JOURNAL OF PHYSICAL AGENTS, VOL. 6, NO. 1, JANUARY 2012

43

Learning in real robots from environment interaction

P. Quintia, R. Iglesias, M.A. Rodriguez, C. V. Regueiro and F. Valdés

Abstract—This article describes a proposal to achieve fast
robot learning from its interaction with the environment. Qur
proposal will be suitable for continuous learning procedures
as it tries to limit the instability that appears every time the
robot encounters a new situation it had not seen before. On
the other hand, the user will not have to establish a degree
of exploration (usual in reinforcement learning) and that would
prevent continual learning procedures. Our proposal will use
an ensemble of learners able to combine dynamic programming
and reinforcement learning to predict when a robot will make a
mistake. This information will be used to dynamically evolve a
set of control policies that determine the robot actions.

Index Terms—continuous robot learning, robot adaptation,
learning from environment interaction, reinforcement learning.

I. INTRODUCTION

N line robot learning and adaption is a key ability robots

must have if we really want them working in everyday
environments. Robots must become part of everyday life as
assistants, be able to operate in standard human environments,
automate common tasks, and collaborate with us. Robotic
devices are meant to become a nearly ubiquitous part of our
day-to-day lives. Despite the increasing demand for personal
robots able to educate, assist, or entertain at home, or for
professional service robots able to sort out tasks that are
dangerous, dull, dirty, or dumb, there is still an important
barrier between the latest developments on research robots and
the commercial robotic applications available. To overcome the
frontier amongst commercial and research robots we believe
that, like humans, robots should be able to learn from their
own experiences when emulating people or exploring an
environment. The mistakes and successes the robot makes
should influence its future behaviour rather than relying only
on predefined rules, models or hardwire controllers. This will
result in robots that are able to adapt and change according
to the environment. These robots should not use pre-defined
knowledge, on the contrary most of their competences should
be learned through direct physical interaction with the envi-
ronment and human observation.

From our experience working with robots, we think that it
is true to say that no matter how perfect our robot controller
is, there are always unexpected situations or different environ-
ments that will make our robot fail. We always promoted the
use of reinforcement learning as an interesting paradigm that
can be used to learn from robot-environment interaction [7].

M.A. Rodriguez, R. Iglesias, P. Quintia are with the Centro de Investigacién
en Tecnologias de la Informacién de la Universidade de Santiago de Com-
postela (CITIUS). Campus Vida. Universidade de Santiago de Compostela.
E-mail: roberto.iglesias.rodriguez@usc.es

C. V. Regueiro is with the Department of Electronics and Systems, of the
Universidade de A Coruiia.

F. Valdés is with the Electronics Department, Polytechnic, University of
Alcala.

Nevertheless, the application of reinforcement learning algo-
rithms still suffer from the same problem just described. Gen-
erally, reinforcement learning is applied to get a robot learning
a behaviour on simulation and, once the robot-controller is
learnt it is placed on the real robot. Nevertheless, if the real
robot misbehaves, it would be necessary to investigate the
reasons behind the robot mistakes and to learn the behaviour
once again trying to include situations similar to those that
caused the failure. There are some previous publications that
highlight the interest of real robot learning from reinforcement
and for different applications [8], [9]. Nevertheless, most of
these works achieve the desired behaviour through a care-
ful parametrization of the action space or the reinforcement
function but they do not re-design the classic reinforcement
learning algorithms to get real-time learning processes. Some
other works deal with the problem of real robot learning from
scratch. One of them is [1]. In this work the robot explores the
environment and it uses its own experiences to learn a model
of the environment. This model is used to improve the control
policy and thus achieve quasi-online reinforcement learning.
In our case we will explore on-line learning without models,
i.e. without probabilistic transition matrices.

