
Understanding Prediction Limits Through Unbiased
Branches

Lucian Vintan1, Arpad Gellert1, Adrian Florea1, Marius Oancea1 and Colin Egan2

1 “Lucian Blaga” University of Sibiu, Computer Science Department, Emil Cioran
Street, No. 4, 550025 Sibiu, Romania,

{lucian.vintan, arpad.gellert, adrian.florea, marius oncea}@ulbsibiu.ro
2 University of Hertfordshire, School of Computer Science, Hatfield, College Lane,

AL10 9AB UK,,
c.egan@herts.ac.uk

Abstract The majority of currently available branch predictors base their
prediction accuracy on the previous k branch outcomes. Such predictors sustain
high prediction accuracy but they do not consider the impact of unbiased
branches which are difficult-to-predict. In this paper, we quantify and evaluate
the impact of unbiased branches and show that any gain in prediction accuracy
is proportional to the frequency of unbiased branches. By using the
SPECcpu2000 integer benchmarks we show that there are a significant
proportion of unbiased branches which severely impact on prediction accuracy
(averaging between 6% and 24% depending on the prediction context used).

1. Introduction

Branch instructions are a major bottleneck in the exploitation of instruction level
parallelism (ILP) since (in general-purpose code) conditional branches occur
approximately every 5 – 8 instructions [5]. With increasing instruction issue rate and
depth of the pipeline, accurate dynamic branch prediction becomes more essential.
Very high prediction accuracy is required because an increasing number of
instructions are lost before a branch misprediction can be corrected. Even a 3%
misprediction rate can have a severe impact on MII processor performance [1, 10].

Chang [2] introduced the idea of grouping branches by their bias in an attempt to
reduce the impact of aliasing. By profiling, branches were classified between 6 static
classes and were then guided to the most appropriate dynamic predictor. Chappell [3]
investigated difficult-to-predict branches in a Simultaneous Subordinate Micro-
Threading (SSMT) architecture. Chappell constrained microthreading to only
difficult-to-predict branches which were identified as those being reached along a
‘difficult-path’. We believe that such branches are unbiased. More recently, Desmet
[4] applied the concept of Gini-index to construct a decision tree based on a number
of dynamic and static branch features. In line with our thoughts, Desmet concluded
that accurate branch predictors require more than just the type of predictor and history
register length to achieve accurate branch prediction.

Alternative methods of dynamic branch prediction are available such as neural
branch prediction [6, 15]. Despite a neural branch predictor’s ability to achieve a very

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1637191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

high prediction rate and the ability to exploit deeper correlations at linear costs, the
associated design complexity due to latency, large quantity of adder circuits, area and
power are still obstacles to industrial adoption. As such we therefore consider neural
prediction techniques to be outside the scope of this paper.

The main objective of this paper is to highlight the impact of unbiased branches so
that they can be considered in the design of two-level predictors. In remainder of this
paper we evaluate the impact of unbiased branches, and therefore difficult-to-predict
branches, on three commonly used prediction contexts (local, global and global XOR
branch address) and their corresponding two-level predictors [8, 9, 10, 13].

2. Identifying difficult-to-predict branches

The majority of branches demonstrate a bias to either the taken or the not-taken path
which means branches are highly polarised towards a specific prediction context (a
local prediction context, a global prediction context or a path-based prediction
context) and such polarised branches are relatively easy-to-predict. However, a
minority of branches show a low degree of polarisation since they tend to shuffle
between taken and not-taken and are therefore unbiased and difficult-to-predict.

