it occurs on a
scale smaller than the radial bin size. Section 5.2 verifies
this since the profiles obtained agree with the power-law
model which predicts a central surface mass density of
κ ' 1.4. Furthermore, the local estimator agrees with the
non-local estimator which would certainly not be the case
if the bin resolution caused an effective smoothing of the
profile. The cumulative mass measurements derived from
the profiles are also therefore not affected.

The topology of the structure seen in the mass maps
is very similar to the distribution of cluster light (Fig. 3)
and the cluster galaxy number density (Fig. 2). In the
mass map, we find a relatively compact core with exten-
sions toward the north-west and south-west (toward the
top-right and bottom-right in Fig. 8 respectively). In com-
paring these extensions with the light and number den-
sity distributions, it is noticeable that the light traces the
north-west extension more than the south-west, whereas
the number density traces the south-west extension more
than the north-west. The explanation is that in the north-
west, there are fewer galaxies, forming an almost distinct
sub-clump, but they are relatively bright. In contrast, the
south-west extension harbours a higher number of fainter
cluster members.

Comparison of our mass map with the X-ray map of
Soucail et al. (2000) again shows very similar structure.
The X-ray contours show an elongation along the south-
west direction while a separate peak of X-ray emission
is seen toward the north-west, coinciding with the sub-
clump of large cluster galaxies noted above. Soucail et
al. suggest that the emission originates from one of two
possible sources. The closest to the centre of the emission
is a large cluster galaxy lying at a redshift of z = 0.4017
while the other is a foreground star-forming galaxy at z =
0.2132. Given our detection of mass and the concentration
of large cluster galaxies in this region, it seems plausible
to explain at least part of the X-ray emission as being
due to cluster gas. The fact that the X-ray map shows
a distinct peak suggests that this is actually a separate
mass clump rather than an extension. The shear map of
TKD shows no evidence of there being such a sub-clump
although B00’s map suggests that extra mass lies in this

Fig. 9. Top: locally estimated radial mass profile for R band
sources binned using annuli shown in Fig. 6. The shaded region
shows the 1σ uncertainty which allows for shot noise, source
clustering, uncertainty in background count normalisation and
19% cluster contamination. Bottom: axi-symmetric solution for
the R band. Both plots show the isothermal (dashes), power-
law (dot-dashes) and NFW (dots) models fitted to the first 9
data points (see Sect. 4.3).

vicinity. Unfortunately, neither of these shear maps cover
a wide enough field of view for this to be properly verified.

5.2. Radial mass profiles

In Fig. 9 we show the radial mass profile calculated for
the R band sources using both the local estimator and the
axi-symmetric method assuming the single number count
slope model. For calculation of the axi-symmetric profile,
the value of the shear in the first bin is set to γ1 = 0.25 (see
Sect. 3.4). The shaded regions in both plots show the 1σ
uncertainty accounting for shot noise, source clustering,
uncertainty in background count normalisation and 19%
cluster member contamination. Similar to the 2D mass
distribution, we find that the last 3 data points in the
axi-symmetric solution are slightly suppressed compared
to the local estimator.

The fitted profiles of Sect. 4.3 plotted in Fig. 9 again
show that the power-law and NFW models give a better
fit to the results. Both profiles exhibit an excess of mass
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Fig. 10. Cumulative projected mass calculated by normalising
to the amount of mass enclosed within the circle traced by
the observed arcs. Also plotted is the NFW model of Sect. 4.3
(dashes) and the B band results of van Kampen (1998) (dot-
dashes).

at 3′′ < r < 4′′. This is attributed to the noisy features
seen in the 2D mass plots at the edge of the field, and
just pushes the measured mass at this radius to a value
inconsistent with the NFW and power-law fit.

5.3. Cumulative mass profile

To convert from κ to real projected mass, we normalise to
the amount of mass contained in the disk traced by the
observed arcs. Since the enclosed mass can be calculated to
a high accuracy, normalising in this way provides a much
more reliable scaling than using a mean redshift estimated
for the background population. Using B00’s measurement
of the redshift of the arcs at z = 1.657, the mass within
a radius of rarc = 30′′ from the centre of the cluster can
be calculated to be 1.19 × 1014 h−1M� for an Einstein
de Sitter (EdS) Universe. The cosmological dependence of
this result is weak to the extent that for an Ω = 0.3, Λ =
0.7 cosmology, this enclosed mass increases by only 5%.
This scaling applies generally hence all aperture masses
quoted hereafter assume an EdS cosmology.

