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ABSTRACT
We report on submillimetre (submm) observations of three high redshift quasars (z>6) made
using the SCUBA camera on the James Clerk Maxwell Telescope (JCMT). Only one of the
sample was detected (> 10σ significance) at 850µm– SDSS J1148+5251 (z= 6.43). It was
also detected at 450µm(> 3σ significance), one of the few quasars atz> 4 for which this has
been the case. In combination with existing millimetric data, the 850µm and 450µm detections
allow us to place limits on the temperature of the submm-emitting dust. The dust temperature
is of no trivial importance given the high redshift of the source, since a cold temperature would
signify a large mass of dust to be synthesized in the little time available (as an extreme upper
limit in only 0.9Gyr sincez= ∞). We find, however, that the combined millimetre and submm
data for the source cannot simply be characterised using thesingle-temperature greybody fit
that has been used at lower redshifts. We discuss the resultsof the observing and modelling,
and speculate as to the origin of the deviations.
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1 INTRODUCTION

A number of independent lines of investigation over the last10
years have placed submillimetre (submm) observations of high-
redshift quasars into the spotlight. Observations have unveiled a
population of extremely luminous submm sources lying at high
redshift, believed to be the dust-obscured, star-forming ancestors
of massive elliptical galaxies. Contemporaneously, it wasrealised
that a tight correlation exists between the stellar velocity dispersion
of galactic spheroids, and the mass of their central, supermassive
black hole (Gebhardt et al. 2000). Taken together, these indicate
that luminous active galactic nuclei (AGN) at high redshift— the
build-up phase of a supermassive black hole — are prime sitesat
which to search for the dust-enshrouded star-burst phase through
which, according to the new galaxy-formation paradigm, their mas-
sive spheroids necessarily must pass.

The high, sustained luminosity of quasars across the electro-
magnetic spectrum, allows them to be studied over a wide range
of both redshift and observing wavelength. Early observations of
z∼4.5 quasars by McMahon et al. (1994), and Isaak et al. (1994)
established that some high redshift quasars were prodigious far in-
frared emitters with Lfir ∼ 1013−14L⊙ and estimated masses of cool
dust of∼ 108−9M⊙.

The discovery of quasars atz> 6 (Fan et al. 2003) now makes
it possible to compile homogeneous, well-defined samples over a
significant span of the lifetime of the cosmos, from recent times

to the threshold of reionization. Follow-up is simplified bythe
accurately-known optical positions and the spectroscopicredshifts
of the host galaxies, which can readily be determined to the pre-
cision required to pinpoint emission lines from molecular gas— a
key indicator of the conditions required for star formation.

Recent SCUBA studies of the submm emission from high red-
shift (z> 4), radio-quiet quasars have been reported by McMahon
et al. (1999), Isaak et al. (2002) and Priddey et al. (2003b),along
with a sample at lower redshift (z∼2) by Priddey et al. (2003a).
A considerable fraction of the targets have been shown to be lu-
minous submm sources. Interestingly, this fraction appears to have
no significant dependence upon redshift. Similar conclusions have
been drawn from observations at millimetre (mm) wavelengths (eg.
Omont et al. (2001), Carilli et al. (2001)).

2 OBSERVATIONS

2.1 The Sample

Our source-list comprised three of thez ≥ 6 quasars identified
by the Sloan Digital Sky Survey team, and reported in Fan et al.
(2003). Source parameters are given in Table 1. Observations of
the other two quasars known (as of January, 2003) to be atz> 6,
SDSS J1030+0534 (z= 6.28) and SDSS J1306+0356 (z= 5.99),
have been reported in Priddey et al. (2003b).
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2.2 Observations and Data Analysis

Sources were observed using SCUBA (Holland et al. 1999) on the
JCMT1 on the nights of 2003 January 31 and February 01 (UT). Si-
multaneous observations were made at 850 and 450µm using pho-
tometry mode (placing the source on the central bolometers H7,
C14 of the two arrays respectively) with a 60 arcsec azimuth chop
at 7.8Hz. Data were taken in groups of 40 samples, with observa-
tions repeated untilS850µm≤ 2mJy was achieved. Telescope point-
ing was checked hourly, and found to be better than 3 arcsec. Mars
and Uranus, along with IRC+10216, were used as primary and sec-
ondary calibrators respectively. The derived, mean, flux conversion
factors were 213±5Jy/V (850µm) and 355±15Jy/V (450µm), with
a variation of< 10% seen over the course of the observing period.
The sky opacity was measured using sky-dips and the recentlycom-
missioned water vapour radiometer that measures the directline-of-
sight atmospheric extinction.

Observing conditions on both nights were moderately good,
with 0.1 < τzen

850 < 0.23 and 0.27 < τzen
850 < 0.32 (zenith atmo-

spheric transmission at 850µm between 79 – 90% and 72 – 76%
) respectively. Data were reduced using both the semi-automated
ORAC-DR pipeline data reduction package (Jenness & Economou
1999) and a custom reduction procedure based on a series of rou-
tines taken from the SURF reduction package (Jenness & Light-
foot 1998a,b). In each case, the final flux represents the weighted
(by the individual rms) average taken of all data for a particular
source/filter combination.

The initial analysis of the SDSS J1148+5251 dataset revealed
considerable variation between both the flux and rms of the indi-
vidual 40-sample data groups. One explanation of this discrepancy
was revealed upon the subsequent publication of a MAMBO-2 im-
age of SDSS J1148+5251 by Bertoldi et al. (2003). It seemed fea-
sible that our fixed, azimuth chop had placed the off-source posi-
tion over a second, millimetre-bright source in the quasar field dur-
ing the latter stages of our observation. In order to eliminate this
possibility, we therefore obtained subsequent SCUBA photometry
on SDSS J1148+5251, in UK service time during the nights of
2003 July 9th, 10th and 12th. This time, a specified chop throw,
and position angle fixed relative to RA–Dec, were chosen to avoid
the potential contaminant sources. The atmospheric extinction dur-
ing the observing period was low (with 0.14< τzenith

850µm < 0.19) and
the sky stable. Guided by these new, more reliable and consistent
observations, we reanalysed the initial datasets, testingalternative
explanations for their disagreement.

3 RESULTS AND DISCUSSION

The measured flux densities of the three sources are tabulated in Ta-
ble 1, along with the observational parameters of the three sources.
For comparison, the mm fluxes, taken from Bertoldi et al. (2003),
have also been included. In all cases the numbers in bracketsare
the 1σ rms values.

Tabulated in Table 2 are the derived 850µm/1.2mm and
450/850µm flux ratios for the sample where sufficient data exist.
The superscripts and subscripts in columns 4 and 5 give the 1σ up-
per and lower values of the flux ratios. Also listed are the equivalent

1 The James Clerk Maxwell Telescope is operated by the Joint Astronomy
Centre in Hilo, on behalf of the parent organisations of the Particle Physics
and Astronomy Research Council in the UK, the National Research Council
of Canada and the Netherlands Organisation for Scientific Research

Figure 1. Top panel: Observed submm and mm fluxes for SDSS
J1148+5251. Note that for each point, the plotted error bars are thesquare
root of the sum of the squares of the radiometric rms and systematic cali-
bration errors. Superposed over the points are three model SEDs: the solid
locus traces the isothermal dust model ofT=40K, β = 2.0 derived by Prid-
dey& McMahon (2001) from a sample of mm and submm observations of
z > 4 quasars, and fit here through the 850µm flux; the dotted line traces
the SED of a single-temperature dust model withTD = 180K, β = 0; the
dashed line traces a two-component fit using (TD,β) of (140, 1.5) and (40,
0). The two-component model is included for illustrative purposes only, as
the number of independent data points is smaller than the number of inde-
pendent constraints on the model.
Bottom panel: A plot of the Priddey & McMahon (2001) SED superposed
onto the observed mm and submm data fluxes for SDSS J1148+5251 (filled
squares) and BR B1202−0725 (open circles), redshifted to the quasar rest
frame. The observed fluxes have been normalised to the 850µmvalues ap-
propriate to the individual sources.

numbers for the fiducial single-temperature SED model of a quasar
at the mean redshift of thez> 6 sample,z= 6.24, based on a fit to
a sample ofz> 4 quasars by Priddey & McMahon (2001).

3.1 Individual Sources

SDSS J1630+4012 (z=6.05) Not detected in either the 850µm or
450µmfilters; also undetected at 1.2mm.

SDSS J1048+4637 (z=6.23) Detected at neither 850µm nor
450µm. Based on the detection at 1.2mm (Bertoldi et al. 2003),
the SCUBA 850µm limit is deep enough that we should have been
able to detect the source with a 4σ significance were its emission
at 1.2mm to be characteristic of a greybody atTD = 40K. Our
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Table 1. Summary of the source parameters of the SCUBA photometry observations

Source Redshift MB RA Dec S1.2mm Number of S850µm S450µm

(J2000) (J2000) (mJy) integrations (mJy) (mJy)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

SDSS J1048+4637 6.23 −28.15 10 48 45.05 +46 37 18.3 3.0(0.4) 120 2.3(2.2) 7.6(11.7)
SDSS J1148+5251 6.43 −28.42 11 48 16.64 +52 51 50.3 5.0(0.6) 600 7.8(0.7) 24.7(7.4)
SDSS J1630+4012 6.05 −26.71 16 03 33.90 +40 12 09.6 3σ < 1.8 280 2.7(1.9) 15.4(9.6)

Positions and optical magnitudes have been taken from Fan etal. (2003); 1.2mm MAMBO-2 data have been taken from Bertoldiet al. (2003)

Table 2. Summary of quantities derived from submm and optical photometry. See text for an explanation of the quantities and noteson their derivation.

Source z MB S850µm/S1.2mm S450µm/S850µm t(inf)− t(z) Md M⋆(min) LFIR Mbh Ṁacc

(Gyr) (108M⊙) (M⊙/yr) (1013L⊙) (109M⊙) (M⊙/yr)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SDSS J1048+4637 6.23 −28.15 < 3.4 − 0.94 < 4.6 < 50 < 0.9 6.0 130
SDSS J1148+5251 6.43 −28.42 1.61.9

1.3 3.24.5
2.0 0.90 5.3 60 1.1 7.7 170

SDSS J1630+4012 6.05 −26.71 − − 0.97 < 4.5 < 45 < 0.9 1.6 35
Mean quasar 6.24 −27.76 2.13 1.65 0.94 − − − 4.2 90

non-detection thus suggests that the dust in this object is colder
than 40K.

SDSS J1148+5251 (z=6.43) The most optically luminous of the
three sources, detected at both 850µm and 450µm with fluxes of
7.8(0.7)mJy and 24.7(7.4)mJy respectively – one of very few
quasars atz > 4 where this has been achieved. The observed
fluxes are not consistent with a Priddey & McMahon (2001)
single-temperature SED as can be seen in Figure 1. This can be
seen more clearly in Figure 2 a–c, where the 850µm/1.2mm and
450/850µm ratios have been plotted as a function of redshift,
both for the single-temperature model (locus) and for a selection
of high-z quasars, including those observed in this sample.The
observed flux ratios are discrepant at the 1σ level, however are
well within the 2σ limits.

3.2 Observed Fluxes

The three sources observed show quite different submm properties,
in spite of their similar absolute B-band (MB) magnitudes (column
[3] in Table 2), and so inferred blackhole/bulge masses (seecolumn
[10] in Table 2). This is not surprising as, to date, it has notbeen
possible to establish a correlation between the optical luminosity of
a quasar and the submm emission from its quasar host galaxy using
samples of radio-quiet, optically loud quasars atz > 4 andz≈ 2
(Isaak et al. 2002; Priddey et al. 2003). What is striking, however,
are the detections at both 850µmand 450µmof SDSS1148+5251.

It is not possible to fit the two fluxes reported here and the
1.2mm flux with a single-temperature SED parameterised byTd =
40, andβ = 2 (see Figure 1: solid line). A better fit can be achieved,
with a much hotter characteristic dust temperatureTd = 180K, and
β = 0 (Figure 1: dotted line), or using a two-component model with
a cool component characterised byTd = 40K;β = 0 and a hot-
ter component withTd = 140K;β = 1.5. However, we stress that
there are insufficient data points to constrain such a two-component

model. If, in the first instance, we assume that the underlying SED
is indeed best characterised by a single-temperature, thenthere are
a number of different factors that need to be explored to estab-
lish the origin of the anomalous flux ratios, which can be broadly
grouped into those that result in an anomalously high millimetre
flux, and those that may result in systematically low submm fluxes.
However, it is clear that observations with a higher signal-to-noise
are urgently needed in order to better constrain the model fitting.
Furthermore, the high photometric precision of ALMA, of order a
few percent, will be crucial for future analyses of this type.

3.2.1 A high 1.2mm flux:

If we assume that the observed 850µmflux is correct, then there are
a number of observational and physical reasons why the observed
1.2mm and 450µmfluxes might deviate from values expected for a
single-temperature SED model:

Relative calibration: Calibration at mm and long-submm
wavelengths is relatively straightforward, particularlyunder peri-
ods of high and stable atmospheric transmission. A comparison of
calibrators common to JCMT and IRAM by Lisenfeld and collab-
orators suggests that the calibrator fluxes measured at 850µm and
1.2mm are consistent with thermal SED profiles. We have included
calibration errors of 10 – 15% in our plotted rms estimates. Accu-
rate calibration at 450µm, however, is far more difficult with small,
temporal variations in atmospheric extinction, (τ), contributing sig-
nificantly to the final, overall flux. We estimate that the combined
random and systematic error in the individual flux measurements to
be about 30%. We have included calibration errors in the error-bars
plotted in Figure 1, calculated by taking the square root of the sum
of the squares of the different error components.

