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Multi-agent system for fast deployment of a guide
robot in unknown environments

A. Canedo-Rodriguez, V. Alvarez-Santos, C.V. Regueiro, X. M. Pardo and R. Iglesias

Abstract—Nowadays, deploying service robots and adapting
their services to a new environment is a task which might
require several days. This is an important problem of robotics
in general, but specially when the goal is to bring robots to our
everyday life. In this paper we present a multi-agent intelligent
space, which consists on intelligent cameras and autonomous
guide robots. The deployment of the system does not require
expertise and can be done in a short period of time. The cameras
detect situations requiring the robots’ guiding services, inform
the robots accordingly, and support the robots navigation towards
the goal areas, without the need of a map of the environment.
An example of these situations requiring the robot guide service
could be a group of persons entering a museum. In this sense,
we also present an adaptive person follower behaviour intended
to be the basis of a route learning process, necessary to offer the
guide service.

Index Terms—Guide robot, multi-camera networks, intelligent
space, person following, feature weighting.

I. INTRODUCTION

ROBOTS are expected to become part of our everyday
life, either as assistants, house appliances, collaborating

in the care of elderly people, etc. These service robots need
to be able, on the one hand, to work on complex and dynamic
environments and, on the other hand, to offer advanced ca-
pabilities useful to people. Despite the increasing demand for
personal robots able to educate, assist, or entertain at home,
or for professional service robots able to sort out tasks that
are dangerous, dull, dirty, or dumb, there is still an important
barrier between the latest developments on research robots and
the commercial robotic applications available. The deployment
of robots and the adaptation of their services to different
environments usually require the tuning of their software and
hardware to the particular conditions of each environment.
This task is not trivial and might require several days in
most cases, which makes the process of bringing the robots
to everyday life extremely inefficient, specifically when the
robots are targeted for short term operation, as is typical in
sporadic events.

Research groups working on robotics receive numerous
requests to take the robots to social events (museums, forums,
etc.). However, conducting these demonstrations in different
places takes a big effort, unless the robot runs the same
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programs under boundary conditions known a priori. A fast
and easy deployment of robots in new areas is necessary
to get robots operating outside research centres and beyond
the continuous supervision of roboticists. In this sense, we
are currently involved in the development of general purpose
guide robots as part of the research project “Intelligent and
distributed control scenario for the fast and easy deployment
of robots in diverse environments”. Through this project we
try to develop robots which are able to participate in different
social events (e.g. schools, museums, forums, conferences,
etc.), providing useful information to visitors. Two of our goals
within this project are:

• Development of deployment strategies which reduce the
amount of time required for putting our robots in opera-
tion in different environments and conditions, and also the
expertise required to carry out this deployment. Robots
must be capable of being installed and put into operation
within very short periods of time. Robots should be able
to work in these environments without prior knowledge
about them (e.g. metric maps), or without requiring
significant changes on them. Finally, the deployment of
the robots should not require expert knowledge (i.e. it
must be as automatic as possible), prioritizing online
adaptation and learning over hard-coded and pre-tuned
robot behaviours.

• Improve the quality of the guide robot and the people’s
opinion on them, providing them with sophisticated ca-
pabilities. Our guide robots should be able to offer the
possibility of showing different routes to those people
attending an event, or to help them to reach a specific
location in the environment. Nevertheless, this requires
certain knowledge of these routes or places of general
interest. Therefore, our robots should be able to learn
routes and points of interest along these routes, by simply
following a staff member working in the same building
where the robot is. On the other hand, our robots should
not only provide these services on people’s request, but
they also should be able to identify situations in which
their services would be useful. Finally, our system must
be reliable, ensuring the continuity of correct service as
much as possible (i.e. our robots should be able to recover
and learn from failures when they occur).

Most of the research done so far has focused on self-
contained, stand alone robots that act autonomously, doing
all the sensing, deliberation, and action selection on board.
Nevertheless, in these systems, the robot sensing is restricted
to the capabilities of its on-board sensors, which limits the
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ability of the robots to respond to events and to learn from its
perceptions and actions. In this sense, technologies from the
fields of ubiquitous and pervasive computing, sensor networks,
and ambient intelligence could be integrated with robotics,
providing a new way to build intelligent service robots that
opposes the idea of stand-alone robotic platforms, namely
ubiquitous robotics [1]. Intelligent sensor networks, which can
be spread out over wider areas, will provide an invaluable
source of information from beyond robots’ immediate sur-
roundings, allowing the robot to respond to a wide range of
events, and making it look like it has initiative. Moreover, in-
telligent sensors could also enhance robots’ local perceptions,
supporting the movement of the robot in the environment. For
example, a camera might detect a group of people entering
a museum, and alert the robot about its presence, so that the
robot might approach this group of people, and offer them
its services. Finally, these intelligent sensor networks might
be used to build high level symbolic representations of their
location on the environment, removing or relaxing the need of
detailed maps.