In this study, we identify unbiased branches by cascading branches through the
three different prediction contexts and their respective predictors: a PAg, a GAg and a
Gshare predictor. We also increase the history register lengths in units of 4-bits from
16-bits to 28-bits as shown in Figure 1. Within our prediction contexts, a feature is the
binary context on p bits of prediction information. Finally, each static branch has
associated k dynamic contexts in which it can appear (). We define the
polarisation index (P) of a certain dynamic branch context as equation (1):

pk 2≤

⎩
⎨
⎧

<
≥

==
5.0,
5.0,

),max()(
01

00
10 ff

ff
ffSP i (1)

where:
• { }kSSSS ...,,, 21= = the set of prediction contexts that appear during all

branches instances;
• k = the number of distinct prediction contexts that appear during the branch’s

execution instances, , and p is the history register length; pk 2≤

•
NTT

NTf
NTT

Tf
+

=
+

= 10 , , NT = the number of “not-taken” branch

instances corresponding to context Si, T = the number of “taken” branch instances
corresponding to context Si, ki ...,,2,1)(=∀ , and therefore 110 =+ ff ;

• if , then the context is completely biased
(100%) and the branch is highly predictable;

kiSP i ...,,2,1)(,1)(=∀= iS

• if , then the context is totally unbiased and
the branch might be difficult to predict.

kiSP i ...,,2,1)(,5.0)(=∀= iS

Consider the following trivial examples, a branch in a certain dynamic context
shows the following behaviour: TTTTTT… or NNNNNN… in which case the

transitions are always taken or always not-taken, and would be biased and easy-to-
predict. However, a branch in a certain context that is stochastic will show a highly
shuffled behaviour, which would result in the branch being unbiased and difficult-to-
predict with its transitions toggling between T and N. We therefore consider that the
rate of transition between branch outcomes is an important feature that can be applied
to branch prediction. We introduce the distribution index which is the based on the
rate of transitions as shown by equation (2):

⎪
⎩

⎪
⎨

⎧

>
⋅

=
=

0,
),min(2

0,0
)(

t
t

t

i n
TNT

n
n

SD
(2)

where:
• nt = the number of branch outcome transitions in context Si;
• = the maximum number of possible transitions;),min(2 TNT⋅

• k = the number of distinct dynamic contexts, , and p is the history
register length;

pk 2≤

• if , then the behaviour of the branch in context SkiSD i ...,,2,1)(,1)(=∀= i
is “contradictory” (the most unfavourable case), and the predictor cannot learn it;

• if , then the behaviour of the branch in context
S

kiSD i ...,,2,1)(,0)(=∀=

i is constant (the most favourable case), and the predictor can be learned.
A branch with a low distribution index (tending to 0) will show a repeating pattern

and there will be few transitional changes. In contrast, a branch that exhibits many
transitional changes will show a shuffled pattern and will have a high distribution
index (tending to 1). Hence, the greater the distribution index means that the branch
becomes more difficult-to-predict in a given predictor. We consider any branch for a
given prediction context that has a distribution index of ≤0.2 to be easy-to-predict and
define a difficult-to-predict branch for a given prediction context to be a branch with a
low polarisation index (P<0.95 as derived from equation 1 (an unbiased branch)) and
with a distribution index of >0.2. We chose this value because for a given branch
context with a polarisation index >0.95 will be easy-to-predict and will achieve a high
prediction accuracy. Consequently branches with a polarisation index of <0.95 will be
difficult-to-predict.

We identify and reduce the number of unbiased branches (Figure 1) by passing
unbiased branches through successive cascades of different prediction contexts with
increasing history information (from 16- to 28-bits).

