
Software Evolutionary Dynamics
Modelled as the Activity of an Actor-Network

P Wernick, T Hall and C L Nehaniv
School of Computer Science
University of Hertfordshire

College Lane, Hatfield, Hertfordshire AL10 9AB, England
tel. +44 1707 286323; fax +44 1707 284303
{p.d.wernick, t.hall, c.l.nehaniv}@herts.ac.uk

Abstract
The pressures which act on a software system over its
life from inception to retirement are many and varied. It
is an important goal in considering software evolvability
to understand, and if possible to manage these
influences. Our previous simulations of software
evolution processes have concentrated on capturing the
human-related aspects of software evolution, whilst
effectively treating technical entities as objects which
are acted on by humans and their organisations.
Latour’s actor-network theory (ANT) suggests that the
non-human entities – development tools, document, the
system itself – are potentially active participants in their
own evolution. We describe Latour’s theory, and present
a model of a software evolution process in the form of a
diagram which places technical and human aspects in
juxtaposition closer to that which ANT would suggest
than previous models. We believe that this approach will
result in a more accurate representation of the process,
and thus be a step towards dynamic simulation models
whose predictive power will help us to better understand
and manage software evolution and evolvability.

1. The problem – and a possible solution

For some time, researchers and practitioners have been
attempting to understand the processes by which
software systems are changed over time, usually with
the intention of finding ways to manage and control
them. At present there is no way of predicting when the
rate of software evolution1 will speed up, slow down or
even stop completely, and no theory with predictive
power of why any particular system might do this.
Lehman has described the systems of people, artefacts
and events which control the evolution of industrial
software-based systems (including operating systems
and limitary systems) as the ‘global software process’

1 We define software evolution here as the making of changes

to a software-based system to support its continued useful
employment.

(see, for example, [5]). They note that this process
includes “… the activities of all involved, for example,
developers, managers, marketeers, support personnel
and users”.
Lehman’s description of the global software process,
supported by our earlier system dynamics simulation
models, sees this process as being primarily driven by
feedback. This is made explicit in the VIIIth Law of
Software Evolution (“feedback system”) which states:
“E-type evolution processes constitute multi-level,
multi-loop, multi-agent feedback systems and must, in
general, be treated as such to achieve significant process
improvement for other than the most primitive
processes.” [8:125].
In our previous simulation models intended to represent
the highest-level causal mechanisms producing observed
patterns of commercial software evolution [3, 17, 19],
these mechanisms have been highly abstracted,
particularly with respect to the actions of individual
people.
Previous descriptions of the global software process
have also tended to be based on an explicit or implicit
division of these agents into ‘active’ people and
‘passive’ technical elements. The influence of this mind-
set can be seen, for example, in [5], in which their
Figure 1 shows a program surrounded by people, who
are interacting with it but which are very obviously
different sorts of things from the program itself. This
mode of thinking is also implicit in our simulation
models, in which we have sought to describe this
process [3, 16, 17, 19]. By way of contrast, Latour’s
actor-network theory (ANT) [7], an approach based on a
sociological view of technological change, provides us
with a viewpoint from which the effects of both human
and technical participants on process characteristics and
behaviour can be considered on a more equal footing.
We believe that looking at the problem for a point of
view which takes into greater account the effect of the
technological participants will result in a more accurate
representation of real-world global software processes.
Latour’s theories are controversial in the world of

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1637102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sociology and elsewhere, at least in part because they
seem to give to non-human elements of a system some
characteristics normally ascribed only to humans.2 It is,
however for this very reason that we believe that by
applying them as given they form the basis for an
analysis of global software processes which can provide
useful insights, as we show in this paper.
Due to their number and complexity (which we
demonstrate below), the human/social influences in the
global software process may outweigh technical issues
in determining the behaviour of the process. In addition,
newly-proposed technical solutions need to be assessed
on the basis of their effect on the combined human-
technical process. It is therefore important to understand
the social networks within which the technical work is
undertaken, such as the social embedding of the
technical process and promotion of interaction between
user and developer actors explicit in eXtreme
Programming [1].
Our objectives in applying ANT to the global software
process are both to understand better the situation in
which software evolves, and to explain the behaviour
observed as a system evolves, such as the ‘regeneration
points’ in the evolution of software systems when old
systems show an increase in the rate of growth in size
after a period of progressive decline in that rate [2]. In
the final analysis, we are interested in finding out what
determines the ‘health’ of a software-based system at
any point, and whether this can be determined by
examining the current state of the process evolving that
system. We believe that an important step towards
achieving this goal is the identification of the elements
making up the process, and an understanding of how
these elements interconnect and interact to produce the
behaviours we observe. Achieving this understanding is
a necessary (but not sufficient) condition for controlling
the process of software evolution.