In this paper, we present the first stage of the ongoing
research aimed at building an intelligent deployment strategy.
The deployment of robots consists on creating a multi-agent
distributed network of intelligent cameras and autonomous
robots. The cameras are spread out on the environment, so
that they can detect events (such as groups of people) which
might require robots’ services, they can inform the robots
about these events, and they can also support the movement of
the robots in the environment. The robots, on the other hand,
navigate safely towards those areas of interest detected from
the cameras, to offer the guidance along different routes. To
this extent, in this article we also present an adaptive person
following behaviour, able to work on crowded environments
and/or under challenging illumination conditions

Section II provides an overview of the previous works
concerning service robots, focused on their capability to be de-
ployed fast and easily. Section III provides a general overview
of our system. Section IV describes the tasks performed by
the camera network. Section V describes the basis of the route
learning process. Finally, experimental results and conclusions
will follow.

II. PREVIOUS WORK

Over the last two decades, there have been remarkable
examples of social robots, mainly of informational and guiding
type, able to work on social events, like Rhino (1995) [2], Min-
erva (1999) [3], Tourbot and Webfair (2005) [4], and Urbano
(2008) [5]. Both their quality and their deployment times have
improved importantly: from 180 days of installation required
by Rhino [4], to less than one hour required by Urbano for
a basic installation [5]. On the contrary, major ubiquitous
robotics projects have improved the quality and applicability
of their systems, but the reduction of their deployment time
has not received much concern.

Lee et al. (Hashimoto Labs.) [6], proposed the concept of In-
telligent Spaces, as rooms which perceive and understand what
is happening in them, and which perform tasks for humans.

They proposed to distribute sensors (typically cameras) with
processing capabilities and used them for supporting robots’
navigation [7], [8]. Similarly, Intelligent Spaces have been
applied successfully on the tasks of robot localization and
tracking from single [9] and multiple cameras [10], and also
on the task of robot navigation [11], [12], [13]. Regretfully,
these proposals do not deal with the problem of easy and fast
deployment in social environments, and they are not likely
to be appropriate for it: all of them have been designed
and validated to work in small places (less than 50 square
meters), typically requiring a great number of highly coupled
cameras, relying on a centralized processing and coordination,
and wired communications.

The Japan NRS project, and the URUS project are a step
closer to our philosophy. The NRS project focuses on user-
friendly interaction between humans and networked devices
(informative robots, distributed sensors, etc.), and they demon-
strated the use of their systems in large real field settings, such
as science museums [14], and shopping malls [15], during long
term exhibitions. In the same line, the URUS project [16]
proposes to deploy a network of robots, sensors and other
networked devices in wide urban areas (experimental setup
of 10000 m2), to interact with the people and to perform
different tasks (information tasks, transportation, surveillance,
etc.). Regretfully, none of these projects consider the efficiency
of the “deployment” phase, probably because their systems are
intended for long term operation in the same places, where the
costs of the deployment are not critical.

To the best of our knowledge, the projects above are the
most representative in the context of our work, and none of
them target the problem of the efficient robot deployment in
unknown environments. Thus, a solution to get robots out
of the laboratories to work in different environments within
reasonable time and cost is still to be proposed.

III. SYSTEM DESCRIPTION

Our goal is to design and develop guide robots able to offer
information and routes to the visitors of different events, in
which they will work. We want these robots to be flexible
to work in different environments, requiring the minimum
adaptation time, effort and expertise in order to get them
working, avoiding any software or hardware tuning between
environments. Our system would detect groups of visitors,
and the robot would navigate safely within the environment
towards them, to offer them guiding services along pre-learnt
routes. Also, these guide robots should not require prior
knowledge of the environment (e.g. metric maps), since they
should adapt as fast as possible to it. In the absence of this
knowledge, the users of our system will not use a map to teach
the robots the routes of interest, but they will make the robots
to follow them along the real routes. Therefore, our robots will
also need to be able to follow a human teacher through the
environment. Usually this environment is also crowded with
other people, but this should not confuse or disturb the robot.

With this system in mind, we have identified two different
and important phases: deployment phase and use phase. The
first one is the configuration phase, consisting on deploying
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Fig. 1. Example of the deployment of the multi-agent system: camera-agent 3 (CAM3) is detecting a Call Event, while robot-agent A (RA) is being sighted
by camera-agent 1 (CAM1) and robot-agent B (RB) by camera 2 (CAM2).

all that it is necessary for the system to work, and on teaching
the routes to the robot. We require this configuration phase
to be as short and fast as possible, and it also must be easy
to accomplish it for anybody (even non expert users). In the
second phase, the system should detect groups of visitors that
might require the robots’ guiding services (Figure 1). Robots
should navigate towards this groups of people to offer them the
possibility of following routes that have been previously learnt.
In short, in the first phase we would deploy and configure the
system, while in the second phase the system would actually
give the services for which we designed it.

