
The Impact of Using Pair Programming on System Evolution:
a Simulation-Based Study

Paul Wernick and Tracy Hall
Systems and Software Group, School of Computer Science

University of Hertfordshire
College Lane, Hatfield, Hertfordshire AL10 9AB, England

tel. ++1707 286323/284782; fax ++1707 284303
{p.d.wernick, t.hall}@herts.ac.uk

Abstract

In this paper we investigate the impact of pair
programming on the long term evolution of software systems.
We use system dynamics to build simulation models which
predict the trend in system growth with and without pair
programming. Initial results suggest that the extra effort
needed for two people to code together may generate
sufficient benefit to justify pair programming.

Keywords

software evolution, simulation, system dynamics, software
process, agile, pair programming

1. Background and context

As software systems become pervasive it is increasingly
important to manage their evolution over the many releases of
their long-term useful lives. Being able to predict the growth
of a software system over long periods of time will allow
long-term planning of the process which will evolve that
system. This benefits both those who develop and evolve the
system, and the stakeholders of the system.

The term ‘agile’ describes a collection of development
approaches, one of the best known being eXtreme
Programming [2]. This approach embodies a set of software
development practices which includes pair programming. It
has been suggested that some of these practices might
successfully be applied to otherwise-unchanged ‘traditional’
software processes [14].

Software development and process change are often
implemented before their long-term implications have been
determined. A valuable means for examining such long-term
implications is through the use of simulation studies. We have
previously used System Dynamics [6] (SD) simulation-based
studies to investigate the causes of long term software
evolution trends [12. We present a simple SD model to show

the potential effects on long-term software system growth of
adding pair programming to a traditional software process.
The model tracks changes in numbers of requirements met
over time by a software product, comparing trends with and
without pair programming.

The research question we address here is, therefore: how
does the use of pair programming impact on the long- term
trend in software product evolution?

Our ability to answer this question is based on the
simulation model which we present, and the validity of the
calibration parameters which we have obtained from our
previous work and from the literature. The answer obtained in
our work relates to the numbers of requirements which can be
implemented and delivered to system users over many releases
of a software product.

2. Rationale and approach to research

2.1. Pair programming

Agile approaches have emerged in direct response to the
reported poor performance of plan-driven approaches.* A
variety of case studies have been reported which suggest that
the use of agile approaches deliver software with increased
user satisfaction, lower defect rates and increased productivity
[3, 5]. A well-known example of such a process is eXtreme
Programming (XP) [2].

Pair programming is one of the core practices of XP. “All
production code is written with two people looking at one
machine, with one keyboard and one mouse. … There are two
roles in each pair. One partner, the one with the keyboard and
the mouse, is thinking about the best way to implement this
method right here. The other partner is thinking more
strategically” [2, p.58]. Pair programming has been selected as
the subject of this simulation exercise because it is a
separately identifiable practice within XP which can be used

* 'Plan-driven' is the term coined by Barry Beohm (2003) to describe all

non-agile development approaches.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1637105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

within an otherwise-unchanged existing software process;
indeed it is already being employed in such a way
(“Developers are trying pair programming without any other
agile practise …” [15]). In addition, numerical data on pair
programming is available from the literature which enables
model calibration.

Pair programming is claimed to improve code quality, to
allow both system-level and code-level issues to be considered
simultaneously, and to help maintain code quality and
standards [2, p.100–102]. Pair programming results in code
which is understandable by both members of the pair, rather
than by a single author. The result of this should be code that
is easier to understand and thus to maintain. The use of pair
programming should, therefore, have an observable impact on
system evolution.

However, the rate of output of lines of code for a pair is
somewhat less than for two individual programmers working
alone. Williams et al. [15] have reported a reduction in overall
output of 15%.