2. The actor-network theory viewpoint

The following description of ANT is based on two
works by Bruno Latour: a formal description of ANT
[7], and a more playful but nevertheless highly
illuminating account of the failure of a technological
project [6].
Latour claims that his view of how to describe and
understand a social situation differs from that of
‘traditional’ sociologists. He suggests that the latter feel
they need to add some intangible thing, the ‘social’
dimension, to what can be actually seen in a situation, in
order to explain it.3 Latour himself sees no separate

2 See, for example, the comments of Williams-Jones and

Graham [20] when they apply ANT in a different area.
3 Latour seems to see the ‘social’ as described by other

sociologists as some variety of sociological phlogiston, and

‘social’ medium in which the people and technologies
involved float; instead, a situation comprises human and
non-human entities and interconnections between them.
He further suggests that social situations are different
from other, non-social situations due to the complex
interactions between the entities which make them up
rather than the presence of some ‘social’ substance.
In ANT, Latour considers three types of entities, viz.
actors, mediators and intermediaries. ‘Actors’ are active
in the situation, and are most often people but can also
be technological elements or anything else involved in
the situation. Actors are called this because not only do
they act but also because they are constrained by their
situations in the choices they make as an actor on a stage
that is constrained by the lines given by the playwright
[7:46] and can only be creative within that limited
scope. They are likely to combine into identifiable
groups, which coalesce or break up according to the
pressures on them.
‘Mediators’ receive and transmit messages like
intermediaries, but change the messages they receive in
often-unexpected ways before passing them on. Latour
gives some examples of mediators, including law,
science, religion and economies [7:240].
Finally, ‘intermediaries’ receive messages from an actor
and translate them into a form which can be understood
by another actor without changing the content of the
messages. An intermediary “… transports meaning or
force without translation: defining its inputs is enough to
define its outputs. For all practical purposes, an
intermediary can be taken … as a black box …” [7:39].
This can be contrasted with the effect of mediators,
which “…. transform, translate, distort, and modify the
meaning or the elements they are supposed to carry. …
[t]heir input is never a good predictor of their output;
their specificity has to be taken into account every
time.” (ibid.)
A vital concept in ANT is the ‘network’, a grouping of
actors, intermediaries and mediators linked together by
communications channels. Actors may join or leave
networks over time, creating a dynamic, ever-changing
web of relationships; an actor joining a network may
bring their existing network(s) with them.
An actor’s level of commitment to the goals of the
network may change over time under pressures from the
actor’s own circumstances, the state of the system and
its relationship to the actor, and influences from other
elements in the network.

to regard this substance as about as useful in promoting
understanding as the original.

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

3. The global software process and actor-
network theory: correspondences

3.1. General points

One common feature of our previous accounts of the
global software process and ANT as a means of
examining social situations is immediately apparent.
This is the underlying assumption in ANT of some
measure of causality underlying the behaviour of social
processes, which sits well with the same assumption
made explicit in the use of causal links to develop
system dynamics simulation models, including those
which we have designed.
Another important observation is that a software system
does not of itself ‘evolve’; it is evolved by the actions of
people and other actors on it. At the same time, the
system cannot necessarily be seen as a passive recipient
of evolutionary actions and pressures; it also causes
evolutionary pressures as part of the feedback system
within which it is used and evolved. Adopting an ANT-
based viewpoint enables us to consider the system as an
actor in its own right, participating actively in the
processes which lead to its own evolution. ANT
provides us with a justification for considering the effect
of a system on the world as that of an actor causing as
well as undergoing change, despite its not being human.

3.2. Applying ANT: initial considerations

The first task in building an ANT model of the global
software process is to identify the actors, mediators and
intermediaries which enact the process, and the
connections between them. Examples of these entities
for commercial software development and evolution,
derived from general knowledge of software
development and use, include the champions of systems
in developer and customer organisations, customers,
salespeople, the developers of a system and its users,
technologies such as Integrated Development
Environments (IDEs), analysis, design and
programming languages, hardware, and the owners of
both developer and user organisations.
In addition it is necessary to consider entities which do
not form part of the developer/user complex but which
are capable of affecting the behaviour of the software
evolution process, such as the general public (included
below as ‘wider society’) as represented by the media
and government and its agencies such as tax collectors,
police and the security agencies. The effects of major
corporations which can by their size or position either
directly or indirectly influence the evolution of a
software product (for example, Microsoft’s influence on
the web browser market) will also need to be
considered. Overall, it will be necessary to identify and

capture the identity and influences of all significant
stakeholders, whether direct or indirect.
A recent example of the effect of the last on a software
system is the demand for information on internet traffic
[12], resulting in a need on the part of internet service
provides (ISPs) to retain additional data. This in turn
requires actions within the evolution processes by the
suppliers of network monitoring and control equipment
and software, and potentially the addition to the existing
actor-network of another actor-network of suppliers of
such equipment/software beyond those previously
involved in evolving the system.
Finally, the influences of competing developer and user
organisations and the products they produce and use
must be taken into account.
We will need to determine whether each of these entities
is actor, mediator or intermediary in the process. It will
also be necessary to determine which groups of actors
we can treat as actor-networks, i.e. individual complex
entities, and which must be broken down into individual
actors.
Some potential influences on individual actors can be
identified. For example, what if development staff leave,
or if it becomes more difficult over time to hire people
with the necessary expertise as languages and tools
become obsolescent and thus less popular amongst
developers – consider for example the effect of the Year
2000 problem on employability of Cobol programmers.
What if users of a system become discontented for a
reason unconnected with the system and this ill-feeling
results in unhappiness with the system itself? An
advantage of the ANT approach is that we can consider
such non-technical aspects within the same theoretical
framework.

4. Understanding the global software
process as an actor-network

4.1. Modelling the network

The work presented here forms a first step towards the
development of an executable simulation of the global
software process based on ANT principles. For this
model we have considered the commercial development
of bespoke software; the model as described below
would need minor changes to reflect the differences in
process for a package software product, and a complete
redesign for open-source software evolution processes.
We have identified actors, intermediaries and mediators,
and the relationships between them. The human ‘actors’
which we have identified are roles taken by people or
imposed by society, organisations, etc. Some actors
themselves represent (and abstract) more complex actor-
networks as single actors in the way that Latour allows;
examples of these are the system’s developers and users.

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

The elements of our current model have been identified
on the basis of the writings of Lehman and his
colleagues (e.g. [5]), our real-world experience as
software developers, users of software, and in software
systems user support, our previous research (e.g. [9, 15,
18], and our impression of general folk knowledge of
how software development ‘works’. We have been
conservative in identifying links between elements to
minimise the complexity of the model structure graph.
We have chosen to represent the system as fielded as an
actor rather than as a mediator, to reflect the ability of
the system to influence its users and its surroundings by
way of feedback in the global process; this decision is
discussed in more detail in Section 4.3 below.
As an initial approximation, we have identified
intermediaries in the global software process as
represented in our model with those elements of the
process which are read and interpreted by machines,
such as language compilers, operating systems and file
systems. As required by Latour, once the inputs of such
elements are described their outputs are
deterministically derivable, even if those outputs go on
to have differing effects on actors in the process. This
may be contrasted with the mediators in the global
process, whose outputs are not uniquely defined and
which may differ from occasion to occasion. Mediators
may therefore be identified with those elements of the
process which are both written and interpreted by
humans; this interpretation may produce understandings
in, for example, the readers of a document which differ
from those intended by the writers. Candidate mediators
in the global software process, not all of which are
represented in the current model, include requirements
and design documents, the source code of the system
(when it has to be read to be modified by actors called
‘developers’ or similar), and the system as fielded,
whose actions and outputs are interpreted by its users in
the context both of their models of what is happening
inside it and of its interaction with the external world.
At the high level of abstraction we have adopted in
building our model, we feel that intermediaries need not
be modelled explicitly, since their only effect is to
change one notation or the equivalent into another. They
do not change the values they carry, but distribute
information in the network. However, mediators, which
may affect the values of their outputs, need to be
identified to help understand their effect on the
behaviour of the process.

4.2. The model described

Our current ANT model of the global process is shown
in the form of a diagram in Figure 1. The diagram was
drawn using the Vensim system dynamics modelling
tool [14]. This is in part because its System Dynamics
notation provides a simple toolset for drawing such

directed graphs. In addition its analytical tools allow
some conclusions to be drawn concerning the nature and
complexity of the interactions between the actors (see
Section 5 below).
In the diagram, an actor is represented (arbitrarily) by a
hexagon and a mediator by a circle; in each case, the
element’s name is inside the box. Lines connecting the
elements represent the existence of an information flow
between the connected elements, with the direction of
the flow shown by an arrowhead. Bidirectional flows are
shown using a separate arrow in each direction between,
for example, the System Development Owners and the
System Salespeople.
One matter in the model may need explanation; this is
the distinction made between mutable and immutable
tools. The former are those elements of process, tools,
and so on (so ‘tools’ in the widest sense for software
engineering) which are at least to some extent under the
control of the system’s developers, and can therefore be
modified if required for a specific development or
evolution project. For example, a process whose content
is under the control of the project manager may be
modified if necessary to meet the needs of a particular
project, or a software tool developed for this project by
the system’s own developers may be modified as
required. Such tools can be distinguished from
immutable tools, which cannot be modified by those
involved in the project, for example an ISO 9000-
certified process which senior management have
decreed must be followed in this project whatever the
consequences, or a bought-in closed IDE whose
evolution cannot be influenced, or its toolset or process
modified, by this system’s developers, however much
they need to change its behaviour or functionality.
Another issue which needs to be taken into account is
the common situation in which different actors talk
about the same project or product by the same name but
are actually referring to a different thing [6], or the very
process by which a name is given to a process or
product [10]. Indeed, the ontological status of “the
system” is perceived differently by different actors, on
the basis of their own (differing) opinions concerning it
and their degree of commitment to its realization and
evolutionary change. Reification and/or realization of
“the” system emerge in the activity of the actor-network.
Does this make the system name itself a mediator within
the process? It is only via activity of the actor-network
that the system comes into being and is evolved over
time. We believe that this viewpoint better reflects the
global system process than traditional models of
software development and change (cf. [6]).
Some actors or intermediaries which were included in
earlier versions of our model have been removed as not
being necessary or duplicating others, albeit at some loss
of detail in the model. These eliminated elements
include:

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

the system specification; combined in the model
into the change input queue mediator, since the
specification should be a translation of this. This
decision means that the model conflates the
translation from real-world language to computing
language and the translation from specification to
fielded system in the technical software process.
However, we currently feel that this loss is
outweighed by the gain in simplification in the
model, and
the system source code as a separate intermediary
from the system as fielded, since the latter is a
direct, deterministic translation of the former. Here
we lose detail in our model, in that restrictions are
placed on the system design and its evolvability due
to the programming language adopted, and the style
of design and coding can significantly affect the
evolvability of a software system. Again, as a
simplification we have abstracted this aspect in the
current model.

As an additional simplification, all of the technical roles
relating to the development and evolution of the
software – analysts, designers programmers, testers and
so on – have been abstracted to a single actor-network
called ‘developers’.