We are interested in getting continuous learning procedures
that are never stopped. The idea is that robot would move
in the environment using a behaviour learnt on simulation,
nevertheless, the robot would be able to adapt and modify the
behaviour according to the environment where it is moving.
The achievement of continuous learning requires the develop-
ment of systems able to fulfil three characteristics:

1) The learning must be as fast as possible

2) Every time the robot encounters new problems, it will
have to learn and improve the controller. Nevertheless,
this should not cause important instabilities or make the
robot forget important aspects of what had been learnt
before

3) It should be possible to incorporate new knowledge or
destroy old one, at any time, without causing important
robot misbehaviours

II. ACHIEVING FAST LEARNING PROCESSES

We need robots that are able to learn the suitable action they
must carry out for every different situation (state) they might
encounter, and thus reach a particular behaviour. Reinforce-
ment Learning is suitable to get robots learning from their
own experiences and environment interaction. Nevertheless,
from our previous work [2], [3], [4], [5], [6] we know that
reinforcement learning is too slow and requires too many trials
to learn a particular task. This makes its application on a real
robot almost impossible. Due to this, instead of building a
learning system that needs to determine the suitable action

44

Learner-1

Sensor
informati

Learner-2

— Robot
action

LN

Learner-3

o
o

\ a
Learner-n

T reward

Reward function

Fig. 1. Ensemble of independent learners to achieve fast learning processes

for every state of the robot, we prefer to build an ensemble
of parallel learners able to determine, each one of them, the
interval of actions most suitable for each state of the robot
[3], [4], Figure 1. There is a clear example to illustrate this:
Imagine a very diligent student who after three hours studying
learns by heart the multiplication tables and makes no mistakes
when the teacher asks him. On the other hand imagine a group
of not-so-diligent students who prefer to have fun and prepare
the exam at the last moment. In this case, given the lack of
time, each student decides to learn only a random selection
of times tables. These students can still get a good mark if
they make the exam altogether. Whenever the teacher enquires
about the result of a multiplication the answer is the number
voted by the majority of the students. The qualification will be
good provided that each student studied a random selection of
the multiplication tables and those students who don’t know
the answer to the teachers question make it up (random guess
and independent answers). In this case, given the question of
the teacher, those students who didn’t study the right times
tables will not agree (most probably situation), while the rest
of the students will agree with each other thus achieving
majority.

Therefore, we have built an ensemble of independent learn-
ers like the one shown in Figure 1. This ensemble will use
a voting mechanism to decide the action to be executed by
the robot at every instant. Each one of the learners will have
to learn a mapping between world states and actions. This
mapping, also called policy, enables a robot to select an action
base upon its current world state.

A. Using Fuzzy ART networks to building a representation of
the world

Each learner of the ensemble shown in Figure 1 will have
to build a map between world states and actions. This is a
problem that lies at the heart of many robotic applications.
This mapping, also called policy, enables a robot to select an
action based upon its current world state. Therefore, the first
problem to deal with is how to represent the world through a
finite set of states. In our case, and as we can see in Figure

JOURNAL OF PHYSICAL AGENTS, VOL. 6, NO. 1, JANUARY 2012

2, each learner will build a representation of the environment
that will dynamically increase to include new situations that
have not been seen before. We shall call to these new and
distinguishable situations, detected in the stream of sensor
inputs, states. This dynamic representation of the environment
will be independent for each learner, i.e., each learner can see
the world differently from the others. To quantify the sensor
space we decided to use a The Fuzzy Adaptive Resonance
Theory (Fuzzy ART) [10] to build the state representation for
each learner. The FuzzyART clusters robot sensor readings
into a finite number of distinguishable situations that we
call states. Therefore, the FuzzyART network will achieve a
sensor-state mapping that will dynamically increase to include
new situations, detected in the stream of sensor inputs, and that
have not been seen before.

Basically the FuzzyART will divide the sensor space into a
set of regions (Vector Quantization). Each one of these regions
will have a representative or prototype representing it. The
Fuzzy ART works on the idea of making the input information
resound with the representatives or prototypes of the regions
into which the network has divided the sensor space so far.
We call to these regions, states. If resonance occurs between
the input and any of the states, this means that they are similar
enough; the network will consider that it belongs to this state
and will only perform a slight update of the prototype, so that
it incorporates some characteristics of the input data. When
the input does not resound with any of the stored states,
the network creates a new one using the input pattern as its
prototype.