Synchrotron contamination: Synchrotron emission can con-
tribute significantly to the observed mm fluxes of radio-loud
quasars, with boosting from either the synchrotron tail in the quasar
itself, or from a source in its neighbourhood. VLA observations at
43GHz by Bertoldi et al. (2003) place aS(3σ)43GHz < 0.33mJy
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on radio emission from the quasar at 43GHz. This strongly sug-
gests that the 1.2mm emission is thermal rather than non-thermal
given the positive spectral shape. A search of the NVSS (Condon et
al. 1998) and FIRST (Becker et al. 1995) radio catalogues didnot
reveal any radio sources within a 30 arcsec radius of the optical po-
sition of the quasar. The FIRST survey has a 0.138mJy/beam rms
at the quasar position (1.4GHz), which places a 3σ upper limit to
the synchrotron contamination of the 1.2mm flux by radio sources
in the quasar field of 0.5mJy, based on the worse case of a flat-
spectrum radio source.

Lensing: Gravitational lensing can boost observed flux mea-
surements considerably (eg. F10214+4724 (Broadhurst & Lehar
1995), APM 08279+5255 (Irwin et al. 1998; Ibata et al. 1999).
In general, however, the magnification is achromatic. Thus,all
(sub)mm fluxes would be scaled by the same factor unless the phys-
ical extent of the regions emitting at the different wavelengths were
quite different – for example, if the mm flux (λrest = 170µm) traced
a cooler and, most importantly, highly extended region whilst the
shorter wavelength emission traced much more compact emission.
It is not possible to establish this, however, without the high spatial
resolution achievable using mm interferometers.

Spectral line contamination: Line contamination of submm
continuum fluxes observed in local galaxies is widely recognised.
Observations by Zhu et al. (2003) have shown that the CO(3–2)
rotational line can contribute as much as 70% to the 850µm con-
tinuum flux. At z∼ 6.43 the CO(3–2) (λrest = 867µm) line is red-
shifted to 6.46mm (46.4GHz), well outside the 1.2mm and 850µm
filter passbands. Under good observing conditions, the 1.2mm filter
has an effective pass-band of around 80GHz, which atz∼ 6.43 in-
cludes the forbidden, rest-frame far-infrared (FIR) transition of C+

(λrest=157.74µm). Significant flux boosting by this line is, however,
unlikely: observations with ISO have shown that the line-to-FIR
ratio in local starbursts and ULIRGs (Luhman et al. 1998, 2003)
is a factor of ten or more lower than that seen in normal galax-
ies (0.1–1%: (Stacey et al. 1991)). If we assume an equivalent fil-
ter width of the MAMBO-2 camera at 1.2mm of around 80GHz,
then theC+ line peak would need to be over 500mJy to account
for the excess emission at 1.2mm(1.3mJy) above that expected for
a single-temperature SED fit. This would be equivalent to a line
contribution to the FIR luminosity of about 1%. A search by Isaak
et al. (1994) for the redshiftedC+ emission line in the optically-
luminous, radio-quiet quasar BR B1202−0725 atz= 4.695 placed
a 3σ upper limit of∼ 1.8x10−4 on the line contribution to the FIR
luminosity (equivalent to a 3σ upper limit to the line of∼ 60mJy,
and to the line-to-continuum ratio of just over 1 in a line-width of
250kms−1) in this, the most submm-bright of thez > 4 quasars.
Thus, whilst an intriguing possibility, it is unlikely thatcontamina-
tion byC+ is responsible for the high 1.2mm flux.

3.2.2 A low 850µm flux:

If, in contrast, we assume that the 1.2mm flux is correct, thenthe
observed submm fluxes at 850µm and 450µm are a factor of 1.4
and 0.7 lower than one would expect from a single-temperature,
Td = 40K;β = 2 SED fit. The 850µmdetection flux is at> 10σ and
as such is, at first glance, almost 4σ below the single temperature
fit derived from the 1.2mm flux. The statistical significance of the

difference however, ranges between 0.7 <
Sest

850−Sobs
850

σobs
850

< 6.7 where

Sest
850 is the 850µm flux estimated from the observed 1.2mm flux

when one factors in the uncertainties in the 1.2mm flux and the
error bars in the SED fit itself. The statistical significanceof the