To accomplish these tasks, we propose a multi-agent system
such as the one illustrated in Figure 1, which consists on
two main elements: a) an intelligent control system formed
by camera-agents spread out on the environment (CAM1 to
CAM5 in the Figure), and b) autonomous guide robots navi-
gating on it (RA and RB in the Figure). Basically, the cameras
detect Call Events (CE in the Figure) within their Fields of
View (FOVs from now on): typically, groups of visitors. Then,
the cameras support the robots to navigate towards the Call
Events, so the need of a map is avoided. Once the robots
arrive at the destination, they offer information or guiding
along routes of interest to these people. The agents coordinate
in a fully distributed fashion, based on local interactions. This
allows us to introduce more agents in the system without major
changes, favouring scalability and robustness. In Section III-A
and III-B we describe both agents in more detail.

A. Camera-agents

Each camera-agent consists on an aluminium structure like
the one represented in Figure 2, which is easy to transport, to
deploy and to pick up. As we can see, the aluminium structure
is made up of a box, which contains a processing unit, a WIFI
Access Point and power supplies, and a mast which holds one
or more video cameras (one for each camera-agent).

On the other hand, the software consists on four concurrent

Fig. 2. A) Camera-agent (left) and robot-agent (right). B) Hardware elements
that make up each camera-agent.

modules, responsible for carrying out the tasks corresponding
to these agents (Section IV):

• Vision Module: responsible for the detection and tracking
of robots and call events.

• Network Module: responsible for wireless communica-
tions.

• Call Module: responsible of notifying robots about call
events present in its FOV.

• Neighbourhood Module: responsible of detecting neigh-
bourhood relationships with other cameras by detecting
common parts among their FOVs. As we will describe
later, by establishing local neighbourhood relationships
and by interacting locally with their neighbours, the
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cameras will be able to form routes among them, and
to support the navigation of the robots.

B. Robot-agents

We work with wheeled robots like the Pioneer 3DX,
equipped with a laser scanner and a video camera (Figure
2). The software of the robot is divided in two concurrent
modules: a Network Module for communications and a Control
Module for navigation. The Control Module is based on the
classic but robust Potential Fields Method: the robot moves
towards a goal position which exerts an attractive force on
it, while the obstacles detected by the laser scanner exert
repulsive forces, so that the robot avoids colliding with them.
As we will see later, this goal and therefore the attractive force
can be either provided by cameras when supporting robots’
navigation, or by the users of the system when the robot is
learning a tour route by following any of them.

IV. DEPLOYMENT OF AN INTELLIGENT NETWORK SPACE

As we have stated before, camera-agents are responsible for
detecting events requiring robots’ presence, and for supporting
robots’ through the commitment of their duties. In order to
fulfil these objectives, the cameras perform the following
low-level tasks: dynamic neighbourhood detection, distributed
route planning, and support to robot navigation. First, upon
distribution in the environment, each camera discovers who
are its camera neighbours (dynamic neighbourhood detection).
When a robot is required to go from one camera to another,
the cameras execute a distributed process based only on
local interactions with their neighbours, to discover all the
possible inter-connection routes (distributed route planning).
Finally, each camera supports the robot’s movement towards
the next neighbour camera on the route (support to robot
navigation). We would like to remark that neither a global
camera topology representation, nor the calculated routes are
stored anywhere: each camera keeps only information about
its neighbour cameras. This will be explained in the following
sections.

A. Dynamic Neighbourhood Detection

The correct functioning of the solution we propose requires
each camera being aware of which of the other cameras in
the intelligent network are its neighbours, and which parts
of their FOVs overlap (this overlapping FOVs will be called
Neighbourhood Regions from now on). We would like to
remark that our system does not require the cameras to
know the relative poses (position and orientation) of their
neighbour cameras, thus we avoid the introduction of complex
matching techniques [17]. Instead, in our system, each camera
determines which cameras are their neighbours by detecting
simultaneous high-level events, like the detection of a robot
from several cameras. Whenever a camera detects a robot, it
stores its position and broadcasts it to all the other cameras.
Periodically, each camera checks whether the detection of the
robot is taking place simultaneously with the detection of
the same robot but from any other camera, in which case a
neighbourhood relationship will be established.

With this automatic process, the system avoids the need
of a metric map of the environment, or even the need of
pre-installed knowledge about the distribution of the cameras.
Moreover, since the neighbourhood relationships can change
dynamically (e.g. if some camera is moved or if it stops
working), the cameras are continuously updating this neigh-
bourhood information to adapt to eventual changes, without
requiring users to re-configure them.

B. Distributed Route Planning

A route is an ordered list of cameras through which the robot
can navigate. Basically, the robot will go from the FOV of one
of the cameras to the FOV of the next camera on the route,
without needing metric maps of the environment. These routes
will be generated on demand as a result of local interactions
among the cameras, without the intervention of any central
agent.

We will explain the route planning process through an
example, depicted in Figure 3. In this Figure, we represent
the system as a graph, with cameras as nodes and their
neighbourhood relationships as arcs. However, note that this
graph is just for illustration purposes, none of the entities in
our system handle this global information. In this example,
we assume that robot RA is available (willing to accept any
call), while robot RB is not. We also assume that camera 1 is
detecting a call event (CE), camera 2 is seeing robot RB, and
camera 5 is seeing robot RA.

If a camera, like camera 1 in Figure 3-A, detects a call
event requiring the presence of a robot, it broadcasts a call
to all the robots. If a robot is willing to attend the call, it
broadcasts an acceptance to all the cameras, like robot RA
does. Then, those cameras which receive this acceptance and
which see this robot will forward the message to its camera
neighbours, starting a back propagation process to create a
route, as camera 5 does in Figure 3-B: through this process,
there will be a message being passed from camera to camera,
until it reaches the camera which sees the call event. To do so,
each camera which receives this message includes its identity
in it, and forwards it to its neighbours (except to those through
which the message has already passed). In the Figure, it is
clear that camera 5 includes its identity in the message and
forwards it to its neighbours, camera 3 and 4, which do the
same, and so on. Finally, camera 1 receives all the acceptances,
so it knows that RA is willing to accept the call, and that it
could follow two possible routes: 5-3-1 and 5-4-2-1. After
this, this camera would select the route which involves less
cameras (5-3-1), and inform robot RA accordingly. It is clear,
after this description, that the route planning does not emerge
from a globally coordinated process, but from multiple local
interactions among agents just handling local information.

C. Support to Robot Navigation

When a robot is following a route, each camera on the route
helps it to move towards the next Neighbourhood Region, so
the robot advances in the route. For doing so, each camera
keeps information both about its neighbours and about its
Neighbourhood Regions (overlapping FOV areas). Also, when
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Fig. 3. Distributed route planning procedure. Cameras (1, 2, 3, 4, 5) established their neighbourhood relationships forming a network altogether. A) Call
event detection and call for robots. B) Back propagation process for route formation. See the text for a detailed explanation.

a camera detects a robot, it tracks its position and movement
direction. This is all the information required by the camera
to support robots’ navigation.

First of all, if a camera sees a robot, it informs it, after which
the robot answers with the route which it is following (in
case that it is following any route). Then, the camera informs
the robot about the direction that it should follow to get to
the Neighbourhood Region shared with the next camera on
the route, taking into account the robot’s current movement
direction. Since the Potential Fields Controller of the robot
considers this direction as an attractive force, the robot moves
from the FOV of each camera towards the FOV of the next
camera on the route, until it reaches the call event.

V. ROUTE LEARNING

As we have previously said, one of our goals is to build a
guide robot which is able to work in different environments.
This robot will offer a route service which can be divided
in two parts: route learning, and reproduction of previously
learnt routes. So far, our work has concentrated on the first
part: route learning.

Teaching a new route to the robot should require neither
expertise nor time, since it is a process that must be done
every time the robot is brought to a new place. On the other
hand, we do not want the users to teach the routes using
a map of the environment, since maps are not used by our
system. For these two reasons, the robot will learn routes while
following a human (the target from now on) who plays the role
of the teacher. This process must be safe, avoiding collisions
of the robot with the environment, and it must also be robust
and adaptive, avoiding mistaking the target for the rest of the
people present in the same scene (we call distractor to each
person moving around the robot and that is not the target).
Our goal is to create a robust system for person following
and target recognition. Our system must be flexible enough
to handle important variations in illumination, scene clutter,

multiple moving objects, and other arbitrary changes in the
observed scene. On the other hand the person being recognized
and followed will not need to wear special clothes or gadgets,
thus achieving a more natural human-robot interaction. The
presence of distractors moving around the robot might occlude
the target, or these distractors might even look similar to
the target due to changing light conditions. This is critical,
especially when the robot is being taught different routes in
crowded environments, where confusing the target might cause
the robot to learn wrong routes, and to start over the learning
of the route again.

In the next sections we will give a brief description of the
person following behaviour that we have designed.

A. Person Following Overview

An overview of the system we have developed to solve the
person following and target recognition problems can be seen
in Fig. 4. On one hand, the inputs to the system are the images
provided by a camera which is placed on top of the robot, and
data from a laser scanner also located on the robot (Fig. 2 A).
On the other hand the system provides the position of the
target to a robot controller, which will use this information
to determine the motor commands that the robot must carry
out so that it follows the target and avoids colliding with the
environment.

As we can see in Fig. 4 the system we have developed
includes two modules which work together to obtain the
target’s position:

• The camera module: The task of this module is to avoid
mistaking the target for the distractors. To do this, this
module will recognize the target from its torso; in particu-
lar it will build, store, and keep updated information about
the visual features of the target’s torso. An outline of the
tasks that this module carries out for every frame acquired
from the camera, is: first, the module detects people in the
image by using the algorithm developed by Dalal [18].
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Fig. 4. Schematic representation of the person following behaviour. The camera module identifies the target and sends information about its location to the
laser module, which is in charge of tracking its position. In the case that the target is not identified by the camera the laser module can still work.

Using this algorithm it is possible to detect areas in the
image in which there seems to be a person. Next, for
each one of these areas, this module extracts the visual
features of the region that contains the person’s torso.
These features are then compared with the features of
the stored target’s torso to determine whether the person
in the image is the target or not. Finally, if the person
in the image is considered to be the target, the features
of the target’s torso might be updated using the current
detection. On the other hand, this module also determines
the angle at which the target is located with respect to the
forward direction of the robot, and sends this information
to the laser module. When the target is not found no
information will be sent to the laser module.

• The laser module: The task of this module is to track
the robot’s target in the course of time. First, this module
uses the information provided by a laser scanner located
on the robot to carry out a leg detection process. Then,
it computes the angles at which the legs are detected
with respect to the forward direction of the robot, and
sends these relative angles to the person tracker block
(tracker in Fig. 4). So far in this description, both sensor
modules seem to work separately, nevertheless if the
camera provides information about the target, the tracker
block will merge it with the information about the leg
positions.

According to the previous description, it is straightforward
to realize that we use two sensor modalities: a laser scanner,
and a camera. The example shown in Fig. 5 summarizes the
merging process carried out by the person tracker when it
receives information from the camera module. In this figure
we can observe three pairs of legs located at the positions
L1, L2 and L3. We can assume that these pairs of legs are

detected in the laser module, which also computes the angles
at which they are detected with respect to the forward direction
of the robot: θpair1, θpair2 and θpair3 in Fig. 5. The point P
is the last position where the target was detected, and θtarget,
is the angle at which the camera module found the target, with
respect to the forward direction of the robot.

Using this information, the tracker block will decide which
one of the pairs of legs (pair 1,2 or 3) corresponds to the
target. The decision is taken by assigning a probability p to
each pair of legs:

p =
c(∆θ) + l(x)

2
(1)

where:
1) c(∆θ) is the probability of each pair of legs being the

target, according to the camera module:

c(∆θ) =

 1, 0 ≤ |∆θ| ≤ 4
1.5− 1

8 |∆θ|, 4 < |∆θ| ≤ 12
0, otherwise

(2)

where |∆θ| is the absolute value of the difference
between the angle where the camera finds the target
(θtarget), and the angle where the laser locates the group
of legs (θpairN ).

2) and l(x) is the probability of each pair of legs being the
target, according to the laser:

l(x) =

{
1− 2

3x, 0 ≤ x ≤ 1.5
0, otherwise

(3)

where x is the distance in meters from the position of
each group of legs LN to the last position where the
target has been detected, P .

The equation for the c(∆θ) probability was obtained heuris-
tically after checking the behaviour of the robot when it moves
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Fig. 5. Example situation where the sensor fusion process takes place.

on an uneven floor. In general we have observed that the
vibrations due to this kind of floor might make the camera
oscillate in a range of sixteen degrees (eight degrees to each
side). This is the reason why c(∆θ) shows a tolerance in that
range, i.e., all the pairs of legs which are located within 8
degrees with respect to the direction of the target detected by
the camera, should be considered as belonging to the target
with a probability higher than 0.5 (Eq. 2).

To build the equation Eq. 3 for l(x) we assume that the
walking speed of the target is not higher than 1.7m/s (the
average human walking speed is about 1.33m/s). In this case
the target should not move more than 0.2m every 100ms
(which is the elapsing time between two consecutive laser
scans). We also decided to increase the margin of tolerance,
due to the high probability of getting noisy measurements;
the central position of a pair of legs can be wrong if only one
is properly detected, etc. This is the reason why we assume
that the position of the target should not change more than
0.75m in two consecutive acquisitions (region around P with
a probability of finding the target higher than 0.5, Eq. 3).

We have focused our work on the camera module. In
particular we want to find a strategy of combination of visual

cues that allow the discrimination of people in different envi-
ronments, that is robust to changing illumination conditions,
and that is able operate in real-time. The achievement of
this would allow robust human-robot interactions, and good
person following behaviours, in which misclassifications of the
target are less frequent despite of the existence of temporary
occlusions, or periods of time in which the target is out
of sight. Another good reason for focusing our work in the
camera module is due to the fact that, nowadays, it is much
more expensive to include in the robot a laser scanner than
a conventional camera. This allows cheap robots to perform
human recognition.

In the next two subsections we describe in detail the
two most important parts of the camera module, the human
discrimination algorithm and the online feature weighting
process.

B. Discrimination algorithm

The discrimination algorithm pursuits the differentiation of
the demonstrator (target being followed by the robot) from the
rest of the people moving in the same area (distractors). This
algorithm runs inside the camera module (human discrimi-
nation block in Fig4). Basically, the discrimination algorithm
will use the information of the torsos extracted from the people
detected in the image, to identify whether the target is present
or not. To understand the process we must realize the fact that
there are two clearly different states: initialization stage, and
running stage.

During an initial stage, when the robot is about to follow
the instructor, it is assumed that the target is located in front of
the robot. During this stage the system builds a model of the
target by extracting the distribution of the following features
from his torso: hue, lightness, saturation (colour features from
the HLS colour space), local binary patterns [19] and the edges
detected with the Canny method [20] (texture features). This
initial stage is very fast and goes unnoticed for the instructor.
After few instants the robot will start moving and following the
target, differentiating it from the distractors (running stage).

During the running stage, the discrimination algorithm
computes the dissimilarity between the target’s model and the
torsos detected in the image. First, in order to obtain the dis-
similarity value, we need to compute the inverse Bhattacharyya
distance between the histogram of each torso’s feature, hf , and
the histogram of the same feature in the target’s model htf :

df =

√√√√1−
b−1∑
i=0

√
hf (i)htf (i) (4)

where b is the number of bins in the histograms. Using these
distances we can define the dissimilarity between each torso
and the target’s model as the average value of the df for the
five features being used:

dissimilarity =
1

n

n∑
f=1

df ∈ [0, 1] (5)

where n is the number of features, five in our case.
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Finally, the discrimination algorithm will decide whether
there is a torso that is similar enough to be considered the
target, and whether the system should update the target’s
torso using the current detection. Since our dissimilarity value
oscillates from 0 (very similar or equal) to 1 (a completely
different torso) we have set two thresholds. The first one
(thr1 = 0.4) is the limit to consider a torso as an instance of
the target, while the second one is a more restrictive threshold
(thr2 = 0.2), and it is used to decide when the target’s model
can be updated with the torso which is being identified as the
target. This dual-threshold strategy avoids the pollution of the
target’s model with a false positive detection.

However, the dissimilarity measure described before (Eq. 5)
is not yet robust enough to cope with real world conditions,
such as strong illumination reflections, shadows, occlusions,
and situations where the algorithm has to discriminate among
very similar torsos. Because of this, we have designed an adap-
tive weighting process to dynamically enhance the differences
between the target and the distractors, this process is described
in the following section.

C. Online Feature Weighting

This section describes the process called ’Feature weight-
ing’ in Fig. 4. This process consists on dynamically selecting
the most appropriate weights for each feature to adapt to the
changes in the environment, such as the illumination condi-
tions or people’s clothes, and thus enhance the discrimination
of the target from the distractors. This process has been studied
in the area of image retrieval with query relevance feedback. It
consists on measuring the discrimination ability of each feature
when differentiating between two classes. In robotics, we can
define online feature weighting for human discrimination as
the process of dynamically assigning high weights to those
features that show a high discrimination ability between the
target and the distractors. This is very useful when target and
distractors show a similar distribution on some features but
differ on the others. We can think of, for example, a target
and several distractors wearing similar colour clothes but with
different patterns. In this case it would be more useful to focus
the dissimilarity on the texture while discarding the colour
features.

First, to be able to enhance dissimilarity between the target
and the distractors, we need to store information about the last
distractors detected from the robot in a list. The distractors list
is built and updated every frame according to the following
rules:

1) If a torso can be classified as the target, the rest of the
torsos that have been detected in the same frame will
be placed on the distractor list provided that they do not
overlap in the image with the torso corresponding to the
target.

2) If there is no torso that can be classified as the target,
those with a dissimilarity value higher than 0.5 will be
put on the distractor list.

3) The list has a size limit of five torsos. When the limit
is reached, the oldest torsos will be removed. This size
limit of the list is set to consider only the most recently

seen torsos. A larger distractor list would save torsos
which will not be seen again in a short period of time,
thus reducing the performance of the feature weighting
process.