The input of the Fuzzy ART will be an M-dimensional
vector, where each of its components is in the interval [0, 1].
In our case, the input data we are dealing with comprise the
information provided by a laser rangefinder and sonar sensors,
but other sources of information are valid (e.g. grey levels of
an image, or joint angles in a robotic arm). The prototypes
of the states will be codified as arrays of M dimensions with
values in [0, 1]: w; = (wj1,,w;n). We shall use the letter N
to refer to the number of states learnt by the network so far.

The behaviour of the Fuzzy ART is determined by two
parameters: learning rate 5 € [0, 1]; and a vigilance parameter
p € [0,1]. The way the Fuzzy ART network operates can be
summarised in the following steps (there are some important
differences in comparison with the general proposal described
in [10]):

1) After presenting an input I to the network, there will be a
competitive process after which the states will be sorted
from the lowest activation to the highest. For each input
I and each state j, the activation function T is defined

as
LA wy|

10 = M)

the fuzzy operator AND A is (z A y); = min(z;,y;)
and the norm | - | is defined as
M

|| EZ|:EZ| 2
i=1

QUINTIA ET.AL. : LEARNING IN REAL ROBOTS FROM ENVIRONMENT INTERACTION 45

2) The state with the maximum activation value will be
selected to see if it resounds with the input pattern I

J =arg_maz;{T; : j =1..N}. 3)

3) The Fuzzy ART network will enter in resonance if the
matching between the input I and the winning state J is
greater or equal than the vigilance parameter p:

LA wy| > oI (4)

If this relation is not satisfied, a new state will be created
and the new prototype vector will be equal to the input
L

4) When the network enters in resonance with one input,
the prototype vector w is updated:

wgne’uz) _ BI+ (1 . ﬁ)wgold). (5)

A proliferation of states can be avoided if inputs are
normalised:

I =~,VLy>0 (6)

The complement coding normalisation rule achieves nor-
malisation while preserving amplitude information. The com-
plement coded input / to the recognition system is the 2M-
dimensional vector

I= (a7 ac) = (ala "-aahha?) --'aa(]:\/f)7 (7)

where af, = 1 — a,. Using complement coding, the norm
of the input vector will always be equal to the dimension of
the original vector.

The vigilance parameter p is the most important parameter
for determining the granularity of the classification. Low
values for the vigilance parameter will create few classes. As
the value of p approaches one, there will be almost one state
for each sensor reading.

Each learner of the ensemble that we suggest (Figure
1) will use a near-random vigilance value to build a state
representation from the sensor inputs. Since the vigilance
parameter is different for each learner, so will be the partition
of the sensor space into regions; the size of the regions into
which the sensor space is divided will change from learner
to learner, Figure 2. This helps to get a better generalization
during the learning process.

Other artificial neural networks, such as the Echo State
Networks [11] have been used in the past to learn from robot-
environment interaction. Nevertheless, these networks are most
appropriate to learn from demonstrative processes in which a
user teaches the robot the desired control policy. In our case
we need to use unsupervised techniques able to quantify the
sensor space in a set of regions according to how similar the
values coming from the sensors are, the best action for every
one of these states will have to be discovered by the robot.

1
FuzzyART-1 | — s (¢)
pal

| FuzzyART-2 — sz(l‘) \

/ A
Voting — Robot
sowor L [FuzzyART-3 | — s°(f) [T acton

infolatiol /

o

\\ -

FuzzyART-n

— s5"(t)

Fig. 2. Each learner of the ensemble builds a its own representation of the
sensor space, i.e. the current state of the world is not described in the same
way for all learners

B. Policy derivation and performance

As mentioned before, each learner of the ensemble (Figure
1) will achieve a control policy that maps states into actions.
Therefore, besides the problem representing the environment
(described in the previous section), we also need to deal with
the problem of how to represent the robot actions. In our
case, and similarly to what happened with the states, each
control policy divides the action space A in a set of intervals.
Nevertheless, this set of intervals is different for each control
policy (A, A%, ..., AN), Figure 3. We decided to use different
partitions of the action space for each learner in response to
the necessity of improving the generalization ability of our
proposal. Each partition A!, VI = 1,..., N is built randomly,
but it must verify the following properties:

Al = ..
e = {Al(l) = [allvbll)vAl(2) = [l27bl2)7 ®)
s ALP) = [abo, o]}, VI = 1, 00, N

o A! covers all the action space, A, Vi=1,...,N:

UAl(G) = A

o Al is a pairwise disjoint collection of intervals,
Vi=1,..,N:

AG (A (k) =
The cardinality (number of intervals) is the same for all
partitions:

cardinal(AY) = cardinal(A7), Vi,j=1,...,1

Therefore, in our case, a control policy 7 is a function that
determines for every possible state of the robot, the interval of
actions that seems to be suitable for the task. Since we used a
different Fuzzy ART network for every learner, i.e., the sensor-
state mappings are different for each learner, and so are the
actions intervals, it is true to say that:

al: S - Al

seSt — rl(s) e Al ©)

46

It gets four votes

" L a1 2 It gets two votes ”
degrees/sec degrees/sec
[Il
I 1
Range of
m(s) [possible
7,(8) I robot-actions
73(s.) [
EACY
75(8)
) —
) I —

Fig. 4. Example of a voting procedure. Each learner suggests an interval of
actions. The action most voted is the one the robot finally executes.

The final action the robot performs is selected after a voting
procedure that considers these control policies (Figures 3 and
4). The action most voted is the one that the robot finally
performs.Although there are a large variety of techniques to
combine different sources of information, we selected majority
vote since it is one of the simplest and most known strategies.

There is still an unanswered question: how does each learner
know which interval of actions vote at each state?. The answer
to this question is a utility function of states and action-
intervals called Q. Each learner [from the ensemble will learn
a utility function @Q'. These utility functions Q', ..., Q" are
functions of states an action-intervals: Q'(S! x A!). Basically
each value Q'(s € S', A'(j)) represents how good is executing
any action a, included in the interval A’(j), when the robot
is in state s. To learn these functions we have used the
algorithm Improving Time before a Robot Failure [3], [4].
In this algorithm Q'(s!, A'(j)) represents the expected time
interval before a robot failure when the robot starts moving in
s € S!, performs an action of the interval A'(j), and follows
an optimal control policy thereafter:

Q(S,Al(j)) _ E[_e(fbe(so:slGSl,aO:aGAL(j))/SOT)]’ (10)

where Thf(s!, A'(j)) represents the expected time interval
(in seconds) before the robot does something wrong, when
it performs any action a € A'(j) in s!, and then it follows
the best possible control policy. T is the control period of the
robot (expressed in seconds). The term —e~T0//50T in Eq.
10 is a continuous function that takes values in the interval
(—=1,0), and varies smoothly as the expected time before
failure increases.

If we are able to predict the consequences of performing
any action of a particular interval of actions in a state (time
that will elapse before the robot makes a mistake), it is
straightforward that we can achieve the best control policy
by simply selecting the interval with the highest Q-value for
every state. This will give us the control policy that maximizes
the time interval before any robot failure; this is called greedy

JOURNAL OF PHYSICAL AGENTS, VOL. 6, NO. 1, JANUARY 2012

—, VOITING
— SET OF P?LICIES MECHANISM
\ ACTION
- UVALUES Q-VALUES
SIATE Value functions
OF THE ROBOT
L Environment
Fig. 5. General schema of our proposal
policy 7*:
7 (s') = arg_max, {Q'(s', A'(k))}, ,Vvs'e St (11)

There is a greedy policy for every control policy in our
system. Since the Q'(,) values and Thf(,) are not known, we
can only refer to their current estimations Q.(,) and Thf;(,).
Starting from the Q-values we can determine the expected time
before a robot failure for an action-state pair:

Tof;(s,a) = =50 % T * Ln(—Q4(s, Ap)),
where Al is the interval of A! that contains action a. We need
to use the super-index [for Thf! since it is estimated from the

Q' values. We can also determine the expected time before a
robot failure for a state:

12)

Thfl(s') = maxp{—50 « T x Ln(—Q'(s', A'(k)))}, (13)

We can notice that the time before failure, determined for a
given state, considers the best expectation, i.e., when the robot
follows the greedy policy.