Figure 2. Mm and submm flux ratios: diagnostics of the underlying SEDs.
Upper panel: Ratio ofS850µm/S1.2mm as a function of redshift
Middle panel: Ratio ofS450µm/S850µm as a function of redshift
Lower panel: Ratio ofS450µm/S850µm vs.S850µm/S1.2mm

In each case the solid and dashed lines represent the locus ofthe ratios
calculated from the Priddey&McMahon SED and 1σ deviations therefrom
respectively; the upright triangles represent data taken from Isaak et al., (in
prep.); the inverted triangles data taken from Omont et al. (1996); McMahon
et al. (1999); Omont et al. (2001); Carilli et al. (2001); Isaak et al. (2002);
Bertoldi et al. (2003), the open circles data taken from Priddey et al. 2003b
and the filled square the detection reported in this paper. The error bars are
1σ values. The anomalous observed fluxes can best be seen in the lower
panel, where the ratio of the ratios deviates by between 1 and3σ from the
single-temperature SED fit.
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difference between the observed and predicted 450µm flux is
much less, as the detection itself is only at 3σ. Interestingly, the
discrepancy between the observed 450µm flux and that derived
from the 1.2mm flux (scale factor of 3.3 from Figures 2a–c) is
smaller.

Thus, the observations of SDSS1148+5251 suggest that the
dust emission is not well characterised by a single-temperature
SED fit. One cannot, however, attach high significance to thisstate-
ment because of the relatively low value of the signal-to-noise at
450µm in particular. Bearing this in mind there isvery tentativeev-
idence that alludes to a change in the properties of the high-z quasar
hosts with redshift. There is a considerable spread in the flux ratios
and a more detailed analysis of the SEDs requires not only very
high signal-to-noise data in the 450µm filter, but also data taken
at even shorter wavelengths that match more closely the peakand
predicted turnover of the rest-frame SED. We defer a more detailed
discussion of the SEDs of high-z quasars, as well as tentative trends
with redshift to Isaak et al. (in prep.)

3.3 Inferred properties

SDSS1148+5251 is unique for two reasons: first, on account of
its redshift; second, because it is detected not only at 1.2mm and
850µm, but, uncommonly for a high-redshift quasar, also at 450µm.
The consequence of assuming a lowTd—as suggested by the
1.2mm–850µm flux ratio—is a prohibitively large dust mass. This
burdens us with explaining how so much dust synthesis could have
taken place without the formation redshift being unacceptably high.
If, in contract,Td is high—as suggested by the 450–850µm ratio—
there is no problem accounting for the dust mass, which is small
as a result. This is, however, at the cost of a large FIR luminos-
ity. Indeed, if the dust really is this hot, then the far infrared lumi-
nosity approaches the blue luminosity of the quasar, which would
suggest that reprocessed AGN emission is not the dominant mech-
anism heating the dust.

Notwithstanding the uncertainty in dust temperature, Table 2
lists the properties all the targets would have if they were “average”
z> 4 quasars, i.e. possessing theTd=40K andβ=2 fit by Priddey &
McMahon (2001). The cosmological parametersΩM=0.3,ΩΛ=0.7,
H0=65km/s/Mpc are assumed.t(∞)− t(z) is the difference in look-
back time between redshiftz and redshift∞. As in Priddey et al.
(2003b) we adopt a dust opacity ofκ(λ)=30cm2g−1 ×λ−2 Md is
thus the mass of dust.̇M∗(min) is the absolute minimum sustained
star formation rate needed to synthesiseMd within the available
time.Mbh andṀacc are the black hole mass and accretion rate cal-
culated from the absoluteB magnitude (MB) assuming Eddington
accretion (eg. Isaak et al. (2002)). We have, however, shownthat
observed submm emission from SDSS1148+5251 is not consistent
with the Priddey et al. (2001) fit. In Figure 1 we have considered
instead a selection of alternative SEDs: the “hot” model (Td=180K,
β=0) has (LFIR, Md)=(1.1×1014L⊙, 0.3×108M⊙), whilst the
two-component model illustrated has (LFIR, Md)=(2.9×1014L⊙,
3.3×108M⊙). The “mean” SED, on the other hand, gives (LFIR,
Md)=(0.1×1014L⊙, 5.3×108M⊙).

4 CONCLUSIONS

The rest-frame FIR spectral energy distribution is key to determin-
ing the thermal origin of the observed submm emission from high-
redshift quasars. The observations presented here suggestthat the

host galaxies of quasars out to redshifts ofz > 6 are actively un-
dergoing star formation. Multi-wavelength observations spanning
the mm and submm are crucial to providing constraints on the dust
mass, far-infrared luminosity and inferred star formationrate, thus
further exploring the role of star formation in high-redshift quasar
host galaxies.
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