Scaling our radial κ profile with this normalisation,
we sum the mass in each bin to produce the cumulative
projected mass profile in Fig. 10. Out to a radius of 2.9′

(0.54h−1 Mpc for EdS), we measure a projected mass of
(8.1± 3.2)×1014 h−1M�. The 1σ error here again includes
shot noise, source clustering, uncertainty in background
count normalisation and contamination from cluster mem-
bers at the 19% level. If we apply the dual slope model,
we find a mass of (8.2± 3.2)× 1014 h−1M�, re-iterating
the statement made in Sect. 4.3 that the lensing signal in
the R band is dominated by galaxies in the R < 26 mag
range where the slope βR = 0.80 applies.

Approximating the integrated NFW profile, the pro-
jected mass within a radius R scales as M(<R) = 2.9 ×
1014 (R/1′)1.3−0.5 lg(R/1′) h−1M�. With this scaling rela-
tion for the cumulative mass, we can readily compare our

results with other authors. Considering existing lensing
measurements for the moment, the measurement by B00
of the mass contained within the arcs obviously agrees
with our estimation by default since this is essentially the
mass we normalise to. Using the redshift of the arc from
B00, TKD’s estimate of the cluster mass contained within
a radius of 107h−1 kpc is (1.553± 0.002)× 1014 h−1M�.
At this radius, our NFW estimate for the enclosed mass
is (1.3± 0.3)× 1014 h−1M�. Extending to slightly larger
radii, the magnification analysis of van Kampen (1998)
finds a projected mass of (6.7 ± 2.0) × 1014 h−1M�
within 300h−1 kpc compared to our NFW mass of (5.0±
1.7) × 1014 h−1M�. On even larger scales, the weak
shear study of Bonnet et al. (1994) measures a mass of
(1.6 ± 0.4) × 1015 h−1M� within R = 1.5h−1 Mpc com-
pared with our prediction of (1.7± 0.7)× 1015 h−1M�.

In terms of mass-to-light, using the surface flux den-
sity of cluster galaxies plotted in Fig. 3, we find a ratio of
M/LB = 330± 30 (total mass/total light in B) within a
radius of 0.5′. This error accounts for uncertainty in the
photometric zero point but does not reflect the fact that
this is effectively an upper limit as a result of potentially
missing cluster galaxies in our selection process (Sect. 2.3).
Again, since our mass within this radius agrees with that
of B00, we find an almost identical result to B00’s result of
M/LB = 320± 30. On a slightly larger scale, we measure
M/LB = 480±180 within 1′ where now the error includes
additional uncertainty from the mass error. Finally, out
to 2.9′, we find M/LB = 470±190. These latter two mea-
surements are consistent with a mass-to-light ratio which
increases on larger scales although a scale-independent ra-
tio, as found by Kochanski et al. (1996), remains plausible
given the errors.

In Fig. 10, we also plot the only other magnification
based cumulative mass profile of CL0024+1654 which ex-
ists to date; that of van Kampen (1998). This was de-
rived from the B band observations of the cluster by Fort
et al. (1997). We choose the B band data in favour of the
I which suffered contamination from an unusual speckle
beam pattern coming from stray light in the telescope op-
tics (Fort 2001, private communication). This resulted in
an over-exaggerated zone of depletion in the I band radial
number counts. Notice that van Kampen’s B band mass
profile agrees very well with our data points in terms of
its shape but that its normalisation is higher by ∼30%.

Turning to alternative methods for the determination
of cluster mass, Czoske et al. (1999) using galaxy dynamics
from 227 spectra measure the 3D mass of CL0024+1654
to be (1.4 ± 0.3) × 1014 h−1M� within a radius of
500h−1 kpc. Converting this to a projected mass using
the isothermal sphere model they assume, yields a value
of (2.2± 0.5)× 1014 h−1M�. This agrees with the X-ray
temperature measurements by Soucail et al. (2000) who
measure a projected mass of 2.3+2.0

−0.8×1014 h−1M� within
the same radius. Our scaling relation gives a projected
mass enclosed by this radius of (8.0±3.1)×1014 h−1M�.
It should be noted that the later redshift measurements
of Czoske et al. (2001a) indicate that CL0024+1654 is a
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perturbed system. This implies that mass measurements
of the cluster which assume dynamical equilibrium are
probably not reliable. We discuss the significance of this
in Sect. 7.