Initially, each learner will build a control policy that coin-
cides with its corresponding greedy policy:

rl(seS)=r"(se s, Vi=1,.,N
N x

(14)

These greedy policies 7'*, ..., m¥* are got from the Q-values
following the straightforward process indicated in Eq 11. The
final action the robot performs would be selected after a voting
procedure (Figure 4). Nevertheless, to increase the robustness
of our proposal, the voting procedure considers a new value-
function (Figure 5) that determine how good is a particular
policy for a given state, i.e., whether the interval of actions
that particular policy suggests for the state seems to be right
for the task or not. We represent this new value function with
the letter U. Thus U7(s) = 1 means that the j-control policy
is invalid for state s, and hence its vote can be discarded. On
the contrary U7 (s) = 0, means that the control policy j seems
to be right for the state s, and therefore its vote must be taken
into account. Eq. 15 summarizes the voting procedure:

N
a; = argmax\meA{Z Sla & ©t(s' (1)) * (1 = U'(s'(2))}
1 (1)

QUINTIA ET.AL. : LEARNING IN REAL ROBOTS FROM ENVIRONMENT INTERACTION 47

€
! I‘ I I 1 ’n |Ian A1
FuzzyART-1 |—> ool
/ s'(1)
Sensor
information
al
5 ! ’1 I T ,n |Ian A2
., L |
FuzzyART-2 |— nz(sz(t))/
s*(1)
O .
action
O
O
L 2 1% AN

FuzzyART-N

- nIN(SN(t)/

s" (1)

Fig. 3.
rest of the learners.

¢ is the kronecker delta, i.e:
1 ifa e rl(s(t))

LGl _
stag o ={ o Hesni)
As we will see in the next subsection, the new utility
function U will also determine when the control policies

.,’R’N 1= ,7TN*.

7. are updated using the greedy policies 7%, ...

C. Learning of the Utility Functions

As we have described in the previous section, the action
the robot should execute at each instant is determined using
a voting procedure that is highly influenced by two utility
functions: @ and U (Figures 5 and 6). Both utility functions
are independent for each learner of the ensemble: Q', ..., QY
and U',...,UN. In this section we will describe how the
values of all these utility functions are inferred from the robot
experiences when it interacts with the environment.

When the robot is moving interacting with the environment
performing different actions, we can dynamically update the
Q-values. Thus, if we consider a robot that has performed the
action a; in the current state s;, and as an outcome the robot
has moved to state sy and has received the reinforcement 7,
the Q' values corresponding to every policy, can be updated
taking only into account the relationship amongst consecutive
states:

_e—1/50
Ql(sh, AL) +6

if’l"t<0

otherwise (16)

Qo (st ALY = {

In our proposal each learner of the ensemble builds a quantization of the sensor space and the action set that is different and independent from the

where,
§=Br(e™ * Qp(si41) — Q' (s, AL)).

r; is the reinforcement the robot receives when it executes
action a; in state s¢, S, € [0,1] is a learning rate, and it is the
only parameter whose value has to be set by the user. Finally,
Al is the interval of A’ that contains action that has been
performed by the robot, a;.

Equations 16 and 17 allow the updating of the Q-values
using the experiences of the robot. Basically the robot would
move in the environment, trying the execution of different
actions and, at every instant, the Q-value of the last action
performed by the robot would be updated according to the
current state of the robot and the reinforcement that the robot
received. Nevertheless, this would lead to very slow learning
processes. A common solution to speed up this learning
consists on updating the Q-value of each action performed by
the robot considering not only the immediate consequences of
the execution of this action, but also what the robot does and
the reinforcement it receives during a short interval after the
execution of the action which is being considered. Thus, to
obtain the utility values Q' (s, A'(k)), the robot begins with an
initial set of random values, Q' (s, A'(k)) € [-1,—0.95], and
then it initiates a stochastic exploration of its environment.
The robot will move and collect data during a maximum
period of time or until it makes an error. The data collected
will later be used to update the Q-values:

a7

48

JOURNAL OF PHYSICAL AGENTS, VOL. 6, NO. 1, JANUARY 2012

v
—> [7' 1) &' s2)

0]

HEN

Voting
mechanism_|

Fuzy ARTN| —1 | o

/

[SExA 1 T
[SsxA) T

N

T

LU Ue) U0]

| vs) |

I3

SENJOR READINGS

Fig. 6. Detailled schema of our proposal

First stage, collecting data

1) m=0

2) At each instant t and while the robot does not receive a
negative reinforcement or moves for a maximum period
of time do:

a) Observe the current state in every learner of the
ensemble, s(t).

Select an action a; to be executed by the robot
(through a voting procedure).

Perform action a;, observe new states s. 41 and
reinforcement value.

If r, >= 0 then m < m + 1 and go back to the
first step, otherwise stop collecting data and do not
shift the m-index

b)
)

d

Second stage, updating the Q-values:

1) Update time before failure for every learner of the

ensemble:
a) for k=0,1,...,m do:
if kK = 0 then:

T
Tof' (si—)

lf Te—k < O
otherwise

bel{

else Thf! < A« (Tbf'+T)+(1—N)xTbf' (si—x).
2) Update the Q-values of the first record in the experience

set:
o AQN(sr-my AL) = Bp(—e TS/50T
Qi(st-m, AL,), VI=1,.,N

ENVIRONMENT

ROBOT ACTION

3) Shift the index m which represents the number of states
recorded in the experience set and which have not been
updated: m <~ m — 1

4) if m = 0 exit, otherwise go to the first step, 1)

The parameter)\ (second stage, first step) is a parameter
that determines the relative importance of the last robot-
environment interactions. The higher the values of lambda,
the more the Q-values are altered considering the last robot-
environment interactions. Low values of lambda are recom-
mended when either the rewards or the sensor readings are
noisy.

The updating of the new utility function, U, is straight-
forward: those policies that voted for the actions the robot
executed far from any failure will see their U values decreased.
On the contrary, those policies that voted for the actions
executed just before a robot failure will see their U values
increased, thus reducing their future consideration for the same
states. Finally, those policies that voted for actions that finally
weren’t executed will not see their U values altered. This way
of updating the U values means that the robot will tend to
repeat the same sequences of actions that it has already tried
in the past and did not cause any trouble, but the robot will
change its behaviour whenever the actions it carried out lead
the robot to some kind of failure.

Figures 5 and 6 give an overview of our system. Each
time the robot makes a mistake and it receives negative
reinforcements, the set of policies used to control the robot
will evolve trying to improve robot’s behaviour. Basically,

QUINTIA ET.AL. : LEARNING IN REAL ROBOTS FROM ENVIRONMENT INTERACTION 49

each policy will mutate in those actions that have lost their

vote (U7(s) is not null), in this case the new interval of

actions will coincide with the greedy policy:

e fori=1,...,.N
— for j=0,...,maximum number of states in S’
« if U'(5) > 0 7'(s°(j)) = 7 (s°(7))

The use of the greedy policies to update the control policies,
allows faster and faster recoveries from robot misbehaviours
due to the use of the past experiences learnt by the robot. On
the other hand, we must be aware of the fact that any time
the robot makes a mistake the use of the function U limits
the number of mutations and prevents the system from falling
into heavy instabilities. This is something new that allows us
to improve the generalization ability of our system.

To get independent and uncorrelated policies, only a subset
of policies will take part in the decision making at each instant.
This subset of M control policies (M < N) that takes part on
the decision making, is determined randomly, and it will be
the same until the end of the learning process. Nevertheless,
every time the robot makes a mistake this subset is increased
with some new randomly selected control policies. Adding
new control policies during the learning process represent a
way of incorporating new knowledge into the system (this
was the third characteristic mentioned in the introduction and
that continual learning would require). These new policies are
initially random but they start learning and evolving from the
moment they are incorporated into the system.

III. EXPERIMENTAL RESULTS

We have performed an experimental study of the strategy
described in the previous section. In particular we have imple-
mented it on a Pioneer 3DX robot. This robot is equipped with
a SICK LMS-200 laser rangefinder, a ring of 16 ultrasound
sensors and bumpers. In all the experiments the linear velocity
of the robot was kept constant (15.24 cm/s = 6 inch/s), and
the robot received the motor commands every 300ms (value
of T in Eq. 10). Through the experiments the robot had
to learn a common reactive task: wall following. To teach
the robot how to follow a wall located on its right at a
certain distance interval, we used a reinforcement signal that
is negative whenever the robot goes too far from or too close
to the wall being followed. We tested the algorithm in both,
real and simulated environments. We must emphasize that
the behaviour itself is not the objective of this work, but a
benchmark for all the tests we want to carry out.

