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Obstacle Avoidance in Underwater Glider Path
Planning

Josep Isern-González, Daniel Hernández-Sosa, Enrique Fernández-Perdomo,
Jorge Cabrera-Gámez, Antonio C. Domı́nguez-Brito and Vı́ctor Prieto-Marañón

Abstract—Underwater gliders have revealed as a valuable
scientific platform, with a growing number of successful envi-
ronmental sampling applications. They are specially suited for
long range missions due to their unmatched autonomy level,
although their low surge speed makes them strongly affected
by ocean currents. Path planning constitutes a real concern for
this type of vehicle, as it may reduce the time taken to reach a
given waypoint or save power. In such a dynamic environment
it is not easy to find an optimal solution or any such requires
large computational resources. In this paper, we present a path
planning scheme with low computational cost for this kind
of underwater vehicle that allows static or dynamic obstacle
avoidance, frequently demanded in coastal environments, with
land areas, strong currents, shipping routes, etc. The method
combines an initialization phase, inspired by a variant of the A*
search process and ND algorithm, with an optimization process
that embraces the physical vehicle motion pattern. Consequently,
our method simulates a glider affected by the ocean currents,
while it looks for the path that optimized a given objective. The
method is easy to configure and adapt to various optimization
problems, including missions in different operational scenarios.
This planner shows promising results in realistic simulations,
including ocean currents that vary considerably in time, and
provides a superior performance over other approaches that are
compared in this paper.

Index Terms—Path planning, underwater gliders, obstacle
avoidance.

I. INTRODUCTION

Robotic Unmanned Underwater Vehicles (UUV) have
demonstrated to be a valuable tool for a wide range of appli-
cations in oceanography and surveillance, including structure
inspection, environmental monitoring and control or security.
Since the possibilities of human intervention are quite limited
during the robot mission, these vehicles can be conceived as
physical agents that must perform their tasks with a high
level of autonomy. In fact, they are commonly known as
Autonomous Underwater Vehicles (AUV). However, it is hard
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to accomplish this goal as a consequence of the inherent
dynamism and uncertainty of the state of both the vehicle and
its environment, estimated with a separate model each.

A glider is a type of UUV that operates by modifying its
buoyancy in a cyclic pattern. These changes produce vertical
impulsion that is transformed into an effective but low surge
speed by means of the combined effect of internal mass dis-
placements and the vehicle wings and tail orientation, resulting
in a succession of up/down slope or climb/dive transects (see
Fig. 1). In terms of power consumption, the glider saw-
tooth profile is very efficient, since the gravity is used as
the power source for propulsion, that is the most critical task
of UUVs autonomy. Besides processing and communication,
the batteries are only used intensively during a small fraction
of the cycle time to change the vehicle buoyancy, using an
electric pump; and, much less demanding, to modify the
vehicle attitude and bearing angle while submerged using
low consumption actuators. Ocean gliders have been applied
successfully in Maritime Research, and they are expected to
become one of the reference technologies as observational tool
in the coming years [19].

Fig. 1. Glider saw-tooth navigation pattern.

Periodically, the glider surfaces to detect its position by GPS
and to communicate data via satellite to the ground station.
It waits a few minutes for new orders. While the glider is
submersed it does not change its heading. We have taken into
account this feature (time discretization) to develop our path
planner.

The top view of the surfacing interval and the yo-yo profile
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stint (Fig. 2) shows how on surface the glider trajectory is
known using the GPS. But while submerged, after the diving
point it is unknown, although it can be estimated up to some
uncertainty. At each surfacing point such uncertainty collapses
with the first GPS fix.

Fig. 2. Top view of a glider navigation pattern.

The main source of uncertainty is the drifting caused by
ocean currents. Their low surge speed (aprox. 0.3 - 0.4 m/s)
make gliders far more influenced by ocean currents than other
UUVs that can overcome them. Gliders may drift significantly
from its intended trajectory, making path planning a crucial
tool for this type of vehicles, as it might reduce the time spent
to reach a given waypoint or save power.

A. Motivation

Our work has been organized around the analysis of path
planning requirements in presence of obstacles and the study
of its performance in different scenarios. Regarding the former,
we have identified several factors that, in our humble opinion,
should be assessed at the design phase of a path planner for
ocean gliders.