6. The U band galaxy population

The role of the U band population thus far has been
to assist in the selection of R band background galaxies
through colour cuts. In this section, we test the feasibility
of using the U band for detection of lens magnification
through number counts. We wish to re-examine the claim
made by R01 that the number count slope of the back-
ground field galaxy sample becomes flatter than the lens
invariant slope, β = 1, at faint magnitudes.

6.1. The U band number count slope

Current evidence regarding the notion of a break in the U
band field galaxy number count slope at faint magnitudes
is tenuous. At magnitudes brighter than UAB ' 25.5,
there is good convergence. All studies agree that at these
brighter magnitudes, the number count slope is relatively
steep. Pozzetti et al. (1998), in analysing the Hubble Deep
Field North (HDF-North), find that for 23 < UAB < 25.5,
βU = 1.00 whereas Hogg et al. (1997) conclude that βU =
1.17 for UAB < 25.5 from ground based observations.

At fainter magnitudes, Pozzetti et al. (1998) measure
a much flatter slope of βU = 0.34 at UAB = 25.8 from the
HDF-North. Similarly, at the same magnitude, Metcalfe
et al. (2001), using a combination of the ground based
William Herschel Deep Field and the HDF-North and
HDF-South, report a slope of βU = 0.38. This appears
to contrast with the results of Volonteri et al. (2000) who
measure a slope of βU = 1 up to UAB ' 26.5 with the
HDF-South.

The depth of our observations in the U band extend
to approximately the suggested U band break magnitude,
which at first sight, appears to extinguish any hopes of
pushing the search beyond current limits. However, we
are in a fortuitous position for two reasons. The first is
that our analysis merely rests upon the relative depletion
of galaxy numbers. As Gray et al. (2000) demonstrate,
this means that provided the completeness characteristics
of the unlensed reference number counts are the same as
the lensed field, the completeness function drops out of
Eq. (5). Our reference counts are taken from the edges
of our cluster field so by definition have the same com-
pleteness characteristics. In the same way that the com-
pleteness function drops out of Eq. (5), it also drops out
of Eqs. (11) and (31). This is an important result and
means that our break search is not affected by incom-
pleteness. We therefore need not concern ourselves with
completeness corrections such as those applied to existing
traditional number count measurements which may cause
a potentially large uncertainty at faint magnitudes.

Our second fortuity lies in the fact that our obser-
vations are of a cluster-lensed field, enabling us to exploit

the effect of flux magnification on our background sample.
Taking the NFW model fit from Sect. 4.3, this predicts
that within a disk of diameter 0.8′ centred on the clus-
ter, lens magnification by CL0024+1654 pushes the effec-
tive limiting magnitude of our observations by ∆m ≥ 2.5.
Within a disk of diameter 2′, this becomes ∆m ≥ 0.8.
We are therefore able to use our dataset to search for a
break in the U band number counts some way beyond the
physical limiting magnitude of our data.

Note that this does not contradict the discussion ear-
lier that allowing for a dual slope in the R band lensing
analysis causes little difference to the results obtained. It
is true that both the U and R band samples extend to
approximately where the break magnitude is thought to
lie and it is also true that lens magnification acts on both
samples equally to increase the effective depth of each.
In the case of the R band sample however, the determi-
nation of mass depends on the joint contribution from
both the steep and shallow number count slopes. In the
search for the U band break as we discuss in detail be-
low, these contributions are considered separately so that
the more numerous galaxies in the steep slope region do
not dominate those beyond the break magnitude. In ad-
dition to this effect, the expected U band change of slope
of βU ' 1→ 0.3 is more severe than the expected R band
change of βU ' 0.8 → 0.5. This makes detection of any
faint slope depletion easier and hence further increases the
confidence limits we can place on our search results.

6.2. Testing for a U band break

We use two number count models to search for a break
magnitude. The first is a modification of the single slope
number count scenario to allow the slope to smoothly flat-
ten off beyond the break magnitude. The second uses the
dual slope model of Sect. 3.2, allowing the faint slope to
vary.