A. Simulation results

Fig.7 shows the simulated environment where the robot
learnt the wall following behaviour. In this figure we can
also see the trajectory of the robot once the task has been
learnt. To simulate the movement of the robot we have
used Player&Stage [14]. We consider that the behaviour has
been learnt when the robot is able to move without making
any mistake during ten minutes (several laps in the same
environment). The learning time is the time elapsed since the

O _
I TS

Fig. 7. A robot learning how to follow a wall located on its right. This graph
was obtained during the last stages of the learning process

robot starts moving until it achieves a valid control policy (the
policy that is able to move the robot without mistakes for at
least ten minutes).

To learn the behaviour we used all the sensor information
available. The laser sensor we used on simulation provides
177 measures — one measure per degree from 0° to 176° —.
On the other hand we also used the information provided by
16 ultrasound sensors surrounding the robot. We then scaled
the values in the interval [0,8] to the interval [0, 1):

1 1

(1+input;) 9 (18)

7

The learning parameters we used are: learning coefficient
B = 0.25, A = 0.5, the vigilance parameter for each
FuzzyART neural network was selected randomly in the
interval [0.86,0.92]. and, finally the learning coefficient for the
FuzzyART neural network was 3 = 0. The average learning
time after 30 experiments was 14.55 minutes and the standard
deviation was 8.8 minutes.

After this first set of experiments we carry out a second set
of 30 experiments, but this time the processing of the sensor
information was different. In this second case we scaled the
sensor values using Eq. 19:

—input,

(8 — input;)? * e 15
64

I =

19)

In this second case, the vigilance parameters were selected
randomly in the interval [0.8,0.92], the rest of the parameters
kept the same values as in the first set of experiments. After 30
experiments we got an average learning time of 6.61 minutes
and the standard deviation was 4.45 minutes.

In general, through the simulated experiments we noticed
the importance of the U-function described in sections (B and
C). This utility function works as a gate enabling or disabling
learners in the voting mechanism. We noticed that the use
of this function allows achieving the desired control policies
sooner that if we do not use it.

50

JOURNAL OF PHYSICAL AGENTS, VOL. 6, NO. 1, JANUARY 2012

Fig. 8. First lap of a real robot learning the wall following behaviour in
a real environment. The robot moves a bit backwards every time it makes a
mistake and receives negative reinforcement, this can be appreciated in the
robots trajectory.

Fig. 9. Third lap of a real robot learning the wall following behaviour in
the same real environment as in Figure 8.

B. Learning on the real robot

Since our learning algorithm proved to be very efficient and
very fast on simulation, we decided to apply it to learn the
behaviour on a real robot. It is really relevant to be aware of
the fact that the learning process starts from scratch (i.e., our
robot does not have any kind of prior knowledge about the task
or how to solve it). This can be easily appreciated in the first
lap of the robot in the environment, shown in Figure 8. Every
time the robot receives a sequence of negative reinforcements,
it stops moving and it goes back until it reaches a position
where it does not receive negative reinforcements. Figures 8,9,
10 and 11 show the progress of the learning procedure on a real
robot working on a real environment. We must emphasize that
these results represent a huge achievement since little work has
been done with learning processes on a real robot interacting
with the real environment. Moreover, these learning processes
on the real robot overcome the limitations of the simulation,
i.e., when the simulator is not realistic enough the behaviour
learnt might not work on the real robot.

IV. CONCLUSION

In this paper we have described a system that moves us close
to continuous reinforcement learning procedures in a real robot
operating in real environments. Basically our system combines
a set of control policies that is being evolved considering
two utility functions. These two utility functions learn the
experiences accumulated by the robot when it interacts with

Fig. 10. Fourthlap of a real robot learning the wall following behaviour in
the same real environment as in Figure 8.

