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Abstract The majority of currently available branch predictors base their 
prediction accuracy on the previous k branch outcomes. Such predictors sustain 
high prediction accuracy but they do not consider the impact of unbiased 
branches which are difficult-to-predict. In this paper, we quantify and evaluate 
the impact of unbiased branches and show that any gain in prediction accuracy 
is proportional to the frequency of unbiased branches. By using the 
SPECcpu2000 integer benchmarks we show that there are a significant 
proportion of unbiased branches which severely impact on prediction accuracy 
(averaging between 6% and 24% depending on the prediction context used). 

1.  Introduction 

Branch instructions are a major bottleneck in the exploitation of instruction level 
parallelism (ILP) since (in general-purpose code) conditional branches occur 
approximately every 5 – 8 instructions [5]. With increasing instruction issue rate and 
depth of the pipeline, accurate dynamic branch prediction becomes more essential. 
Very high prediction accuracy is required because an increasing number of 
instructions are lost before a branch misprediction can be corrected. Even a 3% 
misprediction rate can have a severe impact on MII processor performance [1, 10]. 

Chang [2] introduced the idea of grouping branches by their bias in an attempt to 
reduce the impact of aliasing. By profiling, branches were classified between 6 static 
classes and were then guided to the most appropriate dynamic predictor. Chappell [3] 
investigated difficult-to-predict branches in a Simultaneous Subordinate Micro-
Threading (SSMT) architecture. Chappell constrained microthreading to only 
difficult-to-predict branches which were identified as those being reached along a 
‘difficult-path’. We believe that such branches are unbiased. More recently, Desmet 
[4] applied the concept of Gini-index to construct a decision tree based on a number 
of dynamic and static branch features. In line with our thoughts, Desmet concluded 
that accurate branch predictors require more than just the type of predictor and history 
register length to achieve accurate branch prediction. 

Alternative methods of dynamic branch prediction are available such as neural 
branch prediction [6, 15]. Despite a neural branch predictor’s ability to achieve a very 
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high prediction rate and the ability to exploit deeper correlations at linear costs, the 
associated design complexity due to latency, large quantity of adder circuits, area and 
power are still obstacles to industrial adoption. As such we therefore consider neural 
prediction techniques to be outside the scope of this paper. 

The main objective of this paper is to highlight the impact of unbiased branches so 
that they can be considered in the design of two-level predictors. In remainder of this 
paper we evaluate the impact of unbiased branches, and therefore difficult-to-predict 
branches, on three commonly used prediction contexts (local, global and global XOR 
branch address) and their corresponding two-level predictors [8, 9, 10, 13]. 

2.  Identifying difficult-to-predict branches 

The majority of branches demonstrate a bias to either the taken or the not-taken path 
which means branches are highly polarised towards a specific prediction context (a 
local prediction context, a global prediction context or a path-based prediction 
context) and such polarised branches are relatively easy-to-predict. However, a 
minority of branches show a low degree of polarisation since they tend to shuffle 
between taken and not-taken and are therefore unbiased and difficult-to-predict. 

In this study, we identify unbiased branches by cascading branches through the 
three different prediction contexts and their respective predictors: a PAg, a GAg and a 
Gshare predictor. We also increase the history register lengths in units of 4-bits from 
16-bits to 28-bits as shown in Figure 1. Within our prediction contexts, a feature is the 
binary context on p bits of prediction information. Finally, each static branch has 
associated k dynamic contexts in which it can appear ( ). We define the 
polarisation index (P) of a certain dynamic branch context as equation (1): 
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• if , then the context  is completely biased 
(100%) and the branch is highly predictable; 

kiSP i ...,,2,1)(,1)( =∀= iS

• if , then the context  is totally unbiased and 
the branch might be difficult to predict. 

kiSP i ...,,2,1)(,5.0)( =∀= iS

Consider the following trivial examples, a branch in a certain dynamic context 
shows the following behaviour: TTTTTT… or NNNNNN… in which case the 



transitions are always taken or always not-taken, and would be biased and easy-to-
predict. However, a branch in a certain context that is stochastic will show a highly 
shuffled behaviour, which would result in the branch being unbiased and difficult-to-
predict with its transitions toggling between T and N. We therefore consider that the 
rate of transition between branch outcomes is an important feature that can be applied 
to branch prediction. We introduce the distribution index which is the based on the 
rate of transitions as shown by equation (2): 
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where: 
• nt = the number of branch outcome transitions in context Si; 
•  = the maximum number of possible transitions; ),min(2 TNT⋅

