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Quantum Stochastic Resonance in Electron Shelving
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Stochastic resonance shows that under some circumstances noise can enhance the response of
a system to a periodic force. While this effect has been extensively investigated theoretically and
demonstrated experimentally in classical systems, there is complete lack of experimental evidence
within the purely quantum mechanical domain. Here we demonstrate that stochastic resonance can
be exhibited in a single ion and would be experimentally observable using well mastered experimental
techniques. We discuss the use of this scheme for the detection of the frequency difference of two
lasers to demonstrate that stochastic resonance may have applications in precision measurements at
the quantum limit.
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Imagine that you are set the task of detecting a very
weak periodic signal by means of its interaction with a
suitable probe system. Given that the signal is weak,
one intuitively may think that the optimal experimental
set up should minimize any other interaction that the
probe may undergo. However, this is not always the case
and there are situations where noise can indeed play a
constructive role in a high sensitivity detection. A clear
illustration of this fact is provided by the phenomenon
of stochastic resonance (SR) [1], where the response of a
nonlinear system to external periodic driving is enhanced
in the presence of noise. Typically [2], the signal-to-noise
ratio (SNR) increases monotonically up to a maximum
for certain optimal noise intensity, and then decreases
gradually as randomization dominates over the coopera-
tive effect between the coherent driving and the stochas-
tic forces. The simplest system for describing the ap-
pearance of SR consists of a particle in a bistable poten-
tial subject to both thermal noise and a periodic forcing
[3]. However, many other scenarios have been proposed
and recent research has shown that SR may also be ob-
served in some monostable systems [4]. Experimental
research has confirmed that the phenomenon, if at first
sight counter-intuitive, is rather ubiquitous. Since the
first demonstration in a Schmitt trigger circuit [5], SR
has been observed in a wide variety of physical systems,
ranging from ring lasers to neuronal cells (see [6] for a
detailed review). Moreover, there is experimental evi-
dence that certain complex living systems (such as crick-
ets) make use of SR to improve the sensitivity of their
sensory organs [7].

Recently the concept of SR has been extended to the
quantum domain [8–10]. However, experimental verifi-
cations at the level of individual quantum systems are
difficult (see e.g. [11]) and it would be of great interest to
find feasible experimental scenarios that allow the inves-
tigation of stochastic resonance in the quantum regime.
In this letter we show that SR can be demonstrated in
a conceptually simple truly microscopic quantum opti-
cal system. We first analyze the proposed system qual-

itatively, highlighting the key ideas behind our proposal

and allowing for an intuitive understanding as to why
SR arises in this scenario. Following this, we present a
quantitative analysis of the phenomenon by means of ex-
act numerical computation of the frequency response of
the probe. We demonstrate that the SNR at the driving
frequency is maximized at a certain noise level, an unam-
biguous signature of the occurrence of SR. Furthermore,
to illustrate an application of SR in our proposed sys-
tem, we discuss and simulate the noise-assisted precision
measurement of the frequency difference of two coherent
fields.
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FIG. 1. Four level system under coherent modulated driv-
ing with time-dependent Rabi frequency Ω giving rise to
dressed states |±〉. Dashed (dotted) line gives position of
dressed states for larger (smaller) value of Ω. Transitions
− ↔ 3 and + ↔ 4 are driven by broad band fields. The fre-
quency distribution of the noisy fields is represented by the
dashed curves. When the central frequency of each incoherent
driving is tuned appropriately, the interaction can be made
resonant with either the dressed level |+〉 or |−〉 depending
on the value of Ω given by the modulation cycle (See text for
details).