6.2.1. Model 1

The first model generalises the single slope number count
model to include an arbitrary cut-off at U0;

n′U = nUµ
βU−1

[
1 + 100.4βU∆U

1 + µβU100.4βU∆U

]
, (31)

where ∆U = Ulim−U0 and Ulim is the limiting magnitude
of the observations, Ulim = 25.7. Well below the break
scale, U0 � Ulim, or for weak lensing µ ≈ 1, this reduces to
the usual scaling for lensing of a single slope number count
distribution in Eq. (5). Above the break scale, Eq. (31)
tends toward the scaling n′ = nµ−1, for a completely flat
number count distribution.

We take the best fit NFW profile determined from the
R band data to provide the magnification in Eq. (31).
The free parameters of the model are therefore the break
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scale, U0, and βU which we fit by maximising the following
likelihood function:

L ∝
〈∏

i

exp

(
−[n′U,i − pU,i(U0, βU)− ci]2

nU,i

)〉
c

· (32)

Here, n′U,i is the number of U band objects observed in
bin i, nU,i is the number expected in the absence of lens-
ing and pU,i is the number predicted by the NFW profile
fitted to the R band data. The product acts over all an-
nuli. Uncertainty due to cluster and foreground galaxy
contamination is incorporated through the quantity ci.
The foreground galaxy component of ci is set at 3% of
nU,i for each bin, in accordance with the contamination
fraction discussed in Sect. 2.4.1. The cluster component
of ci varies with choice of CLF. We therefore average over
different realisations of the CLF, weighting by the prob-
ability distribution obtained from fitting to our known U
band cluster counts (see Sect. 2.4.2). As in Sect. 5, the ra-
dial variation of cluster number count density is taken to
be k/r where k is set by normalising to the contamination
determined for each CLF realisation.

The top half of Fig. 11 shows the χ2 contours obtained
from the likelihood distribution of Eq. (32). With a 95%
confidence, our data rules out a complete flattening of
the U band counts with a break magnitude brighter than
UAB = 27.3. Furthermore, we measure the U band slope
as βU = 1.07 ± 0.06. This is very close to the lensing
invariant slope β = 1 which causes the increase in surface
number density due to flux magnification to exactly cancel
the dilution caused by magnification of their inter-spacing.
The claim made in Sect. 4 that the U band population is
unsuitable for the detection of magnification from number
counts is thus substantiated.

Figure 12 shows the U band radial number count pro-
file observed. In this plot, the model fits determined in
Sect. 4.3 are used to predict counts assuming βU = 1.07.
The predictions and measurements are clearly consistent
with each other. There is little distinction between any
of the predicted profiles due to the near lensing invariant
slope. This serves to demonstrate the insignificant deple-
tion signal imposed on the number counts in the U band.

6.2.2. Model 2

The second method we use to search for a break assumes
the dual number count slope model described in Sect. 3.2.
For the purpose of our analysis in this section, we hold the
bright slope at the value determined previously, βU1 =
1.07. The faint slope βU2 and the break magnitude are
allowed to vary in our minimisation.

The lower half of Fig. 11 shows the results of this
minimisation. Slightly more relaxed than the previous re-
sult, the data rule out a complete flattening (βU2 = 0)
brighter than UAB = 26.6 at a confidence level of 95% .
As the faint slope is allowed to steepen, this limit slips
to brighter magnitudes as a result of the degeneracy be-
tween both parameters (Pozzetti at al. 1998). However,

��
��
��
��

Fig. 11. Top: χ2 distribution of the U band number count slope
βU and the break scale U0 assuming the number counts flatten
off completely at faint magnitudes. Bottom: χ2 distribution of
the faint number count slope βU2 and the break scale holding
the bright slope at βU1 = 1.07. All contours are separated by
∆χ2 = 1.

Fig. 12. Radial number count profile in the U band.
Superimposed are the best fit isothermal (dashed line), power-
law (dot-dashed line) and NFW (dotted line) models using the
number count slope βU = 1.07. Error bars account for the error
in nU and shot noise.
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a slope of βU2 = 0.4, the value reported by Pozzetti
et al. (1998) and Metcalfe et al. (2001) as being appli-
cable fainter than UAB ' 25.5 → 26, can be ruled out to
UAB < 26.4 with 95% confidence. Pushing this limit fur-
ther still, the contours in Fig. 11 show that a slope even as
steep as βU2 = 0.8 can be ruled out with 95% confidence
to UAB < 26.0. Finally, at βU2 = βU1, where the degener-
acy between the faint and steep slope is 100%, the break
magnitude cannot be constrained at all.

