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Abstract

In this work we present an analysis of non-slanted reflection
gratings by using exact solutions of the second order differential
equation, derived from Maxwell equations, in terms of Mathieu
functions. The results obtained by using this method will be
compared to those obtained by using the well known Kogelnik’s
Coupled Wave Theory which predicts with great a ccuracy the
response of the eff ciency of the zeros and frst order for volume
phase gratings, for both ref ection and transmission gratings.
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1. Introduction

The study of the interaction of electromagnetic radiation with diffractive elements
has received much attention in the literature [1-7]. In particular, several
theoretical models have been proposed to accurately describe the behaviour of
diffraction gratings of different kind. The attention posed on these structures is in
part due to the fact that a sinusoidal diffraction grating is the simplest periodic
structure that can be recorded on a photosensitive material. Therefore the basic
problem in volume holography theory is to describe accurately the properties of
this kind of structures. A usual way to calculate the efficiencies of the different
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orders that propagate in the volume grating is to solve Maxwell equations for the
case of an incident plane wave on a medium where the relative dielectric
permittivity varies. Although the idea seems clear and precise, in the literature
there are a great number of models that allow solving the problem.

One of the most predictive and popular theories to calculate the efficiency of the
orders that propagate inside a diffraction grating is the Kogelnik’s Coupled Wave
Theory [1]. This theory has the advantage over other theories in that, in spite of
being mathematically simple, it predicts very accurately the response of the
efficiency of the zero and first order for volume phase gratings. Nonetheless, the
accuracy decreases when either the thickness is low o r when over-modulated
patterns (high refractive index modulations) are recorded in the hologram. In
these cases, the coupled wave theory (CW) allowing for more than two orders or
the rigorous coupled wave theory (RCW) [4-5] which doesn’t disregard second
derivatives in the coupled wave equations as does CW, are needed.

Although exact predictions can be obtained by using the RCW it is still interesting
to work with analytical expressions in order to calculate the efficiency of the
different orders that propagate inside the hologram. Analytical expressions give a
deeper understanding of the physical processes than numerical solutions do. In
addition, by direct inspection of the analytical expressions a clearer interpretation
of how the different parameters influence in the efficiency of the different orders
is got. In this work the efficiencies of the zero and first order are obtained by
solving the second order differential equation, from Maxwell equations, applied to
a non-slanted reflection in terms of Mathieu functions. The results obtained by
using this method will be compared to those obtained by Kogelnik’s coupled
wave theory showing good agreement.

2. Theory

Consider a plane electromagnetic wave incident onto a periodic non-magnetic
medium, which dielectric constant varies in form:
g =¢&,+¢&,c08(Kz) 1)

The treatment is done only for TE polarization, but can be extended to TM
polarization. In this case the function E (z) for the electric field inside the medium
verifies the following differential equation:

d’E
P + [koz(aro +¢, cos(Kz))- K’ ]E =0 @
Where:
o2
A 3)

Being A the wavelength in vacuum.

@CMMSE Page 1303 of 1703 ISBN: 978-84-614-6167-7



Application of Mathieu functions for the study of non-slanted reflection gratings

If 6,1s the angle of incidence and 6 is the angle between the wave vector and the
normal to the substrate of refractive index n,, then the following parameters can
be defined:

K, =n(w/c)sin, =n,(w/c)sinb,

“
q, = n,(@/c)cosé, (5)
q, = n,(@/c)cosé, (6)

n; np

0>

Figure 1.- Nonslanted reflection grating

The electric field in the first medium can be expressed as the superposition of an
incident wave and a reflected wave of the form:

E'(z) = exp(jq,2) + 1, exp(- jq,7) 7
While in the second medium only the transmitted wave exist:
E"(2) =1, exp(jq,2) (8)

Now suppose that f(z) is aso lution of the differential equation with a unit
amplitude transmitted wave:

E" () = exp(jq,z) (9)
with initial conditions:
EW0)=1 (10)
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dE
Y0y =i
dZ() J4q,

(11)
The boundary conditions in z = d imply:
E(d) = exp(jq,d) +r, exp(—jq,d) (12)
dE . . . .
——(d) = jg, exp(jq,d) - jq,7, exp(~jq,d)
dz (13)
Given the linearity of Maxwell's equations we have:
t,f(d)=exp(jq,d)+r, exp(—jq,d) (14)
d : . . .
6 ()= g, explig,d) — jar, exp(~jg,d)
dz (15)

From equations (14) and (15) we can obtain the amplitudes of the reflected and
transmitted waves based on the solution f(z) with initial conditions (10) and (11):

2q, exp(jq,d)

{ =

—jjf(d)wlf(d)
: (16)
g(d)—quf(d)
= exp(2jg,d)
T+ ja @
z (17)

It is now necessary to obtain a solution of the differential equation with initial
conditions (10) and (11).
In this case the differential equation can be solved in terms of Mathieu functions.

If we call
a= 4(_I<x2 + k028r0)
K (18)
and
—2k ‘e
q: 02 rl
K (19)

The function f(z), solution of the differential equation (2) with initial conditions
(10-11) has the form:

sm(a,q,Kz/2)(2jq,cm(a,q,0)—K -cmp(a, q,0))
f(2)=

K(cmp(a, an)sm(aa qso) - Cm((l, qao))
+ cm(a, q, Kz/ 2)(_2JQ2sm(as qao) -K- smp(a, %0))
K(Cmp(a7 q,o)sm(a: %0) - Cm(a: qao))

And its derivative:
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f‘ (Z) _ cmp(a, q, Kz/ 2)(_2jq2sm(a7 qao) +K- smp(a, an)) +
ZCmp(a, q,o)sm(a, qyo) - 2smp(a, ‘190)0”"(“, qso)

+ Smp(aa q, Kz/ 2)(2jqzsm(a> q,O) -K- Cmp(a’ q’o))

ZCmp(a, an)sm(aa %0) - 2smp(aa an)cm(aa %0)
Where cm (a, q, z)is the even Mathieu function sm (a, q, z) the odd Mathieu
function, cmp (a, q, z) and smp (a, g, z) the corresponding derivatives.

3. Results and discussion

To validate the theoretical model previously developed we will now conduct a
comparison between the results obtained using the model (classical differential
theory, TDC) with those obtained by the coupled wave theory of Kogelnik (TK).
A simulation for a non-slanted reflection grating with a grating period of 0.22 um
is presented, the average refractive index was supposed to be nyp = 1.63 and an
index modulation of 0,015, the incident wavelength was assumed to be of 633 nm.
Figure 2 shows the diffraction efficiency as a function of the angle for a grating of
thickness d = 22 um. As shown in the figure the degree of agreement between the
two theories is quite good indicating the validity of the model.
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Figure 2.- Comparison of Kogelnik’s Coupled Wave Theory with the method proposed in this
work. Dotted line: Kogelnik’s Theory; Continuous line: method of this work.
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4. Conclusions

A solution of the second order differential equation obtained from Maxwell
equations for TE describing a non-slanted reflection grating in terms of Mathieu
functions is presented. The model is rigorous in the sense that no approximations
are made. The results obtained by this method were compared to those obtained
by using Koglenik’s coupled wave theory showing a good agreement between
both simulations, and thus validating the model proposed.
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