2.2. Simulation-based studies

A simulation-based approach offers advantages over
experimental or observational studies. In particular, simulation
can enable the assessment in advance of long-term process
behaviour, and the effects of proposed process changes. In the
case presented here, simulation allows the assessment of the
long-term effects of incorporating a specific practice into an
otherwise-unchanged software process. Such behaviour could
otherwise only be examined in the real world, by the post
facto examination of results of long-term metrics collection
programmes.

Our approach uses metrics collection and simulation-based
studies in combination. Metrics derived from shorter-term
studies of actual practice are used in calibrating simulations of
longer-term evolution processes. This approach will help
identify those process improvements which have the greatest
benefits for the long-term evolution of a software system.

Our approach is firstly to develop a ‘base’ simulation of a
long-term software development/evolution process. We then
add to this model the simulated effects of the practice(s) under
investigation, and compare the model outputs with and
without this. This approach has previously been used by
Tveldt and Collofello [10] and Haberlein [7].

Our base model is designed to be as simple as possible.
This approach continues that adopted in our earlier studies [4,
12, 13]. It contrasts with the more complex base model
employed by Tveldt and Collofello and by Haberlein, viz. that
of Abdel-Hamid and Madnick [1].

2.3. System dynamics introduced

The ubiquity of complex inter-relationships in the real
world makes it difficult to isolate specific aspects of systems
for investigation by conventional statistical analysis. The aim
of SD is to represent the complexities of real world situations
in a dynamic simulation model.

SD modelling is based on the concept of a hydraulic system
of 'stocks' and 'flows'. All elements of a system are considered
in terms of these concepts. For example, software
requirements can be considered as a stock that flows from
users to analysts. Time delays that in practice slow this flow
also need to be taken into account, since they result in many
of the behaviours observed in real-world dynamic systems.
For example, the generation of new requirements after a
system has been fielded takes time, as the users familiarise
themselves with the new system and realise that changes can
usefully be made to it.

Quantitative SD models are based not on traditional
statistical correlations but on simulating over time the
dynamic interactions of information flows. These interactions
are captured in causal diagrams, and their quantitative results
calculated by mathematical integration over time of rates of
flow of artefacts and control information around the model.

3. The base model described

3.1. Model structure

The model presented in this section represents the
structures, effects, inputs and outputs of a long-term software
evolution process. To allow the simulation of the effects of
adopting new methods and approaches, it is important that the
base model is simple. A simple model will allow the
simulation of generalised software development and evolution
activities without any bias for or against any particular
method, toolset or approach, and reduces both the number of
assumptions needing to be made about the process and the
number of calibration inputs required.

High-level dynamic behaviours resulting from outer
feedback loops can outweigh more local feedback effects from
inner loops in determining system behaviour over time. By
concentrating effort on modelling the most significant, outer,
feedback loops in a process, more detailed process structure
can be abstracted, and the need to collect more detailed data
avoided. Such a model can still provide useful insights despite
high levels of abstraction.

Our base model is shown in Figure 3. It builds on ideas,
structures and values in our previous software evolution
simulation models. In particular, it incorporates feedback
structures representing both the generation of new
requirements [4] and the correction of faults in previously-
implemented requirements [13].

The model works as follows. The software development
process is viewed as a mechanism to convert ‘requirements
which need to be met’ into ‘requirements which have been
met and fielded to users’. The computed rate of software
development is a function of the effective human resource
available to perform that work; other relevant factors such as
training, motivation and tool support (with the exception of
the inertia effects of the existing system which is being
modified) are considered in the model as factors which change
the value of this factor. This starting rate is subjected to a time
delay function to represent the time taken to perform the

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

development work. It is further delayed as completed
requirements have to wait until the next release of the software
is delivered to its users. The effective effort available is
reduced over time [12] due to the need to make new functions
fit into the existing system, in a manner related to the existing
system size [11].