• k = the number of distinct dynamic contexts, , and p is the history 
register length; 
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• if , then the behaviour of the branch in context SkiSD i ...,,2,1)(,1)( =∀= i 
is “contradictory” (the most unfavourable case), and the predictor cannot learn it; 

• if , then the behaviour of the branch in context 
S

kiSD i ...,,2,1)(,0)( =∀=

i is constant (the most favourable case), and the predictor can be learned. 
A branch with a low distribution index (tending to 0) will show a repeating pattern 

and there will be few transitional changes. In contrast, a branch that exhibits many 
transitional changes will show a shuffled pattern and will have a high distribution 
index (tending to 1). Hence, the greater the distribution index means that the branch 
becomes more difficult-to-predict in a given predictor. We consider any branch for a 
given prediction context that has a distribution index of ≤0.2 to be easy-to-predict and 
define a difficult-to-predict branch for a given prediction context to be a branch with a 
low polarisation index (P<0.95 as derived from equation 1 (an unbiased branch)) and 
with a distribution index of >0.2. We chose this value because for a given branch 
context with a polarisation index >0.95 will be easy-to-predict and will achieve a high 
prediction accuracy. Consequently branches with a polarisation index of <0.95 will be 
difficult-to-predict. 

We identify and reduce the number of unbiased branches (Figure 1) by passing 
unbiased branches through successive cascades of different prediction contexts with 
increasing history information (from 16- to 28-bits). 
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Figure 1. Unbiased branches cascading through the prediction contexts 



The number of unbiased branches is reduced from one prediction context to the 
next because an unbiased branch in one prediction context is not necessarily unbiased 
in a different prediction context. By the time our final prediction context (28-global 
history bits XORed with 28-bits of the branch address) is iterated the only remaining 
unbiased branches are those that have been unbiased throughout all iterations of all of 
the previous prediction contexts and these remaining unbiased branches are therefore 
identified as difficult-to-predict. We therefore predict with a short history prediction 
context before a long history prediction context to remove biased branches (those that 
are easy-to-predict) as early as possible. 

3.  Simulations 

In this study we identify unbiased branches in the SPEC2000 benchmark suite [12] 
by cascading branches through the three different prediction contexts and their 
respective predictors: a PAg predictor, a GAg predictor and a Gshare predictor. We 
use the SimpleScalar simulator [11] and all results are reported on 1 billion 
dynamically executed instructions, skipping the first 300 million instructions. 
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Figure 2 shows the prediction accuracy achieved by the 16-local history bit 
prediction context using the PAg predictor. The average prediction accuracy of this 
local prediction context is around 91%, which is limited by the impact of the unbiased 
branches which have an average prediction accuracy of around 76%. The frequency 
of unbiased branches (Table 1) varies between 5.76% (mcf) and 44.98% (twolf) with 
an average of 24.55%. 
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Figure 2. PAg prediction accuracy with the 16-local history bits prediction context 
 

Table 1. Percentage of unbiased branches (16-local history bits prediction context) 
Benchmark mcf parser bzip gzip twolf gcc Avg. 
Unbiased branches (P<0.95) 5.76% 20.60% 26.42% 38.73% 44.98% 10.80% 24.55% 
 

The unbiased branches are now cascaded through the 16-global history bit 
prediction context and its corresponding GAg predictor. The average prediction 
accuracy of this global prediction context is around 93%, which again is limited by 
the impact of the unbiased branches. The average prediction of accuracy unbiased 
branches is around 72% and the frequency of these unbiased branches (Table 2) varies 
between 3.28% (mcf) and 32.41% (twolf) with an average of 17.48%. 

Table 2. Percentage of unbiased branches (16-global history bits prediction context) 
Benchmarks mcf parser bzip gzip twolf gcc Avg. 
Unbiased branches (P<0.95) 3.28% 12.95% 23.4% 28.89% 32.41% 3.92% 17.48% 
 

The remaining unbiased branches are now cascaded through the 16-global history 
prediction context XORed with 16-bits of the branch address and its associated 



Gshare predictor. The prediction accuracy of the 16-history bit Gshare predictor 
improved by around 1% in comparison with the 16-history bit GAg predictor. 
However, the number of unbiased branches remained the same as those of the GAg 
predictor apert from gcc which showed a marginal reduction to 3.91%. 