We note that these results are also inconsistent with
the findings of R01 who suggest a combined slope (i.e. the
effective single slope causing the same level of depletion
as a dual-slope model, steeper than the faint end slope) of
β ' 0.5.

7. Summary and discussion

From U and R band observations of the cluster
CL0024+1654, we have selected a background sample of
galaxies in both bands using colour information. The clus-
ter member contaminants identified by matching with the
Czoske et al. (2001a) redshift survey of the field have been
discarded from the U band. We have computed the clus-
ter luminosity function of CL0024+1654 in both bands.
This has been used in conjunction with the U and R field
galaxy luminosity function from the CNOC2 survey (Lin
et al. 1999) to estimate foreground and cluster contami-
nation of our background samples. In the R band, we esti-
mate a total contamination of 21% in contrast to a smaller
12% in the U , where the cluster component is calculated
from our own fitted CLF.

The shallower number count slope observed in the R
band sample makes this suitable for an investigation into
the lens magnification induced depletion of background
number counts. Depletion in this sample has indeed been
detected and used to measure the radial and two dimen-
sional distribution of mass in the cluster. Out to a radius
of 0.54h−1 Mpc, we measure a total projected mass of
(8.1 ± 3.2) × 1014 h−1M� where the 1σ error includes
shot noise, source clustering, uncertainty in background
count normalisation and contamination from cluster and
foreground galaxies. We find that this result increases by
merely ∼2% when we allow for a flattening in the R
band number count slope at RAB = 26. Claims of such
a change in slope have been reported by several authors
(e.g. Pozzetti et al. 1998; Metcalfe et al. 2001), however
allowing for it in our depletion analysis makes little differ-
ence due to the lensing signal being dominated by galaxies
brighter than the break.

Converting the R band flux from selected cluster
galaxies to the B band, we find a mass-to-light ratio of
M/LB = 330 ± 30 inside an aperture of radius 0.5′ cen-
tred on the cluster. Since our selection process will have
inevitably missed cluster galaxies, neglecting their contri-
bution to the total luminosity, this is effectively an upper
limit. On a slightly larger scale, we measure M/LB =
480 ± 180 within 1′ and also M/LB = 470 ± 190 within
2.9′ (0.54h−1 Mpc). These latter two measurements are

consistent with a mass-to-light ratio which increases on
larger scales although a scale-independent ratio remains
plausible given the errors.

We have compared the observed radial depletion
with that expected from an isothermal, power-law and
NFW mass profile by fitting the predicted magnifica-
tion of each. The NFW model provides the best fit to
our data however there is little distinction between this
and the power-law model. This agrees with the find-
ings of Tyson et al. (1998) as does the mass of 1.3 ×
1014 h−1M� we measure within the disk described by
the large arcs compared to their estimate of (1.553 ±
0.002) × 1014 h−1M�. Approximating the fitted cumu-
lative NFW model, the projected mass contained within
a radius R scales approximately as M(<R) = 2.9 ×
1014(R/1′)1.3−0.5 lg(R/1′) h−1M�. Together with the clus-
ter galaxy light and number density distribution, our 2D
mass maps suggest the existence of a separate sub-clump
of mass just north-west of the cluster centre. This claim is
strengthened by the detection of distinct X-ray emission in
this area (Soucail et al. 2000) as well as the suggestion of
extra mass from the shear mass map of Broadhurst et al.
(2000).

In fitting the number counts to the isothermal sphere
mass model, we find that the fitted critical radius is
smaller (although not significantly given the error) than
the radius of the circle traced by the observed large arcs.
This might be due to the fact that our selected back-
ground population of sources lies at a lower mean red-
shift than the lensed galaxy forming the arc at z = 1.675
(Broadhurst et al. 2000). The mean background source
redshift in an 80% confidence interval is inferred to be
within 0.40 < zmean < 1.19. The depletion analysis of
CL0024+1654 by Fort et al. (1997) in the B band finds
a relatively wide depletion profile (see Sect. 5.3 regard-
ing contamination of their I band data). Simultaneously
fitting to a maximum of five isothermal sphere models,
they find that a combination of various background galaxy
populations is required to explain the wide zone of de-
pletion. In B, this results in the mean background source
redshifts ranging over z = 0.9+0.1

−0.1 to z = 3.0+1.8
−0.5 with 42%

of sources lying at z = 0.9. This is a little surprising given
that we find an adequate fit to our observed depletion pro-
file assuming the existence of only one critical line. The
discrepancy would perhaps be at least partially resolved
by fitting the Fort et al. data to an NFW profile since this
accommodates a larger zone of depletion compared to the
isothermal sphere model.

Comparison of our results or indeed any of the existing
lensing results with those measured using cluster galaxy
dynamics or X-ray temperatures shows a large discrep-
ancy. We predict approximately 3.5 times as much pro-
jected mass as the X-ray and dynamical measurements
imply. Soucail et al. (2000) discuss that one explanation
for this discrepancy may come from the inability to cor-
rectly measure lens shear combined with a lack of accu-
rate knowledge of the background source redshift distri-
bution. While this bears some truth in general, it is not



S. Dye et al.: Lens magnification by CL0024+1654 in the U and R band 29

the case here. The determination of the arc redshift by
Broadhurst et al. (2000) makes the measurement of pro-
jected mass contained within the arc radius a robust one;
this is a result which does not depend on the detection of
shear through weak lensing and also knowing the redshift
of the arced galaxy breaks the source redshift degener-
acy. The projected mass contained within the arc radius
according to the X-ray measurements of Soucail et al. is
(0.5± 0.3)× 1014 h−1M�. This is still a factor of nearly
three times smaller than the arc predicted mass.

An alternative scenario which provides a more satisfy-
ing answer to the evidence gained thus far is alignment of
additional foreground and/or background mass along the
line of sight to CL0024+1654. The Czoske et al. (2001a)
redshift survey identifies a group of galaxies lying just in
front of the cluster as well as a pair of groups lying be-
hind it. During the course of preparing this paper, new ev-
idence emerged regarding the perturbed galaxy dynamics
of CL0024+1654. Comparing numerical simulations with
their redshift measurements, Czoske et al. (2001b) con-
clude that the cluster could in fact be the result of a high
speed collision of two smaller clusters along the line of
sight. This would certainly explain why lensing observes
a factor of three times as much mass. It also explains why
early measurements of velocity dispersion were very large
(see Dressler & Gunn 1992 and references therein); these
were based on ∼10 times fewer redshifts and hence failed
to properly resolve the cluster’s true dynamical state.

Finally, the U band selected background sample indi-
cates a near-lensing-invariant slope of β = 1.07±0.06 and
hence does not exhibit any noticeable sign of depletion. We
have used the fact that lens magnification of our U band
sample allows us to search deeper than its physical limit-
ing magnitudes thus facilitating the search for a change of
slope in the U band number counts at faint magnitudes.
Up to UAB ≤ 26.6, we can rule out a complete flattening
to 95% confidence. Furthermore, we can rule out the ex-
istence of a change of slope of β = 1 → 0.4 reported by
Pozzetti et al. (1998) and Metcalfe et al. (2001) with a
confidence of 95% up to UAB ≤ 26.4.

Our findings also contradict the results of R01 who
claim to have measured U band depletion and hence slope
flattening. Although we started with the same observa-
tions as R01, we applied more stringent criteria to the ob-
ject extraction and carried out a thorough U band break
analysis which allowed for contamination by cluster and
foreground galaxies. It is intriguing that the HDF-South
U band number counts reported by Volonteri et al. (2000)
also support our result. They too find no evidence of flat-
tening in the U band counts up to UAB ' 26.5. This will
most likely remain an unresolved issue until deeper obser-
vations, particularly in a cluster environment where lens
magnification provides natural assistance, are obtained.
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Rögnvaldsson, Ö. E., Greve, T. R., Hjorth, J., et al. 2001,
MNRAS, 322, 131 (R01)

Sandage, A., Tammann, G. A., & Yahil, A. 1979, ApJ, 232,
352

Schechter, P. 1976, ApJ, 203, 297
Schlegel, D., Finkbeiner, D., & Davis, M. 1998, ApJ, 500, 525
Schneider, P., Ehlers, J., & Falco, E. E. 1993, Gravitational

Lenses (New York: Springer)

Smail, I., Hogg, D., Yan, L., & Cohen, J. 1995, ApJ, 449, L105
Smail, I., Dressler, A., Couch, W. J., et al. 1997, ApJ, 110, 213
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