As a result of fielding the software, two things happen.
First, users of the system tell the developers that some
requirements have not been met properly, typically due to
bugs in the fielded software and/or mistaken interpretation of
the users’ requirements by the developers (cf. [13]). Second,
system users identify new requirements due to additional ways
of using the system made possible by newly-fielded software
enhancements (cf. [4]). In addition, exogenous events can
arise, i.e. changes in the environment within which the system
is used and for which the system has to be modified. For the
model calibration, the value for exogenous events has been set
to 0, but an input for these has been included in the model for
completeness.

3.2. Model Calibration

The calibration inputs for the evolutionary growth
described in the model are based on actual figures for the
evolution of the VME mainframe operating system as
described in [4]. This work on VME is useful to our model
building as both input values and outputs against which to
check them are available. The time delays used in the model
are averages of the variable delays used in the VME model.
These delays are

time taken for the conversion of requirements into code
ready to be released: 8 months;
delay from the completion of this until next release is
delivered to users: 5 months; and
delay for user adoption of the new release, and for the
feeding back of new requirements or of errors requiring
fixing: 8 months.

In the absence of actual data:
system size at the start of the simulation run is set to 200
requirements units;
initial input workload of recognised but unfulfilled
demand for new requirements is set to 50 units;
input value of effort available to turn requirements into
met requirements is set to a constant value of 1 unit per
month, reflecting the lack of change in VME kernel team
size over the time simulated in the base model.

For the VME model the flow of completed requirements
was multiplied by a factor of 0.6 to generate the flow of new
requirements. In the model described here, we have multiplied
the output of the software production process delay function
by 0.64 for the generation of new requirements and 0.16 to
produce the rate of error feedback. The ratio of new to
incorrect requirements is thus 4:1 in accordance with
Pressman’s [9, p.849] conclusion that fixing mistakes
comprises 20% of maintenance work, the other 80% being
system adaptation and enhancement for users or future use.

The input effort value is multiplied by a factor reflecting
the effects of the existing system size on the ability to evolve
it. This results in a reduction of effective throughput over
time, due both to the inertia of the existing system and to a
reduction in system-wide knowledge [12]. The overall effect
on effort due to existing system size is calculated as a multiple
of the inverse cube [11] of that size.

Finally, the simulated time over which the model runs is
156 months, reflecting the period of time over which the VME
data is available.

3.3. Calibrating model output to real-world values

It is necessary to select one amongst the many real-world
product trends for the simulation to follow. These product
metrics include physical system size (cf. [4]) and the number
of units of requirements implemented and delivered (cf. [13]).
We decided to use the latter, since it is a more direct reflection
of the ability of a system to do useful work by meeting its
users’ needs. It also avoids issues related to code size
measurement, and the need to reflect the effect on user
satisfaction of exogenous events. Situations in which delivered
functionality needs rework are captured by the feedback loop
of requirements not met correctly in Figure 3.

The output trend for requirements met and fielded is shown
in Figure 1. This shows typical growth in product size over
time, reflecting a reduction over time in the implementation
rate of new requirements (cf. [4], 13]). An equivalent trend for
actual growth in VME from the same arbitrary starting point,
in terms of numbers of management-level requirements units
multiplied by their average size in modules, is shown on the
same axes in Figure 1. The smooth trend of the simulation
output contrasts with the less consistent actual software
product evolution trend, due to the abstraction in the model of
detail in the real-world software evolution process which
causes higher-order dynamic behaviour.

600

300

0

0 24 48 72 96 120 144
Time (Month)

Simulated requirements trend
Actual enhancement project completions from sim base

Figure 1: Requirements met over time by the
‘typical’ software evolution process

4. Adding pair programming to the model

No changes to the base model structure have been required
to simulate the effects of using pair programming. Additional
variables have been added to allow the quantitative effects of

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

process changes such as the introduction of pair programming
to be reflected in simulation runs, these are shown in capital
letters in Figure 3. These variables have been identified from
the claimed benefits of pair programming as discussed above.