GH XOR PC
16 bits

GH
16 bits

LH
16 bits

GH XOR PC
20 bits

GH
20 bits

LH
20 bits

GH XOR PC
p bits

GH
p bits

LH
p bits

U

U

U

U

U

U

U

U Unbiased
branches

GH XOR PC
16 bits

GH
16 bits

LH
16 bits

GH XOR PC
16 bits

GH XOR PC
16 bits

GH
16 bits
GH

16 bits

LH
16 bits
LH

16 bits

GH XOR PC
20 bits

GH
20 bits

LH
20 bits

GH XOR PC
20 bits

GH XOR PC
20 bits

GH
20 bits
GH

20 bits

LH
20 bits
LH

20 bits

GH XOR PC
p bits

GH
p bits

LH
p bits

GH XOR PC
p bits

GH XOR PC
p bits

GH
p bits
GH
p bits

LH
p bits
LH
p bits

U

U

U

U

U

U

U

U Unbiased
branches

Figure 1. Unbiased branches cascading through the prediction contexts

The number of unbiased branches is reduced from one prediction context to the
next because an unbiased branch in one prediction context is not necessarily unbiased
in a different prediction context. By the time our final prediction context (28-global
history bits XORed with 28-bits of the branch address) is iterated the only remaining
unbiased branches are those that have been unbiased throughout all iterations of all of
the previous prediction contexts and these remaining unbiased branches are therefore
identified as difficult-to-predict. We therefore predict with a short history prediction
context before a long history prediction context to remove biased branches (those that
are easy-to-predict) as early as possible.

3. Simulations

In this study we identify unbiased branches in the SPEC2000 benchmark suite [12]
by cascading branches through the three different prediction contexts and their
respective predictors: a PAg predictor, a GAg predictor and a Gshare predictor. We
use the SimpleScalar simulator [11] and all results are reported on 1 billion
dynamically executed instructions, skipping the first 300 million instructions.

0

20

40

60

80

100

mcf

pa
rse

r
bz

ip
gz

ip
tw

olf gc
c

Figure 2 shows the prediction accuracy achieved by the 16-local history bit
prediction context using the PAg predictor. The average prediction accuracy of this
local prediction context is around 91%, which is limited by the impact of the unbiased
branches which have an average prediction accuracy of around 76%. The frequency
of unbiased branches (Table 1) varies between 5.76% (mcf) and 44.98% (twolf) with
an average of 24.55%.

Av
er

ag
e

Pr
ed

ic
tio

n
Ac

cu
ra

cy
 (%

)

PAg / all branches

PAg / unbiased branches

Figure 2. PAg prediction accuracy with the 16-local history bits prediction context

Table 1. Percentage of unbiased branches (16-local history bits prediction context)
Benchmark mcf parser bzip gzip twolf gcc Avg.
Unbiased branches (P<0.95) 5.76% 20.60% 26.42% 38.73% 44.98% 10.80% 24.55%

The unbiased branches are now cascaded through the 16-global history bit
prediction context and its corresponding GAg predictor. The average prediction
accuracy of this global prediction context is around 93%, which again is limited by
the impact of the unbiased branches. The average prediction of accuracy unbiased
branches is around 72% and the frequency of these unbiased branches (Table 2) varies
between 3.28% (mcf) and 32.41% (twolf) with an average of 17.48%.

Table 2. Percentage of unbiased branches (16-global history bits prediction context)
Benchmarks mcf parser bzip gzip twolf gcc Avg.
Unbiased branches (P<0.95) 3.28% 12.95% 23.4% 28.89% 32.41% 3.92% 17.48%

The remaining unbiased branches are now cascaded through the 16-global history
prediction context XORed with 16-bits of the branch address and its associated

Gshare predictor. The prediction accuracy of the 16-history bit Gshare predictor
improved by around 1% in comparison with the 16-history bit GAg predictor.
However, the number of unbiased branches remained the same as those of the GAg
predictor apert from gcc which showed a marginal reduction to 3.91%.

The history register length was increased by 4-bits to 20-bits and then the
remaining unbiased branches were cascaded through the 20-local history bit
prediction context and its associated PAg predictor. We continued to cascade through
our remaining prediction contexts (local, global, global XOR branch address),
increasing the amount of history information by 4-bits at a time (to a maximum of 28-
history bits) as shown by Figure 1 thereby gradually reducing the number of unbiased
branches through each context and decreasing the number of unbiased branches.

A distribution index tends to 0 for a branch that is not shuffled (and is easy-to-
predict) and tends to 1 (and is difficult-to-predict) for a shuffled branch. We
partitioned the percentage of branches into 5 distribution index intervals: (0.0 - 0.2),
(0.2 - 0.4), (0.4 - 0.6), (0.6 - 0.8) and (0.8 - 1.0).

0
5

10
15
20
25
30
35
40
45
50

Figure 3 shows the intervals for the 16-local history bit context and that around
41% of the unbiased branches have a distribution index interval (0.4 - 0.6), making
their branch behaviour relatively shuffled and around 21% of the branches have a
distribution index between (0.8 - 1.0), making their behaviour highly shuffled and
therefore difficult-to-predict. Using the cut-off distribution index of <0.2, our
simulations show that only around 16% of the unbiased branches are easy-to-predict
with the 16-history bit local prediction context. Gcc has the greatest percentage of
unbiased and easy-to-predict branches (around 39%) and gzip the greatest percentage
of unbiased and difficult-to-predict branches (around 30%).

m
cf

pa
rse

r
bz

ip
gz

ip
tw
olf gc

c
er
ag

e

D
yn

am
ic
 U

np
ol
ar

is
ed

 C
on

te
xt
s
(%

)

D=(0 – 0.2)
D=(0.2 – 0.4)
D=(0.4 - 0.6)
D=(0.6 – 0.8)
D=(0.8 - 1.0]

Av

Figure 3. Distribution rates of the 16-local history bit prediction context

Similarly, we determined the intervals for the 16-global history bit prediction
context and the intervals for the 16-global history bit XORed with 16-bits of the
branch address prediction context (intervals were the same for both contexts). Since
both of these are global prediction contexts, it is not surprising that their distribution
indices are similar. With the 16-history bit global prediction contexts only around 3%
of the unbiased branches have a distribution index <0.2, around 33% have a
distribution index of (0.4 - 0.6), and around 28% have a distribution index of (0.8 –
1). As with the local prediction context, gcc has the greatest percentage of unbiased
but easy-to-predict branches (around 8%), but twolf has the greatest percentage of
unbiased and difficult-to-predict branches (around 39%).

Figure 4 shows the reduction in the number of unbiased branches as they cascade
through the three prediction contexts. The percentage reduction in the number of
unbiased branches decreases from around 25% to around 6%. We consider that this
value of 6% is still too high and further investigations are required.

0

5

10

15

20

25

30

16 bits 20 bits 24 bits 28 bits

D
yn

am
ic
 U

np
ol
ar

is
ed

 C
on

te
xt
s
(%

)

LH
GH
GH xor PC

Figure 4. Reducing the number of unbiased branches with increasing history register length

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

p=1 p=4 p=8 p=12 p=16 p=20 p=24

U
nb

ia
se

d
C

on
te

xt
 In

st
an

ce
s

GH (p bits)
GH (p bits) + PATH (p PCs)

In an earlier paper [14], we explored the benefits of adding sufficient information, in
the form of successive branch addresses, to uniquely identify each program path. We
continue that work in this study evaluating, on all branches, paths of different lengths
(p branches) used together with global histories of the same length (p bits). The
results are presented in Figure 5, where they are compared with the results obtained
using only global history prediction context.

Figure 5. The gain introduced by the path for different context lengths

Our simulations show that the best gain is achieved with short history lengths
(p<16) and there is only marginal gain with longer history lengths, meaning that long
global history (p bits) approximates very well the longer path information (p
branches).

We have also undertaken similar simulations with neural predictors [6, 15] and in
addition to the SPEC benchmarks we have used the Championship Branch Prediction
benchmarks [7, 16]. However, due to space limitations we have not shown the results
of these simulations in this paper.