4.3. The system: actor or mediator?

One question which has arisen for a number of the
elements of our model is whether it should be an actor
or a mediator. We consider as an example the case of
the ‘system as fielded’, i.e. the system which is actually
used by its users.
It might be argued that the users of the system actually
see their translation of its implementers’ view of the
system. It could therefore be seen as having no life of its
own, and that it might therefore be excluded entirely
from the model, modelled as an intermediary, or seen as
at most a mediator. However, a reading of Latour’s
Aramis gives a very different view of what a system can
be; it takes on a life of its own, it participates in the life
of the world, it lives, it dies [6:290]. In addition, a
software system interacts with its stakeholders, and
constrains and shapes their actions.
We have therefore concluded that the system can itself
be an active participant in its own evolution. This is also
in accordance with Lehman’s VIIIth Law, and parallels
thinking behind the system dynamics models which we
have previously published. On this basis, we have
represented the system as fielded as a fully-fledged actor
in our model.

5. Some initial conclusions

A first sight of Figure 1 reveals the complexity of the
web of social and technical interactions which controls
the software evolution process. As Lehman’s VIIIth
Law suggests, the model comprises a feedback system
of great complexity. This in itself may help explain why
it is so difficult either to theorise about the nature of this
process or to control and manage it in practice.
The impression of the complexity of the interactions
between actors is both exemplified and reinforced by an
analysis using the Vensim loop analysis tool, which
counts and lists the participants in each complete loop in
the directed graph. In this case, the tool showed that
there is a total of 2534 feedback loops in the model. The
longest loops in the model are 14 elements long.
An example of a loop in the model, in this case of 11
elements, is as follows:

System as fielded
Users
Sponsor/owners
System salespeople
System change input queue
Developers
Project manager
System development owners
Mutable tools
System design/architecture

System as fielded
Such loops can be examined on the basis that each tells
a ‘story’ of one influence on how the actor network
operates to evolve the system. Successfully telling the
story both provides insight as to how the process might
operate, and gives some degree of comfort that the
model is reasonable. In this case, the story might be as
follows:

the system as fielded affects its users, perhaps
frustrating them or preventing them from doing
their job, or alternatively suggesting an opportunity
to improve the user process by a system
enhancement. The users therefore raise these issues
with the system’s sponsor/owners.
The sponsor/owners then demand changes in the
system from the system salespeople, which results
in new change demands being placed in the system
change input queue.
The developers examine these change requests, and
as a result of their analysis they find that they need
to ask the project manager to get the system
development owners to authorise changes to the
mutable tools.
The modified tools are then used to modify the
system design/architecture.

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

Finally this architectural change is reflected in
changes seen by the users in the system as fielded in
its next release.

As suggested earlier, this example show the closeness of
interactions between social and technical aspects,
reflecting both the technical software process and the
social interactions which surround and control it. Such
examples, talked through with process experts, also
enable us to check the reasonableness of both the model
structure and the individual elements comprising it.

6. Next steps: from model to simulation

In this section we describe the steps necessary to turn
our current qualitative, descriptive model into an
executable simulation of the global software process.

6.1. Refining the model

Our first step in moving from the descriptive, qualitative
model described here to an executable simulation must
be to select the focal actor for our analysis. This will be
the actor from whose viewpoint the creation and
operation of the network is to be described [13:1663].
Given our reason for modelling the process, i.e. to
understand how and why the system as fielded evolves
as it does, the focal actor is most likely to be the system
as fielded itself, since it is its evolution process that we
are looking at. The most important variable in the
simulation is therefore some measure of ‘system health’
as perceived (perhaps differently) by its stakeholders.
We will then need to continue our analysis and identify
any additional actors, mediators and intermediaries, and
determine the ways in which each affects others.
Sources for this information will include reports of
practice from both successful and failed projects in
software development such as such as Yourdon’s Death
March [21], interviews with practitioners, experience
reports from Software Engineering conferences and
other literature (e.g. [4]), and other analyses of
analogous processes outside software development,
including, but not limited to, Latour’s own work such as
Aramis [6].
Another issue yet to be addressed in the model is the
status of the data held in a software system. Questions to
be considered include whether the data is an active
participant in the evolution process as the software
system and if so whether it is actor, mediator or
intermediary, and whether data and software can be
abstracted together into a single actor-network. We
currently believe that since the data can be read and
interpreted in many ways, like a law code or a religious
text, it is more than an intermediary and at least a
mediator. Whether the data needs to be treated as an
actor is yet to be determined.