The history register length was increased by 4-bits to 20-bits and then the 
remaining unbiased branches were cascaded through the 20-local history bit 
prediction context and its associated PAg predictor. We continued to cascade through 
our remaining prediction contexts (local, global, global XOR branch address), 
increasing the amount of history information by 4-bits at a time (to a maximum of 28-
history bits) as shown by Figure 1 thereby gradually reducing the number of unbiased 
branches through each context and decreasing the number of unbiased branches. 

A distribution index tends to 0 for a branch that is not shuffled (and is easy-to-
predict) and tends to 1 (and is difficult-to-predict) for a shuffled branch. We 
partitioned the percentage of branches into 5 distribution index intervals: (0.0 - 0.2), 
(0.2 - 0.4), (0.4 - 0.6), (0.6 - 0.8) and (0.8 - 1.0). 
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Figure 3 shows the intervals for the 16-local history bit context and that around 
41% of the unbiased branches have a distribution index interval (0.4 - 0.6), making 
their branch behaviour relatively shuffled and around 21% of the branches have a 
distribution index between (0.8 - 1.0), making their behaviour highly shuffled and 
therefore difficult-to-predict. Using the cut-off distribution index of <0.2, our 
simulations show that only around 16% of the unbiased branches are easy-to-predict 
with the 16-history bit local prediction context. Gcc has the greatest percentage of 
unbiased and easy-to-predict branches (around 39%) and gzip the greatest percentage 
of unbiased and difficult-to-predict branches (around 30%). 
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Figure 3. Distribution rates of the 16-local history bit prediction context 
 

Similarly, we determined the intervals for the 16-global history bit prediction 
context and the intervals for the 16-global history bit XORed with 16-bits of the 
branch address prediction context (intervals were the same for both contexts). Since 
both of these are global prediction contexts, it is not surprising that their distribution 
indices are similar. With the 16-history bit global prediction contexts only around 3% 
of the unbiased branches have a distribution index <0.2, around 33% have a 
distribution index of (0.4 - 0.6), and around 28% have a distribution index of (0.8 – 
1). As with the local prediction context, gcc has the greatest percentage of unbiased 
but easy-to-predict branches (around 8%), but twolf has the greatest percentage of 
unbiased and difficult-to-predict branches (around 39%). 

Figure 4 shows the reduction in the number of unbiased branches as they cascade 
through the three prediction contexts. The percentage reduction in the number of 
unbiased branches decreases from around 25% to around 6%. We consider that this 
value of 6% is still too high and further investigations are required. 
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Figure 4. Reducing the number of unbiased branches with increasing history register length 
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In an earlier paper [14], we explored the benefits of adding sufficient information, in 
the form of successive branch addresses, to uniquely identify each program path. We 
continue that work in this study evaluating, on all branches, paths of different lengths 
(p branches) used together with global histories of the same length (p bits). The 
results are presented in Figure 5, where they are compared with the results obtained 
using only global history prediction context. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The gain introduced by the path for different context lengths 
 

Our simulations show that the best gain is achieved with short history lengths 
(p<16) and there is only marginal gain with longer history lengths, meaning that long 
global history (p bits) approximates very well the longer path information (p 
branches). 

We have also undertaken similar simulations with neural predictors [6, 15] and in 
addition to the SPEC benchmarks we have used the Championship Branch Prediction 
benchmarks [7, 16]. However, due to space limitations we have not shown the results 
of these simulations in this paper. 

4.  Conclusions and Further Work 

In this paper, we have shown that the design of branch predictors should consider the 
identification of difficult-to-predict branches. Different branches exhibit different 
behaviours for given prediction contexts and predictors, and the amount of shuffling 
impacts on prediction accuracy. Even after cascading branches through a series of 
prediction contexts there remains a significant number of difficult-to-predict branches 
and the frequency of these difficult-to-predict branches varies between different 
programs and between different prediction contexts. Computer Architects cannot 
therefore continue to expect a prediction accuracy improvement with conventional 
predictors and alternative approaches are necessary. We have briefly investigated the 



use of increased correlation information by recording path information as well as 
history information and have shown that some gain can be obtained with short history 
register lengths (<16), but path information with longer history register lengths only 
achieves marginal gain. 

This work demonstrates that current branch predictors use limited prediction 
contexts (local, global correlation and path information) due to the degree of 
polarisation. We have therefore shown that the use of more prediction contexts is 
required to further improve prediction accuracies. Our current thoughts are to use a 
particularly relevant “piece” of the dynamic CPU context or alternatively some HLL 
code information. In order to efficiently use such information we consider it will be 
necessary to have a significant amount of compiler support. 
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