4. Conclusions and Further Work

In this paper, we have shown that the design of branch predictors should consider the
identification of difficult-to-predict branches. Different branches exhibit different
behaviours for given prediction contexts and predictors, and the amount of shuffling
impacts on prediction accuracy. Even after cascading branches through a series of
prediction contexts there remains a significant number of difficult-to-predict branches
and the frequency of these difficult-to-predict branches varies between different
programs and between different prediction contexts. Computer Architects cannot
therefore continue to expect a prediction accuracy improvement with conventional
predictors and alternative approaches are necessary. We have briefly investigated the

use of increased correlation information by recording path information as well as
history information and have shown that some gain can be obtained with short history
register lengths (<16), but path information with longer history register lengths only
achieves marginal gain.

This work demonstrates that current branch predictors use limited prediction
contexts (local, global correlation and path information) due to the degree of
polarisation. We have therefore shown that the use of more prediction contexts is
required to further improve prediction accuracies. Our current thoughts are to use a
particularly relevant “piece” of the dynamic CPU context or alternatively some HLL
code information. In order to efficiently use such information we consider it will be
necessary to have a significant amount of compiler support.

References

1. Burger, D. and Goodman, J. R.: Billion Transistor Architectures. IEEE Computer. September
1997, 46 – 49.
2. Chang P.-Y., Hao E., Yeh T.-Y., Patt Y. N.: Branch Classification: a New Mechanism for
Improving Branch Predictor Performance, Proceedings of the 27 International Symposium on
Microarchitecture, San Jose, California, (1994).

th

3. Chappell R., Tseng F., Yoaz A., Patt Y.: Difficult-Path Branch Prediction Using Subordinate
Microthreads, The 29th Annual International Symposia on Computer Architecture, Alaska,
USA, (May 2002).
4. Desmet V., Eeckhout L., De Bosschere K.: Evaluation of the Gini-index for Studying Branch
Prediction Features. Proceedings of the 6th International Conference on Computing
Anticipatory Systems (CASYS). American Institute of Physics. AIP Conference Proceedings.
Vol. 718. (2004) 376-384.
5. Hennessy J. and Patterson D.: Computer Architecture: A Quantitative Approach, Third
Edition, Morgan Kaufmann Publishers, (2003).
6. Jiménez D. A., Lin C.: Dynamic Branch Prediction with Perceptrons, Proceedings of the 7th
International Symposium on High Performance Computer Architecture, (January 2001).
7. Loh G. H.: Simulation Differences Between Academia and Industry: A Branch Prediction
Case Study, International Symposium on Performance Analysis of Software and Systems
(ISPASS), pp.21-31, Austin, TX, USA, March 2005.
8. McFarling S.: Combining Branch Predictors, WRL Technical Note TN-36, Digital
Equipment Corporation, (June 1993).
9. Pan S. T., So K. and Rahmeh J. T.: Improving the accuracy of dynamic branch prediction
using branch correlation. Proceedings of ASPLOS V, Boston, MA, October (1992) 76-84.
10. Patt, Y. N., Patel, S. J., Friendly, D. H. and Stark, J.: One Billion Transistors, One
Uniprocessor, One Chip. IEEE Computer 1 (September 1997) 51–57.
11. Simplescalar The SimpleSim Tool Set, ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar.
12. SPEC, The SPEC benchmark programs, http://www.spec.org.
13. Yeh T. Y. and Patt Y. N.: Two-level adaptive branch prediction. In Proceedings of the 24-
the ACM/IEEE International Symposium on Microarchitecture, (November 1991).
14. Vintan L. and Egan C.: Extending Correlation in Branch Prediction Schemes, International
Euromicro’99 Conference, Italy, (September 1999).
15 Vintan L., Iridon M.: Towards a High Performance Neural Branch Predictor, International
Joint Conference on Neural Networks, Washington DC, USA, July 1999.
16. The 1st JILP Championship Branch Prediction Competition (CBP-1).
http://www.jilp.org/cbp, 2004.

ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar
http://www.spec.org/
http://www.jilp.org/cbp