To assign the most suitable weights to the subset of features
being used, we need a scoring function which should measure
the discrimination ability of each feature at each instant. This
is why we have proposed to use the Bhattacharyya distance
as a score function [21]: our score is based on Eq. 4. The
idea behind this score is that the best features should be
the ones that minimize the distance between the last torso
classified as the target and the previous target model (df,target,
in Eq. 6) and, at the same time, it also maximizes the average
distance between the distractors and the current target model
(d̄f,distractors in Eq. 6):

scoref = d̄f,distractors − df,target (6)

Using the aforementioned function we can score the dis-
crimination ability of each feature, and thus weight the impor-
tance of each feature in the human discrimination algorithm
(Section V-B). In particular we replace Eq. 5 with a new mea-
surement that considers the weights of the different features:

dissimilarity =

n∑
f=1

wfdf ∈ [0, 1] (7)

Initially, the weights are the same for all features, i.e., wf =
1
n , ∀f = 1, ..., 5, but as the robot proceeds moving in the
environment while following the target, the weights will be
updated according to Eq. 8:

wf = wf + scoref (8)

where wf is the weight for feature f . Every time the weights
change, it is important to re-normalize them, so that their sum
is one.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have tested the system on the Department of Electron-
ics & Computer Science, at the University of Santiago de
Compostela, Spain. The robot used in the tests is a Pioneer
P3DX with a SICK-LMS200 laser and a PointGrey Chameleon
CMLN-13S2C with a FUJINON FUJIFILM Vari-focal CCTV
Lens (omnidirectional). On the other hand, each camera agent
used either an Unibrain Fire-i camera, or an omnidirectional
camera like that of the robot. The processing units where
either a DELL Latitude E550 (Intel(R) Core(TM) 2 Duo P8600
@ 2.4 GHz, 4 GB RAM) or a Toshiba Satellite A100-497
(Intel(R) Core(TM) 2 Duo T5600 @ 1.83 GHz, 4 GB RAM).
Regarding the software of the controllers, it was implemented
using the Player(v-3.0.2)-Stage(v.4.0.0) platform for the robot,
and the OpenCV 2.2 library [22] for image processing. Finally,
messages were passed over an IEEE 802.11g local wireless
network via UDP.

Although the intelligent camera space and the sensor data
from the robot already let us record a route, we are still
working on its reproduction, thus the experiments that will be
presented in this section do not include route reproduction. We
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Fig. 6. Trajectories described by the robot in three tests. In the leftmost test, the robot R navigates from the FOV of camera A, passing through B, C and
finally D, which triggered the call upon detection of the call event M. In the other tests, the robot navigates from the FOV of camera A, passing through B,
towards C. The map and trajectory of the robot was obtained from the robot’s odometry and laser readings using the PMAP SLAM library. In the figure we
can also see the approximate positions of the cameras and their FOVs.

evaluated our system in two different experiments. In the first
one, we tested how the cameras detect a call event, establish
neighbourhood relationships among them, generate global
routes, and support robot navigation to reach the call event.
For simplicity, we used a colour marker in order to simulate
the call event, but in the future we will include the detection
of groups of people. The second experiment consisted on
following a human through the department simulating a route
learning process. In this experiment we focus on evaluating
the performance of the human discrimination algorithm, and
we also give some commentaries about the robot behaviour
when following the person.

A. Experiment I - Robot navigation to attend a call event
We deployed a multi-agent network over the Department

of Electronics and Computer Science at the University of
Santiago of Compostela. We have performed three different
tests, represented in Figure 6.

In the first test (Fig. 6 on the left), the network consisted
on a robot-agent (R), four camera-agents (A, B, C, D) and
a call event (M). Camera D was the one which sighted the
call event (M), started the robot call process, and triggered
the route formation. Once the robot, R, received the route to
follow, it started navigating through the network towards M,
supported by A, B, C, and D, while avoiding the obstacles
detected.

In the second and in the third tests, the network consisted
on three cameras (A, B, C) instead of four. As we show in
Figure 6, the performances of these tests were similar to the
performance of the first one, described above.

The robot’s trajectories and the maps shown in Figure
6 were obtained from the robot’s odometry and laser logs
using the PMAP SLAM library, compatible with Player-Stage.
Nevertheless, these maps have only been used for visualization
purposes, but not during the functioning of the system. We
repeated these tests a few times, obtaining in all of them a
satisfactory performance of the robot.

In this experiment each camera had only two neighbours,
nevertheless the FOV of three or more cameras might overlap
and therefore the number of neighbour cameras can be higher
than two. Our system would be able to cope with this: the route
that is finally selected to be followed by the robot is always
the one that involves the fewest number of cameras. As part
of our future work, we plan to run new experiments in wide
environments where the number of cameras with overlapping
FOV will be higher than two (for example in big halls).

B. Experiment II - Person following
We have also tested the person-following behaviour through

several routes in the same environment where we run the
previous experiment. In each route a target walked at least 50
meters while the robot followed him, and at least one distractor
was walking close to the target to evaluate the discrimination
power of the online feature weighting algorithm. We have
recorded one of these routes, and used it to evaluate the
benefits of using our proposal over the classic approaches
based on the comparison of features without weighting them.
This sequence also let us test the system when the illumination
conditions change significantly, altering the colour and texture
properties of the torsos.

On the recorded sequence, the torsos are expected to be
discriminated using texture and lightness features since both
are mainly black but one has light grey drawings on it. Figure
7 shows that the results confirm what we expected: two of the
features represent 80% of the total sum of weights during most
of the video sequence. Analysing Figure 7 we can also notice
that there is a small time interval at the beginning (from T0 to
T1), in which there is no predominant feature and the weight
values are similar to each other. This is due to the illumination
conditions and pose of the target. Nevertheless this situation
changes soon, achieving a small set of prominent features that
increase the separability between target and distractors.

We have also selected frames where confusion could arise:
the selected were all but those where the target was the only
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Fig. 7. Evolution of feature weights during one experiment. These weights determine the importance of each feature in the person following behaviour.
According to the evolution of the weights it is noticeable that ’edges’ and ’lightness’ are the most important features during most of the experiment. Our
algorithm is able to find the relevant features in most cases, although there are still some cases like the one between T0 and T1 where it is hard to find a
relevant subset of features due to fast changing of the illumination conditions or the pose of the target.

TABLE I
CONFUSION MATRIX USING THE CLASSIC APPROACH

Actual\Classif. Target Distractor

Target 139(80.4%) 34(19.6%)

Distractor 8(3,6%) 212(96,3%)

detected human and thus confusion was not possible. With
this selection we have built a confusion matrix out of the
results observed in these frames. Table I shows the confusion
matrix when using the classic approach and Table II shows
the confusion matrix when using our proposed weighting of
the feature space. We can see that the recognition ratio of the
target increased from 80% to almost 100%. False positives
decreased from eight to three reducing the number of times
that the robot might follow a distractor as if he were the target.

TABLE II
CONFUSION MATRIX USING OUR APPROACH

Actual\Classif. Target Distractor

Target 142(99.3%) 1(0.6%)

Distractor 3(1.3%) 217(98.6%)

These results confirm that our system is capable of adapting
to difficult conditions maximizing the dissimilarity target-
distractor. We have also tested the person-following controller
operating on the real robot during several 10 minute walks
around the hall and different corridors of the same location
as the other experiments. The robot had to follow the target
when both the corridors and the premises of the building
were usually crowded with students walking around. The
robot’s maximum speed was set to 1 m/s, thus allowing the
target to walk at normal speed. The robot was able to avoid
collisions with the environment thanks to a potential fields
method implemented on the robot controller. The robot was
able to follow the target keeping a distance that ranged from
0.4 meters to 6 meters, although the average distance between
the robot and the target was 2 meters.

VII. SUMMARY, CONCLUSIONS, AND FUTURE WORK

In this paper, we have presented a system for fast and
easy deployment of guide robots in unknown environments,
together with a person following behaviour, which is the basis
of the route learning ability usually desirable for any advanced
guide robot. The work presented here is part of a bigger
project, in which we aim at developing robots which are able
to participate in different social events, providing useful infor-
mation to visitors. We based our design in the requirements of
scalability, robustness, flexibility, and adaptability. On the one
hand, we achieve fast and easy deployment by not requiring
prior knowledge of the environment (e.g. metric maps), nor big
expertise in order to deploy it. Moreover, we have designed
it to not require any software or hardware tuning, so as to
be as self-contained and automatic as possible. We have also
established the basis of the route learning ability of the guide
robots, by presenting an adaptive person following behaviour.

Our system consists on a distributed multi-agent network
formed by two kinds of agents: intelligent cameras spread out
on the environment, and autonomous robots navigating within
it. The camera network senses the environment, informs robots
about events happening out of their immediate surroundings
(which enhances their initiative), and supports them on their
duties, removing or relaxing the need of a map. We did not
use any centralization or hierarchy, but biologically inspired
self-organization processes, based on distribution, inter-agent
independence, and emergent behaviours out of local interac-
tions, instead of global plans. This resulted on a system highly
independent of environment changes, redundant, and flexible
enough to cope with a wide range of spatial distributions of
the cameras.

On the other hand, the person following behaviour which
we have built combines a laser based tracker, with the dis-
crimination power of a camera. The discrimination algorithm
running on the camera is inspired on image retrieval systems,
which are able to adapt a set of weights for each situation that
the robot might encounter. These weights enhance dissimilarity
between the target being followed and the other people present
in the scene, avoiding getting confused with them.
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The work presented here is just the beginning of a bigger
project. In future stages of our research, we will include the
detection of real world events requiring robot’s presence, such
as groups of people interested on the services offered by
the robot. Also, we will automatize the detection of overlap
FOVs attending at people moving within the environment. At
more advanced stages, we will explore more flexible camera
arrangements, including multiple

increase the complexity of the relationships between the
cameras and even remove the FOVs’ overlap restriction at
more advances stages. Moreover, we plan to improve the
robustness of the robot navigation, by learning from people
trajectories. Finally, we plan to keep improving the person fol-
lowing behaviour by including gesture recognition to enhance
the process of route learning with a more natural interaction
between the human and the robot.
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