In Robotics, path planning addresses the problem of getting
a robot from one point to another. This simple task is very
challenging when it is to be solved under the influence of
ocean currents. The currents field directly affects the move-
ment of the vehicle so that the cost of displacement is variable
and anisotropic at different points in space. Compared to
ground mobile robotics, the underwater scenario is much more
challenging, since operating conditions can vary notably even
on reduced areas and over a relatively short period of time. In
the particular case of ocean gliders, all the mentioned difficul-
ties are magnified. Automatic path planning constitutes a key
capability because underwater robots are usually commanded
in terms of goal navigation waypoints to be hit or target regions
to be explored.

For these reasons, most of classical approaches in the path
planning field are not directly applicable to this problem.
Many path planners apply a certain form of discretization,
either on the trajectory or command space, to reduce the

computational cost. However, the downside of discretization
lies in the presumably degradation of the quality of the results,
that might lead to unrealistic trajectories.

The execution time is another factor which is often under-
stated due to the typical long duration of glider missions and
immersion periods. Although this is generally true, it is not
the case when the path planner must respond within a reduced
time interval to face an unforeseen situation.

In this paper we analyze the path planning problem in
specially troublesome scenarios, mainly coastal, that include
static and dynamic obstacles such as strong currents, land
areas or heavy traffic shipping routes. There, the planner
pursues the maximization of the distance traveled towards a
distant way-point —or, in other words, the minimization of
the remaining distance to reach it— over a short and known
period of time. This corresponds to a leg/stage range planning
with a maximum duration of three or four days and a typical
trajectory length around 100 km. For this temporal horizon,
ocean current forecasts of high temporal resolution are used.
These forecasts can be obtained from some Regional Oceanic
Models (ROMs) with hourly outputs. ROMs are forecast
systems of currents and other oceanographic variables that
are based on numerical models. In such configuration, the
path planning problem is clearly performed in a time-varying
scenario.

In this work, we present a novel path planning technique for
underwater gliders in troublesome coastal environments that
introduce an initialization module to avoid obstacles inspired
on A*-based search and Nearest Diagram (ND) algorithms
[14] that is combined with optimization process. The glider is
modeled here as an intelligent agent that senses the speed and
direction of forecast of ocean currents via ROMs to generate
an optimized trajectory that tries to fulfill a given task. A
path planning allows reducing the time, and consequently the
energy consumption. Thus, we will have more autonomy. The
method is quite flexible, as it can be applied to a number
of other optimization problems with few adaptation or con-
figuration. It shows promising results in realistic simulations,
under highly time-varying ocean currents. The proposal gives
a superior performance when compared with other approaches.

This paper is organized as follows: the next subsection
includes a revision of UUVs path planning approaches. The
next section presents an explanation of the previous steps of
our new approach. Then, in section III, the proposed method is
described in detail. Section IV presents the experiments carried
out to validate our path planning algorithm. Finally, section V
contains the conclusions extracted from this work.

B. Related works
Path planning for UUVs has been a subject of interest for

researchers since the introduction of these robotic platforms.
Different approaches have been developed applying techniques
that include searching algorithms based on artificial intelli-
gence, potential field modeling, multi-objective optimization,
etc. Some of the most relevant, in our opinion, are summarized
in the following.

There exists a number of works that have addressed this
problem with different optimization frameworks. First, graph
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methods are adequate to solve the problem assuming not time-
dependent ocean currents. The A* algorithm [7] is a classical
path planning method from Artificial Intelligence. It’s a graph
method that discretizes the search space using an uniform grid.
For example, Carroll et al. [3] apply this strategy on a quad-
tree search space. Probably, the first paper that adapted the
A* algorithm to AUV’s was contributed by Garau et al. [6].
It explains how to apply A* algorithm to marine vehicles, by
means of adapting the cost function and incorporating ocean
currents on a uniform grid discretization. Then, Petres [16],
[17] proposed a combination of Fast Marching and A*, to
obtain the accuracy and efficiency of each. It also addresses
the discretization problem of the search space that A* has.
Soulignac extended this line by presenting a series of papers
[21], [22], [23] that manages strong and time-dependent ocean
currents. In both cases, the approach bases on Wavefront
Expansion, which is Dijkstra’s method [4] in essence. Usually,
graph methods have as a main drawback the negative effect
of the search space discretization.

The high dimensionality of the search space has led to
random exploration based approaches. The rapid random trees
or RRT [12] [20] are a good example of this, and have been
applied to the case of route planning for AUVs [24] and gliders
[18]. This approach is particularly fast, but the path found is
sub-optimal and requires further refinement. Post smoothing
techniques cannot be applied directly with time-dependent
conditions. It builds up an exploring tree with nodes that tend
to cover the search space, generating trees from both the start
and end points. However, it is not applicable in time-varying
scenario and there is no guarantee of finding a route, and even
less an optimal trajectory.

The problem has also been modeled as a Boundary Value
Problem, using Zermelo optimal navigation formula for time-
dependent currents, and Dubins curves for not time-dependent
[25]. These techniques require fine tuning, and they only find
a solution in simple test cases. Interestingly, it is possible
to impose speed and acceleration constrains on the vehicle
motion, in the case of Dubins curves.

Bio-inspired methods cover techniques like genetic and op-
timization algorithms that often have a large convergence time.
Evolutionary computing has also been successfully applied to
this type of problems. A significant example can be found
in [1], where genetic algorithms are used for AUV trajec-
tory planning in environments characterized by time-varying
currents. The approaches based on minimization of energy
functions are also worth commenting. As good examples, we
can cite the work of Kruger et al. [11], that includes the
time as an extra dimension in the search space, or Witt et
al. [27], that incorporate modeling of time-varying obstacles
using potential fields. The problem of local minima has been
tackled by means of strategies based on particle swarms,
simulated annealing, or genetic algorithms. In other proposals,
the currents are modeled as continuous time functions, as
is the case of the non-linear trajectory generation or NTG
method [13] applied over B-Splines of Zhang et al. [29].
Moqin et al. [15] propose an iterative optimization process
for glider path planning. However, the focus of that work is
centered on the waypoint precision enhancement, and not in

optimal path planning. Furthermore, only static ocean currents
are considered. Recently, some authors have applied Genetic
Algorithms, Particle Swarms, Simulated Annealing, Swarm
Optimization [26]. In all these cases, the main drawback is
the high computational cost.

Finally, in the last years a line that has received a lot of
attention from researchers is the use of multiple vehicles in
a coordinated mission. Some relevant examples include [28]
and [2], that face the problem of adaptive sampling of oceanic
variables by means of gliders fleets.

II. EVOLUTION OF THE ALGORITHM

A. Origins

We started our work following the trajectory of a real glider,
RU27 Scarlet Knight glider. Our first option was the trivial
solution, Direct to Goal algorithm. At each surfacing the next
bearing is computed as the direction to the goal point Fig. 3.
It does not take into account the forecast of ocean currents.
Truly, this is not a path planning algorithm, but it resembles
the glider behavior. Its main limitation is that the glider drifts
significantly in the presence of strong currents and does not
find path which can be benefit from favorable currents when
these are not in the direction of the target. Basically we
have used this algorithm as reference to compare the new
developments.

Fig. 3. Direct to Goal algorithm.

In the next step, we adapted A* method to manage ocean
currents as in Garau’s work [6], using the constrained motion
model of Soulignac [21] (Fig. 4). The major drawback of this
approach is that it doesn’t produce stints of constant time,
as gliders do. Also, the optimality is no longer guaranteed,
because ocean currents are non-static.

Fig. 4. A* method managing ocean currents.

B. CTS-A* method

To alleviate such limitations, we developed the CTS-A*
algorithm [5] (Fig. 5), a variant of A*. At each surfacing
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point a set of bearings is considered and for each one, the
glider trajectory is integrated for a constant-time stint. The
surfacing locations are continuous, although they are stored
in a search grid. With this approach have two problems, the
bearings space is discretized and if we increase the number of
bearings, the computational cost increases exponentially.

Fig. 5. CTS-A* method.

C. Optimization-based algorithm
Finally we have applied optimization techniques [8], [9]

to solve this problem. We have used the distance of the last
surfacing to the target waypoint as objective function and
the bearings at each submersed stint as variables, which are
iteratively optimized to find the path of minimal cost. With
this election, the benefit is twofold, avoiding discretization
and allowing for a physically realistic simulation. In [10] this
method was adapted to coordinate the trajectories of a fleet of
gliders.

As commented in the introduction, gliders propel them-
selves by changing their buoyancy and transforming the re-
sultant vertical motion, of continuous dives and climbs, into
a surge movement by means of the combined action of the
internal mass displacement and the external control planes.
These cycles are repeated typically for 3-12 hours periods,
called transects or stints. Once a stint is finished, the vehicle
surfaces to communicate the status and data gathered to the
control room and receive new orders, commonly the next
waypoint or bearing. After 10-15 minutes at the surface, the
next immersion period starts. An important fact is that glid-
ers do not communicate while submersed, and the on-board
navigation system simply tries to keep the last commanded
heading or bearing during the whole stint.

Additionally, the number of variables to optimize is a func-
tion of the stint and the total path durations. Therefore when
we know the temporal horizon of the trajectory the number
of stints is known, consequently the number of bearings that
must be commanded and so the number of parameters to be
optimized is known. As an example, a 4-day mission using
the Slocum Electric Glider would require 12 variables for
the standard 8 hours transect. In most cases, the final value
returned by the objective function is computed as a distance
metric.

The cost function of the optimization process is computed
on the basis of a stint simulator that reproduces the glider
trajectory combining the commanded bearing with the nominal
glider speed and 2D ocean currents. For this purpose, our
simulator applies a simple glider kinematic model. Fig. 6 illus-
trates the strong influence of ocean currents on the resultant
glider trajectory, as a consequence of its relative low surge
speed. Also, in this figure, it is observed the high variability
of currents orientation in only 3 days.

In previous papers we compared optimization-based method
with others algorithms. Fig. 7 shows the paths obtained with
each method for a particular test case. In all the cases studied,
the optimization-based method obtained the best results. In
the majority of the test cases the difference was of a few
kilometers, but in some cases we found a very large difference,
as it happens in the simulation of 4 days that appears in Fig.
8, where the improvement is of approx. 100km with respect
to A*.

This approach produces acceptable results for static,
moderate-strength ocean currents. However, as indicated pre-
viously, in this work we are interested in short-term coastal
navigation. There, and due to the complexity of the envi-
ronment and the coupled nature of the process variables, the
optimization can easily get trapped in local minimum or lead
to wrong paths, including collisions (Fig. 9).

III. PATH PLANNER

To overcome the limitations of obstacle avoidance, that we
have found in the previous versions of our algorithm, we have
developed a new path planner, that we call Optimization with
Intelligent Initialization. This algorithm integrates a bootstrap
module inspired on CTS-A* search and ND algorithms, that
generates an appropriate initial set of values to start the
optimization phase described thus far.

A. Initialization (obstacle avoidance)

The initialization process makes a division of candidate
trajectories in two or more stages. These candidate trajectories
use a fixed bearing in all the stints into one stage. The nodes
are the division points between stages. In the algorithm the
position of these points is flexible (Fig. 10).

First, the initialization process considers a set of angularly
equispaced radial vectors emanating from the starting point
and simulates the glider trajectory with a fixed bearing for each
one, inside the temporal horizon (Fig. 11). Second, a set of
points is selected for each trajectory. These points (candidate
nodes) are selected at equispaced surfacing points, generally
this is corresponded to equispaced time instants (Fig. 12).
Third, it considers a set of angularly equispaced radial vectors
emanating from every node and simulates a constant bearing
for each trajectory for the remaining temporal horizon, that
is, recursively, a new set of trajectories is generated for each
candidate node, simulating them for the remaining mission
time (Fig. 13). Finally, it selects the bearings of the trajectory
that reaches the nearest position to the target point as initial
guess value for the optimization process (Fig. 14). As an
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Fig. 6. Snapshots of the optimal trajectory and glider bearings at
each surfacing, simulated for a 3-days period with time-varying currents
(ocean currents that exceed the glider speed vg = 0.4m/s are highlighted

) from the start point to the goal point .

Fig. 7. Example of comparative of trajectories in two different missions of
3 days with glider speed of 0.4 m/s. Light blue arrows show the of ocean
currents field. LEFT: Total distance = 95.3 km. Distance to reach the target:
Optimization: 8.4 km; CTS-A*: 11.2 km; A*: 9.9 km; Direct to goal: 22.5
km. RIGHT: Total distance = 89.3 km. Optimization: 27.7 km; CTS-A*: 29.9
km; A*: 29.6 km; Direct to goal: 32.8 km.

Fig. 8. Example of comparative of trajectories in a mission of 4 days.
Light blue arrows show the of ocean currents field and blue arrows the ocean
currents that exceed the glider speed (0.4 m/s). Total distance = 344.6 km.
Distance to reach the goal point: Optimization: 68.9 km; CTS-A*: 85.1 km;
A*: 169.4 km; Direct to goal: 217.6 km.

heuristic, an optimistic estimation of the combined glider-
current velocity is computed, allowing to prune non promising
trajectories.

In practice, we have observed that it suffices to divide the
trajectory in a single turning point (one node). This is a direct
consequence of the short path planned, since in a 4-day journey
a glider might travel up to approximately 100-150km.

B. Optimization

In this phase, the algorithm takes the initial bearings and
applies successive glider stints simulations trying to minimize
the distance to the target from the end of trajectory as cost
function.

Fig. 15 shows how this new aproach find a trajectory to the
waypoint avoiding the coast in the same situation where the
previous version hadn’t found a good solution (Fig. 9).
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Fig. 9. Response in the presence of obstacles for the optimization method.
The path ends after 4 days. Generated trajectories by glider bearings at
each surfacing, with time-varying currents (ocean currents that exceed
the glider speed vg = 0.4m/s are highlighted ) from the start point
to the goal point . ends after 4 days period

Fig. 10. Flexible location of the division point (node) between stages.

Fig. 11. First level of of the initialization process: Radial vectors emanating
from the starting point.

Fig. 12. Second level of of the initialization process: Selection of candidate
nodes.

Fig. 13. Third level of of the initialization process: Radial vectors emanating
from each candidate node.

IV. EXPERIMENTAL RESULTS

We have carried out several simulations for the path planner
presented in this paper using Matlab R© to validate the proposal
and test its performance. The results have been compared with
the ones obtained applying other methods: Direct to Goal, A*,
CTS-A* and Optimization-based.

We have simulated different missions in the Canary Islands
coast, using real ocean current maps from the ESEOO project
model (ESEOCAN domain). This is a ROM model that gives
hourly outputs structured in four 24h sets. The simulations
described in this paper were configured for a glider speed of
0.2-0.4 m/s and a stint of 8 hours.

The general objective of the simulations have been to obtain
the trajectory that leaves the vehicle closer to a goal point
navigating for 4 days. For the methods based on the bearing
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Fig. 14. Fourth level of of the initialization process: Selection of the best
trajectory.

Fig. 15. Response in the presence of obstacles for the Optimization with
Intelligent Initialization method. The path ends after 4 days. Generated
trajectories by glider bearings at each surfacing, with time-varying
currents (ocean currents that exceed the glider speed vg = 0.4m/s
are highlighted ) from the start point to the goal point .

optimization, this requires a total of 12 variables. Fig. 6
illustrates one example of the typical results obtained in these
tests.

To validate the algorithm presented in this work, we have
compared our results with the ones obtained by other algo-
rithms used in the planning of trajectories for gliders. To
compare the performance of each path planning method we
have simulated and evaluated 45 cases. We have divided the
cases in two situations and analyzed them separately. The first
set of cases correspond to coastal trajectories while the second
one includes only trajectories in offshore scenarios.

Two measures are computed for the comparison of the

TABLE I
DIFFERENCE OF THE REMAINING DISTANCE TO REACH THE GOAL WITH

RESPECT TO THE OPTIMIZATION WITH INTELLIGENT INITIALIZATION
METHOD. MEAN AND STANDARD DEVIATION WITHIN BRACKETS, BOTH IN

km. SIMULATIONS RUN FOR A GLIDER SPEED vg = 0.4m/s.

Scen Optim CTSA* A* Direct
Total 10.3 (21) 5.2 (6) 8.5 (18) 42.4 (46)
Coast 19.6 (26) 5.8 (7) 5.3 (7) 67.4 (39)
Ocean 0 (0) 6.5 (4) 9.1 (6) 13.6 (24)

TABLE II
COMPUTATIONAL TIME. MEAN AND STANDARD DEVIATION WITHIN

BRACKETS, BOTH IN SECONDS. GLIDER VELOCITY AT 0.4 M/S AND 0.2
M/S.

Methods 0.4 m/s 0.2 m/s
Init-Optim 26 (10) 24 (12)
Optim 15 (11) 12.5 (10)
CTS-A* 477 (93) 105 (28)
A* 55 (11) 12 (4)
Direct to goal <1 (0) <1 (0)

methods: path quality and computational cost. We have es-
tablished as a quality measure, for the generated trajectories
(the lower the better), the remaining distance from the final
glider position to the target point.

We should comment here that the A* results require a
special consideration, since the method used in the trajectory
generation produces unrealistic non-constant surfacing times
that are dependent on the grid size. That is to say, the surfacing
points in A* do not correspond with the surfacing points of
the glider.

The computational cost is also an important factor to be
considered, as sometimes it is necessary to obtain a path in a
few minutes. For example, when an unforeseen risky situation
occurs while the glider is surfacing, a new bearing needs to
be computed before the glider initiates a new transect.

Regarding the algorithms’ parameters used in the compari-
son, we have selected the same equivalent discretization level
for each method, when applicable. For example, the spatial
grid for A* and CTS-A* is fixed to 1/20 degrees. The CTS-
A* algorithm has been configured to use a division of 20◦

in the bearings rose. For our new approach we have used a
division of 5◦ for the initialization phase, inserting a candidate
turning point every 3 surfacings, the equivalent to one day of
navigation.

Table I shows the mean and standard deviation of the
difference of the remaining distance to reach the goal of
each method with respect to our new approach. The global
result for all cases and the mean in each environment (near
the coast, offshore) is shown separately. The average distance
traveled by the glider at 0.4 m/s has been 120 km. Table II
shows the computing time for each method, measured on a
Intel(R) Core(TM) 2 Quad processor computer running at 2.5
GHz. In the tables and graphics, we labeled as Init-Optim the
Optimization with Intelligent Initialization method

Compared with the previous optimization-based method
(Optim) it is observed that the new approach gets approxi-
mately the same results when no obstacles are present, while
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TABLE III
DIFFERENCE OF THE REMAINING DISTANCE TO REACH THE GOAL WITH

RESPECT TO THE INIT-OPTIM METHOD. MEAN AND STANDARD
DEVIATION WITHIN BRACKETS, BOTH IN km. SIMULATIONS RUN FOR A

GLIDER SPEED vg = 0.2m/s.

Scen Optim CTSA* A* Direct
Total 6.2 (13) 9.9 (10) 13.5 (49) 18.0 (29)
Coast 16.3 (17) 7.0 (7) 10.5 (13) 30.4 (29)
Ocean 0.2 (1) 11.5 (10) 15.3 (19) 10.5 (27)

it shows an important improvement when there is a need to
avoid obstacles. Regarding A* and CTS-A* methods we have
observed that, in general, we can obtain better quality in the
path with less computational cost. On the other hand, we have
verified that the computational cost of the new method when
the route is free of obstacles is approximately half the value
when the obstacles are present.

Fig. 16 shows two of the cases included in the previous
analysis, where the trajectory is near the coastal areas. The
distance required to reach the waypoint after 4 days is shown.
It must be noted that the currents vary on time and only the
last snapshot of them is shown in the figure. Fig. 17 shows the
same case presented in Fig. 8 where the trajectory is free of
obstacles. Here, it is observed that the new approach obtains
results very similar to Optimization-based method.

To test the performance of the algorithms on adverse con-
ditions, the simulation of the 45 cases were repeated using a
glider at 0.2 m/s (Table III). The average distance traveled by
the glider at this velocity has been 60 km. Table II shows the
computing time for each method.

The basic version of the optimization method reduces
the difference due to the fact that the obstacles are in the
same point and the Optimization with Intelligent Initialization
method covers less distance. A* and CTS-A* obtain worse
results due to the use of discretization in their implementations
and in some cases they are not able to avoid obstacles, so it has
a high standard deviation. On the other hand, while the two
versions of optimization keep their times, A* and its variant
reduce notably their cost. In the first group, the process is the
same, as they need to optimize the same number of variables,
while in the second one the search area has less extension and
the number of nodes visited is reduced.

Fig. 18 shows one of the cases include in the previous
analysis where the trajectory is near the coastal areas. The
distance required to reach the waypoint after 4 days is shown.
In this case all methods goes directly to the land except our
new approach.

Finally, the influence of some algorithm parameters has been
analyzed. If we reduce the division of the bearing rose from
20◦ to 5◦ in Init-Optim, the results are improved in a 4% at
a cost of duplicating the computational cost. Similarly, if we
use a search grid of double resolution in A*, the results are
improved in a 2%, but the computational cost is 5 times higher.

V. CONCLUSIONS

We have described a novel path planning algorithm for
gliders based on optimization that offers promising results in

Fig. 16. Two comparatives of trajectories simulated near coastal areas for
a 4-days period with time-varying currents (ocean currents that exceed
the glider speed vg = 0.4m/s are highlighted ) from the start point

to the goal point . Top graphic: Total Distance = 176.5 km. Distance
remaining to reach the goal point: Init-Optim: 13.3 km; Optimization: 22.1
km; CTS-A*: 20.6 km; A*: 25.9 km; Direct to goal: 157.1 km. (stop in land).
Bottom graphic: Total Distance = 125.8 km. Distance remaining to reach the
goal point: Init-Optim: 0.0 km; Optimization: 69.7 km (stop in land); CTS-A*:
3.2 km; A*: 8.7 km; Direct to goal: 80.0 km. (stop in land).

realistic simulations. The pattern of displacement of the gliders
(the bearing can not be changed while submerged) allows to
easily adapt our method to problems where there is a temporal
discretization, in which the size of each time window coincides
with the duration of the stints. In addition, our method uses
a continuous representation of the bearings space using an
optimization method and eliminating the problems discussed.
Furthermore, it incorporates an initialization phase that allows
for obstacle avoidance, at a negligible computational time
penalty. This heuristic-guided process generates a coarse initial
solution that is then refined using an optimization process.
In sum, our method is suitable for dynamic scenarios with
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Fig. 17. Comparative of trajectories simulated in offshore area for a 4-days
period with time-varying currents (ocean currents that exceed the glider
speed vg = 0.4m/s are highlighted ) from the start point to the goal
point . Total Distance = 343.4 km. Distance remaining to reach the goal
point: Init-Optim: 67.4 km; Optimization: 68.8 km; CTS-A*: 85.1 km; A*:
169.4 km; Direct to goal: 217.6 km.

Fig. 18. Comparative of trajectories simulated in offshore area for a 4-days
period with time-varying currents (ocean currents that exceed the glider
speed vg = 0.2m/s are highlighted ) from the start point to the goal
point . Total Distance = 75.2 km. Distance remaining to reach the goal
point: Init-Optim: 46.7 km; Optimization: 54.2 km (stop in land); CTS-A*:
60.7 km (stop in land); A*: 58.9 km (stop in land); Direct to goal: 61.3 km.
(stop in land)

obstacles or forbidden areas, making it a practical tool for
coastal environments.

The method shows a superior performance when compared
with other alternative approaches. In general, classical A*
or variants, like the CTS-A* algorithm analyzed here, do
not find a path better than optimization methods. Notice that
even a slightly improvement of 5-10km in the path cost is
advantageous in many glider missions, e.g. it might reduce the
economical cost of collection after the mission. Anyhow, it is
in the computational cost where the latter clearly outperform
the former.

Finally, the solution presented in this paper is valid for this
particular problem, but would not have the same benefits if
it is applied for path planning with other kind of vehicle, as
long as there is no temporal discretization in their pattern of
displacement.

A. Future works

In future research, we would like to incorporate 3D ocean
current data and model the glider motion accordingly. Also
we pretend validate these results in the navigation of a real
glider.
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Álvarez Fanjul, and M. Garcı́a, ”Path Planning for gliders using Regional
Ocean Models: Application of Pinzon path planner with the ESEOAT
model and the RU27 trans-Atlantic flight data”, in Proceedings of the
OCEANS 2010 IEEE Sydney Conference and Exhibition, 2010.

[6] B. Garau, A. Alvarez, and G. Oliver, ”Path Planning of Autonomous
Underwater Vehicles in Current Fields with Complex Spatial Variability:
an A* Approach”, in Proc. 2005 IEEE International Conference on
Robotics and Automation, 2005, pp. 194-198.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, ”A formal basis for the heuristic
determination of minimum cost paths”, IEEE Transactions on Systems
Science and Cybernetics, 4(2):100107, 1968.
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