Values for model parameter values to simulate the effects
of pair programming have been taken in the main from
literature; these could be replaced by actual values where
available when the model is calibrated in practice. The values
used here have been derived as follows:

development time scaling factor: reduced by 40% [8,
p.22]; [15, p.19]. A reduction in cycle time due to the
adoption of pair programming only affects the time to
develop the software, not the time the software has to wait
until the next release. The interval between releases is
therefore only shortened by the saving in development
time due to pair programming
input effort scaling factor: effective effort is reduced by
15% [8, p.22]; [15, p.19].
fault generation scaling factor: based on Williams et al’s
[15] observation of increased quality in terms of the
relative numbers of programming faults in developed
software. Their results indicate a reduction in errors to
300/356.5 of the value without pair programming. This is
used to reduce the rate of user-reported analysis faults
generated in the simulation.
inertia scaling factor: reflecting improved long-term
system maintainability due to better quality/more
understandable code and more knowledge of the system.
As far as we know, no research into long-term benefits of
pair programming for ease of system maintenance has
been published. We have therefore estimated this value.
Model runs have been undertaken using a 5% reduction in
system evolution effort as a conservative estimate and
40% as a high estimate.

Other parameters are unchanged from the base calibration.

600

300

0

0 24 48 72 96 120 144
Time (Month)

requirements met : new effort PP 140
requirements met : new effort PP 1
requirements met : new effort PP 105
requirements met : new effort base

Figure 2: Requirements met over time with and
without pair programming

Running the simulation with and without pair programming
suggests that the results of implementing pair programming
will be positive. Although pair programming does cost more,
the gains appear to outweigh this, providing an overall benefit.
The degree of benefit depends on the potential for pair

programming to improve the long-term maintainability of the
system, which is as yet undetermined.

Figure 2 shows the results of simulation runs with zero (PP
1), 5% (PP 105) and 40% (PP 140) gains in maintainability
plotted on the same axes together with the base model output.
The results obtained suggest that the adoption of pair
programming results in a gain in delivered system
functionality over time, the actual improvement in process
performance depending on the degree of improvement in
system evolvability.

The trends shown in Figure 2 also demonstrate that any
improvement in process performance from the adoption of
pair programming can be considered from two evolutionary
viewpoints. Firstly, the process provides an opportunity for
greater long-term system growth and thus system longevity.
Secondly, it means that any particular level of functionality
will be delivered to users sooner. For example, at month 120,
a 40% gain in maintainability results in 461 units of
requirement being delivered as against 421 for the non-pair
programming case. Alternatively, the same pair programming
case delivers 420 units of requirement in month 81, compared
with month 119 for the non-pair programming case.

These results assume that users will adopt, use and provide
feedback from any increase in fielded functionality.

5. Conclusions and future work

The simulation-based study presented here has allowed us
to examine the implications of a suggested process
improvement on a longer time scale than is possible for a real-
world study of a comparatively newly-suggested process
change. Our work suggests that pair programming is likely to
produce long-term software evolution benefits, the exact value
of which depends on any improvement in maintainability of
pair programmed code. There is no evidence currently
available as to whether two people cooperating to write code
produce code which is more maintainable in the long term.
Consequently no well-quantified answer is available to our
initial research question, and more work will need to be done
to measure the impact of pair programming on long-term
evolution.

Our approach assumes that it is possible to inject one new
practice such as pair programming into an existing long-term
software evolution process without affecting other aspects of
the process. Our current simple model does not reflect these
possible knock-on effects. In addition, our simulation reflects
the effect of one process change viz. that of adopting pair
programming applied to an otherwise-unchanged process. As
Paulk notes, there are "strong dependencies between many XP
practices ..." [8, p.23]. These interactions will need to be taken
into account if more than one practice is introduced
simultaneously; the effects of each change cannot simply be
added or multiplied to predict the combined effect.