The scheme we present here is in principle easy to im-
plement, as it relies entirely on techniques have been em-
ployed by experimentalists for more than 10 years. In
Fig. 1 the system under consideration and the applied
driving fields are shown. The probe consists of a four
level atomic system subject to both coherent and inco-
herent radiation. The 1 ↔ 2 transition is driven by a res-
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onant modulated coherent laser field of Rabi frequency
Ω(t) while the 1 ↔ 3 and 2 ↔ 4 transitions are driven by
noisy fields with effective pump rates W33 and W44 re-
spectively. The atomic level 2 can decay with a rate 2Γ22

and it is this radiation that will be detected. We assume
that level 4 is metastable and we neglect its spontaneous
decay rate in the following. In addition, we assume that
level 3 can only decay, at a rate 2Γ33, into level 4. The
fact that the coherent driving is modulated implies that
the Rabi frequency and therefore the energy separation
h̄Ω between the dressed levels |±〉 = 1/

√
2(|1〉 ± |2〉) are

time dependent. Let us consider the simplest case where
the modulated driving can be described by a step func-
tion, as illustrated in Fig. 2. Then the time dependence
of the coherent Rabi frequency is given by

Ω(t) = Ω ± ∆Ω, (1)

where ∆Ω ≪ Ω (weak modulation), and where the (+)
sign holds for t ∈ [ktm, (k+1/2)tm], k is a positive integer,
and the (−) sign corresponds to the remaining part of the
modulation cycle, tm denoting the corresponding modu-
lation period. Under these conditions, the relative posi-
tion of the dressed states alternates between two possible
configurations, as illustrated by the dashed (dotted) lines
in Fig. 1. For the sake of clarity, we will refer to these
two possible situations as strong laser (i. e. larger Rabi
frequency; larger energy separation between dressed lev-
els) and weak laser (i. e. smaller Rabi frequency; smaller
energy separation between dressed levels) regimes.
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FIG. 2. By means of suitably tuning the broad band fields
driving the 1 ↔ 3 and 1 ↔ 4 transitions, the system may ex-
hibit a bistable dynamics of bright and dark periods strongly
synchronized with the modulation of the coherent driving.

We will now show in a qualitative way that the system
we have described above may exhibit, when the broad

band fields are suitably tuned, a dynamics of extended
bright and dark periods in the resonance fluorescence in-
tensity which are strongly synchronized with the modu-
lated coherent driving field, as depicted in Fig. 2. How-
ever, synchronization is not the only signature of SR and
we will show quantitatively later on that indeed the pro-
posed scheme fulfills the necessary requirements for ex-
hibiting SR.

Let us denote by ω̂i, (i = 3, 4), the central frequency of
each broad band field, while ωi1 refers to the correspond-
ing natural frequency of the atomic transition involved.
Let us now choose the detunings ∆i1 = ω̂i−ωi1 as follows

∆31 =
Ω + ∆Ω

2
(2)

∆41 = − Ω − ∆Ω

2
. (3)

This choice of detunings is schematically shown in Fig.
1. When the coherent driving operates in the weak mode,
that is, when Ω(t) = Ω − ∆Ω, the noisy field driving the
1 ↔ 3 transition is resonant with the dressed level |+〉
while the field driving the 1 ↔ 4 is off-resonant. Under
these circumstances, the system is rapidly pumped from
|1〉 ↔ |3〉 ↔ |4〉. It remains in level 4 and as a conse-
quence no light is emitted from the atom, i.e. we are
in a dark period, given that level |4〉 is metastable. On
the other hand, when the coherent driving is operating
in the strong mode, the noise field driving the 1 ↔ 4 be-
comes resonant with the dressed level |−〉 while the driv-
ing 1 ↔ 3 becomes detuned. As a result, the system is
pumped back and forth between level |4〉 and the dressed
level |−〉, with photons being emitted at a rate propor-
tional to Γ22/2. Therefore, the system is in a bright
period, i.e. the atom emits many photons. It can be
understood quite easily how this synchronized dynamics
depends on the noise intensity. If the effective pump rate
Wii, (i = 3, 4), is too strong, e. g. Wii ≫ ∆Ω, the pump
rates become insensitive to the value of ∆Ω, synchroniza-
tion is lost and the observed fluorescence would just show
a constant intensity. A lack of synchronization should
also be observable in the opposite regime, where Wii is
too weak, e. g. Wii < t−1

m , with the system exhibiting
now extended bright and dark periods and an additional
noise background in the fluorescence spectrum. There-
fore, there seems to be an intermediate regime in which
synchronization is optimal. We will demonstrate in the
following that this optimal regime can be achieved and
how in fact the system may exhibit stochastic resonance.
To clearly identify SR we have to compute the autocorre-
lation function of the intensity emitted by the atom. We
simplify it to a binary process, assuming value 1 if the
intensity exceeds a certain threshold (e.g. 10% of the in-
tensity expected in a bright period), and 0 for intensities
below the threshold. We then compute the power spec-
trum of this process which defines the spectral response
of the system to a periodic perturbation. For that, we
will have to compute explicitly the normalized spectrum
and the corresponding SNR at the driving frequency. The
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starting point for evaluating these quantities is provided
by the system’s master equation, whose relevant terms
[12], under exact resonance for the 1 ↔ 2 transition, are
as follow:

ρ̇++ = −(2W33 +
Γ22

2
)ρ++ +

Γ22

2
ρ−− + 2W33ρ33 (4)

ρ̇−− =
Γ22

2
ρ++ − (2W44 +

Γ22

2
)ρ−− + 2W44ρ44 (5)

ρ̇+− = Γ22(ρ++ + ρ−−) (6)

− (W33 + W44 −
3Γ22

2
+ i

Ω

2
)ρ+− − Γ22

2
ρ−+

ρ̇33 = 2W33ρ++ − (2W33 − 2Γ33)ρ33 (7)

ρ̇44 = = −ρ̇++ − ρ̇−− − ρ̇33, ρ̇−+ = ρ̇∗+−
(8)

The last line arises from the preservation of trace and the
hermiticity of the density operator. It should be stressed
that this master equation is valid for a certain range of
parameters in which the broadband assumption for the
noise fields is correct, i.e. we can replace the effect of the
noise by a simple pump rate Wii. This approximation
is valid if the frequency bandwidth ∆ωi (i = 3, 4) of the
noise field is larger than the spontaneous decay rates in
the system and the detunings do not greatly exceed the
bandwidth of the noise field. It should also be noted here
that we are working in a dressed state picture, in which
the incoherent pump rates are between the dressed level
|±〉 and the level 3 and 4. This assumption is only valid
if the Rabi frequency of the driving field on the 1 ↔ 2
transition is large compared to the bandwidth of the noise
fields. This condition is intuitively clear, as in that case a
noise field can selectively address only one dressed state.
Therefore, our analysis applies provided that the follow-
ing inequality holds

Γii ≪ ∆ωi ≪ Ω, (i = 3, 4). (9)

The master equation contains all the information about
the dynamics of the system; however, if we are mainly
interested in the behaviour of a single quantum system,
e.g. a single ion in an ion trap, then it is more con-
venient to use the quantum jump approach ( see [13]
and references therein). The main idea behind the quan-
tum jump approach is to determine the time evolution
of the system under the condition that no photon has
been emitted on the 1 ↔ 2 transition. This conditional
time evolution is no longer trace preserving and the de-
creasing trace reflects the probability that no photon has
been emitted in the time interval [0, t]. The conditional
time evolution can easily be obtained either directly from
the master equation (removing some terms) or by red-
eriving it under the constraint that no photon has been
emitted [13]. The key point is realizing that in order to
obtain the conditional time evolution one has to remove
from the ensemble all those systems that have emitted a
photon. This can be done heuristically by removing the
contribution 2Γ22ρ22 from the time evolution equation
for the population of the ground state ρ11. When using

dressed states |±〉, the result is that we need to replace
Eqs. (4,5,7) by

ρ̇++ = −(2W33 + Γ22)ρ++ (10)

+
Γ22

2
ρ+− +

Γ22

2
ρ−+ + 2W33ρ33

ρ̇−− = −(2W44 + Γ22)ρ−− (11)

+
Γ22

2
ρ+− +

Γ22

2
ρ−+ + 2W44ρ44

ρ̇+− =
Γ22

2
(ρ++ + ρ−−) (12)

− (W33 + W44 + Γ22 + i
Ω

2
)ρ+−

Given the conditional time evolution, the evaluation of
the normalized power spectrum is a straightforward task.
For the modulation described in Eq. (1) numerical re-
sults are presented in Fig. 3. This simulation shows
the expected behaviour of a resonant-like process, with
a sharp peak (a delta function within numerical preci-
sion) at the frequency of the modulation and subsequent
weaker peaks at its odds harmonics. The peaks at even
harmonics are suppressed due to the symmetry of the
modulation. The emergence of delta peaks in the spec-
trum is a first indication of SR.
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FIG. 3. Numerical simulation of the power spectrum
for a modulation as in Eq. (1). The other parameters are
Ω = 50Γ22, ∆Ω = 10Γ22, Γ33 = Γ22, W33,weak = 0.0128,
W33,strong = W33,weak/10, and W44,strong = W33,weak,
W44,weak = W33,strong and detunings chosen as in Eqs. (2,3).
The peaks are delta-functions to within the numerical preci-
sion. Harmonics at even multiples are suppressed because of
the symmetry of the modulation.

In order to establish unambiguously the occurrence of
SR, one has to evaluate the signal-to-noise ratio. This
quantity, defined as the ratio of the spectral peak to the
spectral background at a given frequency, is a measure
of the probe sensitivity to the periodic driving. Fig. 4
shows the SNR at the modulation frequency, i.e. the
frequency at which the power spectrum exhibits a delta
peak. As expected, the SNR exhibits a maximum at an
optimal noise pump rate. If the noise intensity is in-
creased beyond this value, the sensitivity of the probe
is diminished. Although we have presented numerical
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results for a specific choice of parameters, extensive nu-
merical simulations show that SR can be observed over
a wide range of parameters.
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FIG. 4. Output signal-to-noise (SNR) at the driving fre-
quency as a function of the noise intensity. The parameters
are chosen as in Fig. 3. The sharp rise of the noise intensity to
a maximum for an intermediate value of the noise intensity
followed by a slower fall-off towards smaller SNR is a clear
signature of the occurrence of SR.

The scheme discussed above may seem academic, but it
allows us to exemplify how stochastic resonance could be
observed at the level of a single quantum system using
currently available experimental techniques. Moreover,
we will now show that this phenomenon may find practi-
cal applications in precision measurements. To this end
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FIG. 5. Output signal-to-noise (SNR) at the driving fre-
quency as a function of the noise intensity for the two beat-
ing lasers driving the 1 ↔ 2 transition. The parameters are
Ω1 = 50Γ22, Ω2 = 10Γ22, Γ33 = Γ22 and the detuning between
the lasers is chosen to be δω = 0.049Γ22 . For the noise fields
we choose W33,max = W44,max and detunings as in Eqs. (2,3).
The bandwidth of the noise fields are equal and chosen to be
6.66Γ22 . The sharp rise to a maximum for an intermediate
value of the noise intensity followed by a slower fall-off towards
smaller SNR where randomization dominates is a signature of
the occurrence of SR.

we will discuss how the sensitivity for the detection of
a frequency mismatch between two coherent fields can be
enhanced using incoherent driving, i.e., employing SR.

Let us consider two coherent fields with Rabi frequen-
cies Ω1 and Ω2, whose oscillation frequencies differ by a
small amount δω. As it is well known, the superposition
of two laser fields in a running wave configuration results
in a beating signal. The idea is to use this modulated sig-
nal as our driving field (giving rise to the dressed states
|±〉) while tuning appropriately the additional incoherent
driving fields (see Fig. 1 for illustration). Numerical sim-
ulations of the power spectrum for experimentally acces-
sible parameters reveal again that the frequency response
of the atomic system exhibits stochastic resonance. The
signal to noise ratio for the first delta peak in the power
spectrum is shown in Fig. 5. The optimal performance,
that is, the largest SNR, is achieved for certain finite
but non-zero noise intensity. This result implies that
stochastic resonance can have applications for example
in frequency measurements.

Summarizing, we have showed that the phenomenon
of SR, a paradigm of the counter-intuitive role that noise
may play in high sensitivity detection, can be demon-
strated at the level of a single ion. As an illustration of
the potential that this effect may have, we have discussed
the use of a SR scheme for the detection of the frequency
difference of two lasers. As the proposed experimental
scenario relies on techniques well mastered by quantum
opticians, quantum SR may be expected to open up new
experimental possibilities in precision measurements at
the quantum limit.
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