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Abstract. In this paper, we propose a novel method for the unsuper-
vised clustering of graphs in the context of the constellation approach to
object recognition. Such method is an EM central clustering algorithm
which builds prototypical graphs on the basis of fast matching with graph
transformations. Our experiments, both with random graphs and in re-
alistic situations (visual localization), show that our prototypes improve
the set median graphs and also the prototypes derived from our previ-
ous incremental method. We also discuss how the method scales with a
growing number of images.

1 Introduction

Structural criteria, graph matching, and even graph learning, have been consid-
ered as fundamental elements in the set up of the constellation (part/features-
based) approach to object recognition [12]. Most of research in such direction
has been concentrated in exploiting feature (local) statistics, whereas structural
(global) statistics have been typically confined to the joint Gaussian of feature
locations [5]. However, there has been a recent interest in modelling and learn-
ing structural relationships. This is the case of the tree-structured models [6][10]
and the k-fans graph model [3]. However, models with higher relational power
are often needed for solving realistic situations. In this regard, a key question
is to find an adequate trade-off between the complexity of the model and the
computational cost of learning and using it.

In this paper, we present a novel method for the unsupervised learning of
general graph models under the constellation approach. Here, we follow cen-
tral graph clustering [2][14][7], and the core element is prototype building or
graphs fusion. In [16] we proposed an incremental method which depends on the
order in which the graphs are fused. In this paper, we present an alternative
method which overcomes such problem. It is based on the information provided
by the diffusion kernels [4][11] in order to decide which matches are preferable
to be considered in order to fuse the nodes of the graphs in the set. Our algo-
rithm works both with continuous graph-matching methods like Softassign, or
our kernelized version [15], and with faster alternative discrete matching meth-
ods. From this point of view, as in the constellation approach node attributes
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coming from describing salient features play a key role, here we also propose
graph-transformation matching [1] a novel fast and reliable method, emerging
from putative matches between feature sets, which yields a consensus graph,
provided that such subgraph exists.

Our graph-learning method for the constellation approach is tested in a visual

localization (scene recognition) context. The early approach is coarse-to-fine: (i)
Given an input image, an appearance-based classifier, trained with the optimal
(minimal) number of features finds the most probable submap; (ii) The statistics
of the sub-map are exploited to speed-up the extraction of invariant salient fea-
tures [9]; (iii) Given proper feature descriptors [13] graph-transformation match-
ing finds common subgraphs with images in the same submap; (iv) The image
with the highest number of nodes in the subgraph is chosen as output and the
viewing coordinates are reported. Here, we compare this early design with the
one resulting from replacing (iii) by finding the closest structural prototype in
the submap and then match the input image only to the images in such cluster.

The rest of the paper is organized as follows. The core of our proposal,
the graph-fusion method, is presented in Section 2. In Section 3 we describe
the graph-transformation matching and its implications in the EM clustering
algorithm, together with graph-fusion. Experimental results are presented in
Section 4, and, finally, in Section 5 we present our conclusions and future works.

2 Mapping Graphs to Prototypes via Diffusion Kernels

2.1 Building the Super-Graph

Given a set of graphs S, with N = |S|, to be clustered, each graph Gi ∈ S is a
4-tuple Gi = (Vi, Ei, βi) where: Vi is the set of nodes, Ei ⊆ V × V is the set of
edges, βi : Vi −→ IRn are the node attributes (descriptors of salient points). In
order to obtain the prototype, firstly it is necessary to obtain O(N2) pairwise
matching matrices M ij between al pairs < Gi,Gj >∈ S × S with i 6= j. With
respect to the incremental method [14][16], pairwise matchings will be computed
only once, which is critical for the efficiency of the EM-clustering (more precisely
to the E-steps).

Super-Graph . The latter matching matrices will be used in order to build a
super-graph GM which encodes the possible matchings among the graphs in S.
This super-graph is a 5-tuple GM = (VM , EM , θ, ν, ξ), where

– VM = ∪
|S|
i=1

Vi is the union of the nodes from all the graphs in S,
– θ : VM −→ S, is a function assigning each node in the super-graph with its

corresponding graph in the original set,

– ν : VM −→ ∪
|S|
i=1

Vi, is a function assigning each node in the super-graph with
its corresponding node on the graphs of the original set,

– EM = {< i, j >, i, j ∈ VM : M
θiθj
νiνj = 1}, that is, two nodes will be connected

if, and only if, their corresponding nodes in the graphs in the set S are
matched, and
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– ξ : EM −→ IR+ is a weighting function for the edges.

Graph Partitions . Discrete matchings M
θiθj
νiνj (when applying Softassign-like

methods continuous variables before cleanup are even more useful) induce dis-
joint partitions Pα = {i : i ∈ VM}. In an ideal case, each partition would have
at the most one node coming from each graph in S:

∀i ∈ Pα, 6 ∃j ∈ Pα : θi = θj , j 6= i, ∀Pα ⊂ VM (1)

In this case, the fusion is easy. Each partition corresponds to a node in the
prototype graph (see Fig. 1-top-left). However, in a real case, due to the matching
ambiguity and errors, a partition could have some nodes from the same graph (see
Fig. 1-bottom-left). We must then decide which matches are going to be taken
into account in order to build the prototype, and which ones will be discarded.
Matches with a higher value in the matching matrix will be preferred, because
the higher is this value, the lower is the ambiguity of this match. However, there
will be many nodes with the same value in the matching matrix. In order to
decide which of them is preferred their kernel values will be used. Therefore,
each edge < i, j > from the super-graph will be weighted by a function ξ that is
defined as

ξ(< i, j >)←−M θiθj
νiνj

+ αΦθiθj
νiνj

, ∀ < i, j >∈ EM (2)

where α is a small value (i.e. α ∼ 0.01) and Φ is an affinity measure between

matched vertices νi and νj . In this case, we define Φ
θiθj
νiνj = exp{−(Kθi

νi
−K

θj
νj )2}

being K the diffusion kernel associated to the Laplacian of the graph θ ∈ S
containing vertex νi (respectively νj), that is, K = exp{−(β/m)L} being L =
D−A where m is the number of vertices of θ, D is the diagonal matrix registering
the degree of each vertex and A is the adjacency matrix. Consequently, we have

that Kθi
νi

= Kθi
νiνi

is the νi−th element of the diagonal (similarly K
θj
νj = K

θj
νjνj ).

As it is well known , the values in the diagonal of a diffusion kernel encode the
probability that a lazy random walk remains at such vertex, and such probability
encodes how the graph structure is seen from a given vertex.

The latter weights Φ
θiθj
νiνj , which encode structural compatibility, will be used

to insert all the edges in EM into a sorted list Le. The elements with higher
weights will be taken first. These edges will be used in order to build the par-
titions of the graph, taking into account the constraints in 1. For each edge
< i, j >, there are 4 possible cases:

– Neither i nor j are assigned to any partition. In this case a new partition is
created, and both i and j are assigned to it.

– i is assigned but j is not. Add j to the partition of i if doing this the con-
straints are satisfied. If not, add j to a new partition.

– j is assigned but i is not. Add i to the partition of j if doing this the con-
straints are satisfied. If not, add i to a new partition.

– Both i and j are assigned to a partition. If both i and j are assigned to the
same partition, there is nothing to do. In other case, fuse the partitions of i
and j if it satisfies the constraints.
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2.2 Building the Prototypes

After the process described above, a set of partitions PS will be obtained, satisfy-
ing

⋃
Pi∈PS

Pi = VM . Each partition Pi ∈ PS corresponds to a node in the fusion
graph (prototype). Such graph is an approximation of the median graph[8] and
it is defined by the 6-tuple Ḡ = (V̄ , Ē, β̄, γ, λ,M), where:

– V̄ = {Pi ∈ PS} and Ē = {< i, j >: ∃k ∈ Pi, l ∈ Pj |< k, l >∈ Eij} where
Eij = {< k, l >: k ∈ Pi, l ∈ Pj , θk = θl, < νk, νl >∈ Eθk ≡ Eθl}.

– β̄ : V̄ −→ IRn are the averaged attributes defined as ¯γPi
=

∑
k∈Pi

πθk
βνk

,
where πθk

: S −→ [0, 1] indicate the probability that graph θk belongs to the
class defined by prototype.

– γ : V̄ −→ [0, 1] is the probability density of node Pi in the prototype, and it
is defined as γPi

=
∑

k∈Pi
πθk

. Such probabilities will be properly normalized
so that the sum of probabilities of all nodes is unitary.

– λ : Ē −→ [0, 1] are the edge weights defined as λ(< i, j >) =
∑

<k,l>∈Eij πθk
.

Thus, such weights are defined by integrating the weights of the graphs to
which the nodes implied in the connections belong.

– M : V̄ ×S −→ ∪
|S|
i=1

Vi defines the correspondence of a vertex in the prototype
and a graph with the matched vertex in the latter graph, that is MPiA =
νk, k ∈ Pi : θk = A. Having such matches we bypass the solving of a graph
matching problem between each graph in S and each prototype.

As stated above, the probabilities πθk
that a graph belongs to a given pro-

totype are here considered as external information comming from the EM algo-
rithm (see next section) and we define the prototype as the mixture

Ḡ =

N∑

k=1

πkGθk
= π1Gθ1 + . . . + πNGθN

(3)

where πkGθk
denotes the weighting of each graph by its probability.

3 Graph-Transformation Matching and EM Clustering

3.1 One-to-one Matching

Given two images Ii and Ij , to be clustered, let Li = {sk} and Lj = {pl} be
their respective sets of salient points. Such salient points are obtained through
a Bayesian optimization of the entropy-based Kadir and Brady dectector [17].
However, for matching purposes we consider their SIFT 128−length descriptors
D and for each sk we match it with pl when Dkl = argminpl∈Lj

{||Dk −Dl||}
and Dkl/Dkl(2) ≤ τ being Dkl(2) the Euclidean distance to sl(2)the second
best match for sk, and τ ∈ [0, 1] a distinctivity threshold usually set as τ = 0.8.
Consequently, we obtain a set of, say M matchingsM = {(k, l)}, and we denote
by L̂i and L̂j the sets resulting from filtering, in the original ones, features
without a matching in the M set.
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Fig. 1. Illustrating kernelized fusion. Left: Prototype building in an ideal case (top),
and a real one where kernels are needed (bottom). Rigth: Step-by-step fusion showing
partitions wrt median graph (left) and the difference between kernelized (middle) and
incremental (bottom) fusion.

3.2 Iterative Filtering and Consensus Graph

Considering the two sets of M points L̂i ∋ sk and ∈ L̂j ∋ pl, where sk matches sl

we build their associated median K-NN graphs as follows. Graph Gi = (Vi, Ei) is
given by vertices Vi associated to the positions of the M points. A non-directed
edge < k, a > exists in Ei when sa is one of the K = 4 closest neighbors of
sk and also ||sk − sa|| ≤ η, being η = med<r,t>∈Vi×Vi

||sr − st|| the median of
all distances be tween pairs of vertices, which filters structural deformations
due to outlying points. If there are not K vertices that support the structure
of sk then this vertex is disconnected completely. The graph Gi, which is not
necessarily connected, has the M ×M adjacency matrix Aka where Aka = 1
when < k, a >∈ Ei and Aka = 0 otherwise. Similarly, the graph Gj = (Vj , Ej)
for points pl has adjacency matrix Blb, also of dimension M ×M because of the
one-to-one initial matchingM.

Graph Transformational Matching (GTM) relies on the hypothesis that out-
lying matchings inM may be iteratively removed: (i) Select an outlying match-
ing; (ii) Remove matched features corresponding to the outlying matching, as
well as this matching itself; (iii) Recompute both median K-NN graphs. Struc-
tural disparity is approximated by computing the residual adjacency matrix
Rij = |Aka −Blb| and selecting jout = arg maxj=1...M

∑M
i=1

Rij , that is, the one
yielding the maximal number of different edges in both graphs. The selected
structural outliers are the features forming the pair (sjout ,pjout), that is, we

remove matching (k, jout) from M, sk from L̂i, and pjout from L̂j . Then, af-
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ter decrementing M , a new iteration begins, and the median K-NN graphs are
computed from the surviving vertices. The algorithm stops when it reaches the
null residual matrix, that is, when Rij = 0, ∀i, j, that is, it seeks for finding a
consensus graph (initial experimental evidence shows that the pruning with the
residual adjacency matrix may be too agressive). Considering that the bottleneck
of the algorithm is the re-computation of the graphs, which takes O(M2 log M)
(the same as computing the median at the beginning of the algorithm) and
also that the maximum number of iterations is M , the worst case complexity is
O(M3 log M).

3.3 From Pairwise Matching to EM Clustering

Given N input images I1, . . . , IN to be clustered and characterized by their SIFT
descriptors, the first step consists of performing N × (N − 1)/2 GTM matchings
between all pairs of images, and these matching will be only performed once.
The role of the pairwise consensus subgraphs is to yield mappings between the
SIFT descriptors. For input image Ii, its graph for clustering purposes will be
Gi = (Vi, Ei, βi) where the vertices Vi are associated to the positions of all the
salient points in the image, the edges in Ei are derived from the median K-NN
graph considering all salient points, and βi = Di.

Given N input graphs Gi = (Vi, Ei, βi), the goal of the Asymmetric Clus-
tering Model (ACM) for graphs [15][16] is to find K (also unknown) graph
prototypes Ḡα = (V̄α, Ēα, β̄α, γα, λα,Mα) and the class-membership variables
Iiα ∈ {0, 1} maximizing the cost function

L(Ḡ, I) = −

N∑

i=1

K∑

α=1

IiαFiα, Fiα =
∑

k∈V̄α

||β̄αk − βiMki
α
|| (4)

Alternatively, Fiα may be defined in terms of the number of matchings, that is
the number of vertices k ∈ V̄α satisfying ||β̄αk − βiMki

α
|| ≤ τ after GTM (the

dimension of the consensus graph).

Initialization . For a fixed K, after a greedy process yielding initial prototypes
and membership variables, the supergraph GM = (VM , EM , π, θ, ν, ξ) (in which
all graphs are mapped) is built. As stated above, this step, which implies a
quadratic number of GTM processes, will be done only once.

E-step . Membership variables are updated following a deterministic annealing
process (with temperature T ) and depending on the disparities Fiα with respect
to the prototypes (N ×K evaluations without performing graph matching):

It+1

iα =
ρt

αe−
Fiα

T

∑K
δ=1

ρt
δ e−

Fiδ
T

, being ρt
α =

1

N

N∑

i=1

It
iα , (5)
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Fig. 2. Robustness with respect to increasing noise levels. Top: Edge noise. Bottom:
Node noise. Left: 10% edge density. Center: 30% edge density. Right: 50% edge density.

M-step . After the E-step we have the new membership variables It+1

iα and it is
time to update the K prototypes on the basis of graph mixtures whose weights
rely on the current membership variables:

Ḡt+1
α =

N∑

i=1

πiαGi , where πiα =
It+1

iα∑N
k=1

= It+1

kα

, (6)

Modifying weights πiα implies changing the configuration (recompute par-
titions) of the associated fusion graph GMα = (VMα, EMα, πα, θα, να, ξα) and
hence changing the prototypes (but not the supergraph), and hence their at-
tributes β̄α. After such recomputation, we proceed to prune the prototypes by
discarding vertices (edges) with γα < 0.5 (λα < 0.5) and also their attributes.

Fusion-step . For a variable K, the complete process is started with Kmax

classes and at the end of each EM epoch a statistical test determines whether
the two closest prototypes may be fused or not. Then, we compute a fused
prototype

Ḡγ =

N∑

i=1

πiγGi when hγ < (hα + hβ)µ (7)

being hα =
∑N

i=1
Fiαπαi the heterogeneity of a class, and µ ∈ [0, 1] a merge

factor usually set to 0.6.
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Fig. 3. Results of pairwise matchings using GTM. Left: A small environment with 34
images. Right: A larger one with 64 images.

Fig. 4. Graph prototypes and classified images. Each column shows the prototype and
sample images of the corresponding class.

4 Experimental Results and Discussion

Experiment 1 . We have performed two kind of experiments: random graphs,
and realistic visual localization. In the first case (see Fig. 2) we have evalu-
ated how representative is a prototype by measuring the average distance of the
graphs in the class to that prototype in different situations. Compared to the
set median graph and the results of our previous incremental method, the new
method yields more representative (informative) prototypes: it yields a slower
rate of increase of distances with the prototype as the noise level increases.

Experiment 2 . Realistic visual localization experiments where performed by
considering two types of indoor environments: a small one (N = 34 images), and
a larger one (N = 64 images). Initial pairwise matchings (confusion matrices) are
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Fig. 5. Likelihoods for both enviroments. Left: Small environment. Right: Larger
(medium-size) one.

showed in Fig. 3.3. The obtained prototypes for the first environment (K = 6
classes) are showed in Fig. 4, and the likelihood (expressed as the number of
matched nodes with the prototype) of each image with respect to each prototype
are plotted in Fig. 5-left. Some bimodalities (due to geometric ambiguities) arise,
but in general it is possible to find, in this case, a simple threshold (above ≈ 5
matches) to report membership. In addition, we observe that the overlap between
classes is minimal. We have also estimated the localization error both for the
early version, which does not uses graph clustering, and the new one proposed
in this paper. We have found that the percentage of error with respect to the
ideal localization is 86.4% in the early version, but 58.13% in the new one. This
indicates an improvement of the localization quality besides the computational
savings derived from comparing only with images in the same cluster for fine
localization.

Experiment 3 . The good results outlined above encouraged us to find the
limit of scalability of the approach when the number of images to cluster in-
creases significantly. In this experiment we have tested the method in a larger
environment (N = 64 images) where our algorithm has unsupervisedly found
K = 12 classes. Analyzing the pairwise matching matrix (see Fig. 4-right) it has
a consistent diagonal with medium-size clusters. On the other hand, the anal-
ysis of the likelihoods (Fig. 5-right) reveals few multi-modal classes, and none
of them has a unique member. With respect to the localization error, clustering
yields a 12.22% less than our early version.

5 Conclusions and Future Works

We have presented a novel method for unsupervised central graph clustering
and we have successfully tested it in the context of scene recognition (visual
localization). We have found a good generalization conditioning which in turn
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yields useful structural indexing in coarse-to-fine visual localization provided
that the number of ambiguous images does not grow significantly, specially in
indoor environments where there are many natural symmetries. We are currently
working in building a wearable device for incorporating these elements and also
in testing the algorithm in other environments.

References

1. Aguilar, W.: Object recognition based on the structural correspondence of local
features. MsThesis, UNAM, México (2006)
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