Future work on this model is likely to include the
simulation of other XP practices. Modifying the base model to
use switch variables to turn on and off the simulated effect of
a new practice will make comparative simulations easier to

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

undertake. It is also hoped that the development and
calibration of this model will continue with industrial
collaborators using agile processes in a commercial
environment. Such work will also allow the replacement of
‘general-purpose’ values taken from the literature for use as
parameter values in our model with actual figures taken from
the specific experience of industrial developers whose process
behaviours we are to simulate. This will also allow, indeed
require, the model to be calibrated against other actual
processes and product metrics other than delivered
requirements, and thus increase our confidence in its validity
and predictions.

Most importantly, our work reveals that an improved
understanding of long-term maintainability of software is vital
to predicting the impact of any process change. This
understanding must embrace the relevant mechanisms within
the global software process as well as technical issues.

References

[1] T.K. Abdel-Hamid and S.E. Madnick, Software Project Dynamics
– An Integrated Approach, Prentice-Hall, New Jersey, 1991.

[2] K. Beck, Extreme Programming Explained, Addison Wesley,
Boston, MA, 2000.

[3] B. Boehm and R. Turner, “Using risk to balance agile and plan-
driven methods”, IEEE Computer, 2003, vol 36, pp.57–66.

[4] B.W. Chatters, M.M. Lehman, J.F. Ramil and P. Wernick,
“Modelling A Software Evolution Process”, Software Process:
Improvement and Practice, 2000, 5 (2–3), pp.91–102.

[5] M. Cohn and D. Ford, “Introducing an agile process to an
organization”, IEEE Computer, 2003, 36 (6), pp.74–78

[6] J.W. Forrester (1961) Industrial Dynamics, Productivity Press,
Cambridge, MA.

[7] T. Haberlein, “A Framework for System Dynamic Models of
Software Acquisition Projects”, 2003, Proc. ProSim 2003. Portland,
OR.

[8] M.C. Paulk, “Extreme Programming from a CMM Perspective”,
IEEE Software, November/December 2001, 18 (6), pp.19–26.

[9] R.S. Pressman, Software Engineering; European Adaptation by
D. Ince, Addison Wesley, 2000.

[10] J.D. Tveldt and J.S. Collofello, “Evaluating the Effectiveness of
Process Improvements on Software Development Life Cycle Time
via System Dynamic Modelling”, 1995, Proc. COMPSAC ’95,
pp.318–325.

[11] W.L. Turski, “The Reference Model for Smooth Growth of
Software Systems Revisited", IEEE Trans. Software Engineering,
2002, 28 (8): pp.814 – 815.

[12] P. Wernick and T. Hall, “Simulating Global Software Evolution
Processes by Combining Simple Models: An Initial Study”, Software
Process: Improvement and Practice, 2002, 7 , pp.113–126.

[13] P. Wernick and M.M. Lehman, “Software Process Dynamic
Modelling for FEAST/1”, J. Systems and Software, 1999, 46 (2/3),
pp.193–202.

[14] L. Williams and A. Cockburn, “Agile software development: It’s
about feedback and change”, IEEE Computer, June 2003; pp.39–43.

[15] L. Williams, R.R. Kessler, W. Cunningham and R. Jeffries,
“Strengthening the Case for Pair Programming”, IEEE Software,
July/Aug. 2000, 17, 4, pp.19–25.

requirements
to meet

requirements
metsoftware

development

input effort effect of inertia
due to existing

system

new
requirements

exogenous
requirements

requirements not
met correctly

implementation
fault generation

factor

new
requirements

feedback effect

effective
effort

new
requirements

feedback delay

requirement
error feedback

delay

development
cycle time

new
requirements

feedback factor

delay from
completion to

release

development
time

inertia factor

DEVELOPMENT TIME
SCALING FACTOR

DELAY FROM
COMPLETION

SCALING FACTOR

INERTIA SCALING
FACTOR

FAULT GENERATION
SCALING FACTORNEW REQUIREMENT

SCALING FACTOR

INPUT EFFORT
SCALING FACTOR

Figure 3: Simulation of ‘typical’ software evolution process

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

	footer1:

