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ABSTRACT   

In this work we present an analysis of non-slanted reflection gratings by using a corrected Coupled Wave Theory which 
takes into account boundary conditions. It is well known that Kogelnik’s Coupled Wave Theory predicts with great 
accuracy the response of the efficiency of the zero and first order for volume phase gratings, for both reflection and 
transmission gratings. Nonetheless, since this theory disregard the second derivatives in the coupled wave equations 
derived from Maxwell equations, it doesn’t account for boundary conditions. Moreover only two orders are supposed, so 
when either the thickness is low or when high refractive index high are recorded in the element Kogelnik’s Theory 
deviates from the expected results. In Addition, for non-slanted reflection gratings, the natural reflected wave 
superimpose the reflection order predicted by Coupled Wave theories, so the reflectance cannot be obtained by the 
classical expression of Kogelnik’s Theory for reflection gratings. In this work we correct Kogelnik’s Coupled Wave 
Theory to take into account these issues, the results are compared to those obtained by a Matrix Method, showing good 
agreement between both theories. 
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1. INTRODUCTION  
The study of the interaction of electromagnetic radiation with diffractive elements has received much attention in the 
literature. In particular, several theoretical models have been proposed to accurately describe the behaviour of diffraction 
gratings of different kind. The attention posed on these structures is in part due to the fact that a sinusoidal diffraction 
grating is the simplest periodic structure that can be recorded on a photosensitive material. Therefore the basic problem 
in volume holography theory is to describe accurately the properties of this kind of structures1. A usual way to calculate 
the efficiencies of the different orders that propagate in the volume grating is to solve Maxwell equations for the case of 
an incident plane wave on a medium where the relative dielectric permittivity varies2. Although the idea seems clear and 
precise, in the literature there are a great number of models that allow solving the problem.  

One of the most used models to solve the electric field in the periodic structure is the Coupled Wave (CW) theory1,2. The 
name of this method is directly related to the way the solution of the wave equations is obtained. The most representative 
aspect of the CW theory is that it assumes a continuous interchange of energy between the waves that propagate inside 
the grating. The first study to calculate the electric field inside a holographic dielectric grating using the coupled wave 
method was made by Kogelnik in 19693. Kogelnik assumed that only two orders propagated in the hologram, orders zero 
and +1, and obtained analytical solutions for the efficiencies of the first and zero order when a plane wave impinges on a 
diffraction grating with a sinusoidal variation of its electro-optical properties (relative dielectric permittivity and 
conductivity). The highly predictive character of the expressions derived by Kogelnik made his work one of the most 
cited by holographic researchers. Nonetheless Kogelnik’s theory assumed some approximations that make it inaccurate 
for some cases, such as dielectric gratings that are not sinusoidal or for thin gratings (outside the Bragg regime). For 
these cases the Rigorous Coupled Wave (RCW) theory proposed by Moharam and Gaylord4 in 1982 has proven to be 
appropriated. Moharam and Gaylord proposed the method to solve rigorously (apart for the number of orders chosen for 
the numerical simulations) the differential coupled wave equations that emerge from the Helmoltz equation when the 
coupled wave theory is used. 

The Rigorous Coupled Wave Theory has been applied with success to volume holograms and binary gratings5-10, 
photonic band structures11, diffractive lenses12, etc. And it is also the method that should be used to test the validity of 
the different approximations that have been done and are still doing in order to obtain analytical functions for the 

Physical Optics, edited by Daniel G. Smith, Frank Wyrowski, Andreas Erdmann, 
Proc. of SPIE Vol. 8171, 81710R · © 2011 SPIE · CCC code: 0277-786X/11/$18  

doi: 10.1117/12.896877

Proc. of SPIE Vol. 8171  81710R-1

Downloaded from SPIE Digital Library on 07 Dec 2011 to 83.41.178.40. Terms of Use:  http://spiedl.org/terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16371942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

efficiencies of the different orders that propagate in the hologram. Although exact predictions can be obtained by using 
the RCW it is still interesting to find analytical expressions in order to calculate the efficiency of the different orders that 
propagate inside the hologram. Analytical expressions give a deeper understanding of the physical processes than 
numerical solutions do. In addition, by direct inspection of the analytical expressions a clearer interpretation of how the 
different parameters influence in the efficiency of the different orders is got.  

In this work we present a model based on Kogelnik’s Coupled Wave equations to study the behavior of reflected and 
transmitted orders that propagate in a non-slanted reflection grating. The model is based on assuming more general 
boundary conditions than Kogelnik does, thus permitting a different strategy for correcting Kogelnik’s expressions of 
diffraction and transmission efficiency when the grating is embedded in media with different refractive indexes. The 
results obtained by using this method are compared with those obtained by using a solution of the differential equation in 
terms of Mathieu functions, showing good agreement when either the diffraction grating is index-matched or it is not. 

2. CORRECTED COUPLED WAVE THEORY 
To start with we will derive the basic equations that govern the behaviour of the different orders that propagate inside a 
lossless reflection diffraction grating applying Kogelnik’s Coupled Wave Theory. 

We will start with the coupled equations derived by Kogelnik3 that describe the energy interchanged between order 0, R, 
and order +1 reflected, S 

 0=+ Sj
dz
dRcR κ  (1)

 0=++ RjSj
dz
dScS κϑ   (2) 

where 

 
λ

π
κ 1n

=   (3)

  

n1 being the refractive index modulation and λ the wavelength in air, the off-Bragg parameter is defined as:  

 
β
σβϑ

2

22 −
=     (4) 

where β is the modulus of the propagation vector of order zero inside the grating. 

And cR and cS are the cosine of the angles formed by the propagation vectors of the zero order and that of the first order 
with respect to the normal of the grating: 

 1cosθ=Rc   (5)

  ϕ
β

sinKcc RS +=  (6)

Where θ1 is the angle formed by the incident wave with the normal of the grating and ϕ is the angle that the fringes of 
the grating form with the z axis.  

The solutions of the coupled wave equations can be found in terms of exponentials as: 

  zrzrzR 2211 expexp)( γγ +=  (7)

  zszszS 2211 expexp)( γγ +=  (8) 

where: 
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These results were derived by Kogelnik. Now by imposing the conditions R(0) = 1 and S(d) = 0, he found the 
expressions for the efficiency of the zero and first reflected order when a plane wave impinges onto the diffraction 
grating. Nonetheless, we will suppose a more general form of the boundary conditions to allow for the incidence of two 
waves with the directions of the zero and the first reflected order. Therefore we allow for the following conditions: 

 0)0( RR =   (10) 

  0)( SdS =   (11)
Now substituting equations (7-8) into (1-2) and taking into account (10-11) the following system of linear equations can 
be obtained: 

  021 Rrr =+   (12) 

  02211 expexp Sdsds =+ γγ   (13) 

  )()( 212211 ssjrrcR +−=+ κγγ   (14) 

  )expexp()expexp( 22110222111 drdrjSjdsdscS γγκϑγγγγ +−−=+  (15) 

Solving the system for r1, r2, s1 and s2 and using the equations (1-2,7-8,10-11) the amplitudes of the zero and first 
reflected orders can be found. In particular the values obtained for s1 and s2 are:    
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Now if  tij and rij are the Fresnel coefficients, from medium i to medium j:  
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And S(d) is the amplitude of the reflected order obtained by imposing R0 = tag and S0 = 0 in  equations (8,16-17). The 
amplitude of the reflected wave in air can be obtained as: 

 [ ])(dStrS gaagair +=   (20) 

Where the subscript, a, means air and, g, grating. 

The efficiency of the reflected wave is finally obtained as: 

 airair SS *=η   (21) 
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3. SOLUTION IN TERMS OF MATHIEU FUNCTIONS 
In this section a solution for the efficiency of the reflected order for a non-slanted reflection grating (Figure 1) is 
obtained in terms of Mathieu functions.  

Consider a plane electromagnetic wave incident onto a periodic non-magnetic medium, which dielectric constant varies 
in form:  

   )cos(10 Kzrrr εεε +=  (22) 

The treatment is done only for TE polarization, but can be extended to TM polarization. In this case the function E (z) for 
the electric field inside the medium verifies the following differential equation:   

 ( )[ ] 0)cos( 2
10

2
02

2

=−++ EKKzk
dz

Ed
xrr εε   (23) 

Where: 

   
λ
π2

0 =k  (24) 

Being λ the wavelength in vacuum.  