Fig. 11. In this figure we can observe several laps of a real robot following
the wall located on its right in a real environment. We can appreciate the robots
trajectory during several laps (from the fourth onwards) once the behaviour
has been practically learnt.

environment, and prevents too unstable behaviours every time
the robot encounters a situation it had not seen before. It is also
important to mention the fact that our system incorporates new
knowledge dynamically, as the learning process progresses
(this new knowledge is included as new learners in the ensem-
ble). This not only does not cause any instability but, on the
contrary, helps the robot to behave better and better improving
both, robustness and generalization. The experimental results
achieved, show the achievement of extremely fast learning
process able to work even on real robots learning continuously
in a real environment.

It is important to be aware of the fact that our system learns
the representation of the environment (states created by the
Fuzzy ART neural networks) and the control policy (i.e. the
actions the robots must execute for each state) simultaneously.
This obviously increases the complexity of the problem,
although a quantification of the increase of the complexity
is still part of our future work.

ACKNOWLEDGMENT

This work was supported by the research grants TIN2009-
07737 and INCITEO8PXIB262202PR

REFERENCES

[1] B. Bakker, V. Zhumatiy, G. Gruener, J. Schmidhuber. Quasi-Online
Reinforcement Learning for Robots. Proceedings of the International
Conference on Robotics and Automation (ICRA-06), Orlando, Florida,
2006.

QUINTIA ET.AL. : LEARNING IN REAL ROBOTS FROM ENVIRONMENT INTERACTION 51

[2] M. Rodriguez, R. Iglesias, C. V. Regueiro J. Correa and S. Barro,
Autonomous and fast robot learning through motivation, Robotics and
Autonomous Systems, vol. 55, pages: 735-740, 2007.

[3] Pablo Quintia, Roberto Iglesias, Carlos V. Regueiro, Miguel A. Ro-
driguez, Simultaneous learning of perception and action in mobile robots,
Robotics and Autonomous Systems, vol 58, pages: 1306-1315, 2010.

[4] M. A. Rodriguez, R. Iglesias, P. Quintia C. V. Regueiro, Parallel robot
learning through an ensemble of predictors able to forecast the time
interval before a robot failure, X1 Workshop of Physical Agents, 2010.

[5S] T. Kyriacou, R. Iglesias, M. Rodriguez, P. Quintia. Unsupervised
Complexity Reduction of Sensor Data for Robot Learning and Adaptation,
11th Towards Autonomous Robotic Systems (TAROS’2010). 2010

[6] Pablo Quintia, Roberto Iglesias, Miguel Rodriguez, Carlos Vazquez
Regueiro, SIMULTANEOUS LEARNING OF PERCEPTIONS AND AC-
TIONS IN AUTONOMOUS ROBOTS, 7th International Conference on
Informatics in Control, Automation and Robotics (ICINCO 2010), 2010.

[71 R. S. Sutton, Reinforcement learning: An introduction, MIT Press, 1998.

[8] Thomas Kollar, Kicholas Roy, Using reinforcement learning to Improve
Exploration Trajectories for Error Minimization, Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA 2006),
2006.

[9] Andrea L. Thomaz, Guy Hoffman, Cynthia Breazeal, Real-Time Interative
Reinforcement Learning for Robots, AAAI 2005 Workshop on Human
Comprehensible Machine Learning, 2005.

[10] G. A. Carpenter, S. Grossberg,D. B. Rosen, Fuzzy ART: Fast stable
learning and categorization of analog patterns by an adaptive resonance
system, Neural Networks, volume 4, pages: 759-771,1991.

[11] M. Oubbati, B. Kord, and G. Palm, Learning Robot-Environment Inter-
action Using Echo State Networks, SAB 2010, LNAI 6226, pp. 501-510,
2010

[12] Amanda J.C. Sharkey, Combining Artificial Neural Nets: Ensemble and
Modular Multini-Net Systems. Springer. 1999.

[13] Lior Rokach, Pattern classification using ensemble methods. World
Scientific. 2010.

[14] Player & Stage Project. http://playerstage.sourceforge.net. (Accessed on
26 February 2012).