If θ1 is the angle of incidence and θ2 is the angle between the wave vector and the normal to the substrate of refractive 
index n2, then the following parameters can be defined:  

 ( ) ( ) 2211 sin/sin/ θωθω cncnK x ==   (25) 

 ( ) 111 cos/ θω cnq =   (26) 

 ( ) 222 cos/ θω cnq =   (27) 

    
Figure 1.- Nonslanted reflection grating  

The electric field in the first medium can be expressed as the superposition of an incident wave and a reflected wave of 
the form:  

x 

z 

n1 n2 

θ1 

θ2 
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  )exp()exp()( 11 zjqrzjqzE s
I −+=  (28) 

While in the second medium only the transmitted wave exist: 

   )exp()( 1zjqtzE s
II =  (29)  

Now suppose that f(z) is a solution of the differential equation with a unit amplitude transmitted wave:     

 )exp()( 1zjqzE II =  (30)  

with initial conditions:  

   1)0( =E   (31) 

  2)0( jq
dz
dE

=   (32) 

The boundary conditions in z = d imply:  

   )exp()exp()( 11 djqrdjqdE s −+=   (33)

   )exp()exp()( 1111 djqrjqdjqjqd
dz
dE

s −−=  (34) 

Given the linearity of Maxwell's equations we have: 

   )exp()exp()( 11 djqrdjqdft ss −+=   (35)

   )exp()exp()( 1111 djqrjqdjqjqd
dz
dft ss −−=   (36) 

From equations (35) and (36) we can obtain the amplitudes of the reflected and transmitted waves based on the solution 
f(z) with initial conditions (31) and (32):  
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It is now necessary to obtain a solution of the differential equation with initial conditions (31) and (32).  

In this case the differential equation can be solved in terms of Mathieu functions. If we call  

   2
0

2
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2 )(4
K

kKa rx ε+−
=  (39)  

and  
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2
02

K
kq rε−

=  (40)  

The function f(z), solution of the differential equation (23) with initial conditions (31-32) has the form:  
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And its derivative:  
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Where cm (a, q, z) is the even Mathieu function sm (a, q, z) the odd Mathieu function, cmp (a, q, z) and smp (a, q, z) the 
corresponding derivatives. 

4. RESULTS AND DISCUSSION 
Now we want to compare the results obtained by using the corrected Coupled Wave Theory with those obtained using 
the solution in terms of Mathieu function. We will also show the results obtained using Kogelnik’s Coupled Wave 
Theory corrected only for Fresnel losses. Firstly, we will study a non slanted reflection grating 12,5 μm thick with a 
period Λ of 0,25 μm and a refractive index modulation Δn = 0,015, a plane wave was supposed to impinge onto the 
grating with a wavelength of 0,633 mm. In this case, it will be assumed that the grating was index matched with the 
surrounding media. Figure 2 shows the efficiency of the first reflected order as a function of the angle of incidence for a 
non-slanted reflection grating with an average refractive index equal to that of the surrounding media. As can be seen the 
results obtained by using Kogelnik’s expression of the diffraction efficiency and those obtained using the solution in 
terms of Mathieu functions agree. It should be also indicated that the results of the corrected Coupled Wave Theory are 
the same to those obtained using only Kogelnik. Therefore, it is clear that when calculating the diffraction efficiency 
inside the grating there are no differences between the three approaches presented.  

 
Figure 2.- Diffraction efficiency for a non-slanted reflection grating 12,5 μm thick with a period Λ of 0,25 mm and a 

refractive index modulation Δn = 0,015. The grating was index-matched to the surrounding media. Koglenik’s theory: 
continuous line; Mathieu solution: discontinuous line 
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Things are different when there are differences between the refractive indexes of the periodic medium and the 
surrounding ones. In this case correcting Kogelnik’s expression of the diffraction efficiency with Fresnel coefficients it is 
not suffice to achieve correct results. Figure 3 shows the efficiency of the first reflected order as a function of the angle 
for a non-slanted reflection grating 11 μm thick with a period Λ of 0,22 μm and a refractive index modulation Δn = 
0,015, the average refractive index of the grating was supposed to be n = 1,5, whereas that of the first medium was 
supposed to be 1,0. The results are presented for Mathieu solution and Kogelnik’s Theory, and as can be seen there are 
clear differences between both curves. The most representative is the fact that the angle with maximum diffraction 
efficiency is not the same for both models. Moreover the value of the maximum diffraction efficiency is also different for 
both cases. It is clear, then, that correcting Kogelnik’s expression for Fresnel losses is not suffice to obtain accurate 
results. A more precise correction is performed by using the proposed corrected Coupled Wave Theory, figure 4 shows 
the efficiency of the first reflected order for the same diffraction grating, in this case with results obtained by the 
proposed model and the Mathieu solution. As can be seen only slight differences exist for both methods, but there is 
coincidence of the angles for maximum diffraction efficiency and maximum values of the efficiency.  

 
Figure 3.- Diffraction efficiency for a non-slanted reflection grating 11 μm thick thick with a period Λ of 0,22 μm and a 

refractive index modulation Δn = 0,015. The average refractive index of the grating was supposed to be 1,5. Koglenik’s 
theory: continuous line; Mathieu solution: discontinuous line 

 

If the simulations are performed for a reflection grating with different parameters the same phenomena are observed. 
Figure 5 shows the efficiency of the first reflected order as a function of the angle for a non-slanted reflection grating 
12,5 μm thick with a period Λ of 0,25 mm and a refractive index modulation Δn = 0,015, results obtained by Mathieu 
solution and Kogelnik’s Theory are presented. Whereas figure 6 show the results obtained by using corrected Coupled 
Wave Theory and those obtained in terms of Mathieu functions. As in the previous analyzed case the model based only 
in correcting Kogelnik’s expression of the diffraction efficiency for Fresnel losses deviate from those obtained using 
corrected Coupled Wave Theory and Mathieu solution, demonstrating that in the case of non-slanted reflection gratings 
it is necessary to use more precise correction strategies of Kogelnik’s Theory. 
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Figure 4.- Diffraction efficiency for a non-slanted reflection grating 11 μm thick thick with a period Λ of 0,22 μm and a 

refractive index modulation Δn = 0,015. The average refractive index of the grating was supposed to be 1,5. Corrected 
Coupled Wave Theory: continuous line; Mathieu solution: discontinuous line 

 

 

 

 
Figure 5.- Diffraction efficiency for a non-slanted reflection grating 12,5 μm thick thick with a period Λ of 0,25 μm and a 

refractive index modulation Δn = 0,015. The average refractive index of the grating was supposed to be 1,5. Koglenik’s 
theory: continuous line; Mathieu solution: discontinuous line. 
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Figure 6.- Diffraction efficiency for a non-slanted reflection grating 12,5 μm thick thick with a period Λ of 0,25 μm and a 

refractive index modulation Δn = 0,015. The average refractive index of the grating was supposed to be 1,5. Corrected 
Coupled Wave Theory: continuous line; Mathieu solution: discontinuous line. 

5. CONCLUSIONS 
In this work a corrected Coupled Wave Theory is presented in order to analyze non-slanted reflection gratings. The 
model is based on Coupled Wave equations obtained by Kogelnik, but in this case different boundary conditions were 
imposed to obtain more general expressions of the amplitudes of the transmitted and reflected orders. An incidence wave 
and a reflected one were supposed to impinge onto the grating with arbitrary amplitudes, what allows a better correction 
strategy when the average refractive index of the grating is different from those of the surrounding media. In addition an 
alternative solution of the differential equation that governs the behavior of the electromagnetic radiation inside a 
reflection grating is described. This method permits obtaining the efficiency of the transmitted and the reflected order in 
terms of Mathieu functions. Finally the results obtained by using Kogelnik’s Theory corrected for Fresnel losses, by 
using the corrected Coupled Wave Theory and the solution in terms of Mathieu functions are compared. The simulations 
made demonstrate that when the grating is index matched the three methods yield to the same results, but when this is 
not the case corrected Coupled Wave Theory yields to more accurate results than the correction of Kogelnik’s 
expressions to take into account Fresnel losses. 
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