6.2. First thoughts on the simulation

Having identified the structure of our model, we will
need to be able to represent actors and mediators. These
are autonomous and have their own identity and states,
and an arbitrary number of links into and out of them.
Any usable simulation environment must support these
features.
Relevant actor state variables might include, for
example, technical and managerial competence for a
project manager, the actor’s degree of commitment to
the on-going development of the system, and some
measure of relevance/goodness of fit of the actor’s
current state to the system and its current direction of
evolution (such as the relationship between the facilities
provided by the programming language in use and
changing demands of the system’s developers as they
evolve it).
Although more work is needed before we can make a
final decision, it seems that it might be possible to
model the networks of interacting actors, mediators and
intermediaries using an active agent-based simulation
environment such as Repast [11]. We now consider
some of the challenges which building an ANT-based
simulation will pose to its designers.
One problem which emerges in building a simulation of
an actor-network is Latour’s claim that the outputs of a
mediator cannot be derived deterministically from an
examination of its inputs [7:58–9]. Latour refers here to
the complexity which arises in considering a situation in
which mediators do not act deterministically but add
richness of their own to the social process. He describes
how puppeteers interact with their puppets in a far richer
way than merely pulling the strings; the puppets
themselves suggest actions to their (alleged) controllers.
How can a situation like this be simulated? Any
programmed solution cannot be as rich as the real world
can be, in that the simulated mediators cannot be
programmed with all of the possible outcomes from all
possible inputs. However, we can take advantage of
domain knowledge to recognise that in this social
situation the actions of any element, be it actor or
mediator, are severely circumscribed by both social and
technical aspects. For example, the actions of the human
actors who are evolving the system are limited by the
mindset engendered by their education and training, and
by the norms of the discipline within which they work
[15].
Similarly, the actions of technology-based mediators are
limited to what that technology can actually do for (and
to) those who use it, although Latour’s analogy of the
puppeteer suggest that there can more feedback in this
than might initially be expected.
Therefore we propose that the simulated possible actions
of technical mediators be limited to a small number of
effects, and that these be selected randomly with

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

probabilities depending in part on the current situation
in which the mediators currently find themselves; the
possible actions and parameter values will need to be
determined in discussion with domain experts. As a
result of this degree of randomness in the simulation,
any particular model may need to be run a number of
times on a Monte Carlo basis, in the expectation that
some pattern of results will emerge from a large set of
repeated runs.
Having identified the attributes of the actors and
mediators in the model, if we wish to develop a
quantified model with predictive power we will then
need to quantify both their state in the form of these
attributes and the information transferred between them.
Some of the variables and information may be ‘soft’,
opinion/emotion-based and difficult to quantify, rather
than being directly measurable. For example, the
‘strength of commitment’ of an actor to the continued
existence and evolution of the system may need to be
represented as a real value ranging over some range
which should represent the actor’s current level of
support for (or opposition to) that continued existence,
as well as being able to represent maximum and
minimum values.
Whilst this quantification and the reduction of human
emotional states to deterministic or probabilistic
processes might be seen as problematical, system
dynamicists commonly represent ‘soft’ values in
quantified form, often in the form of non-linear numeric
scales. As to how to obtain the relevant values, it will be
necessary again to refer to experts’ views as to how a
specific process (or the process in general) works and
reduce their opinions to quantified values. We have
previously calibrated values for software processes
based on expert opinion during the development of
successful simulation models [3, 19].
Finally, a mechanism for connecting the elements of the
model into a network will need to be developed. This
might be achieved by having each element-
representation hold a list of those elements whose
current values influence its behaviour. Each element in
the list would have its input value weighted to represent
its current – and possibly changing over time – relative
impact on the actor. To save programming effort, it may
be best to make all possible connections when setting up
the model, then set the weighting of a specific input to
zero to reflect a link which is currently not present.
We intend to develop our current model into a
simulation with the properties we have described, and
expect that this simulation, when calibrated to values
representing real-world activities and actions, will be
able to replicate behaviours observed in real-world
software evolution processes. Such a calibrated model
will undoubtedly assist in improving the understanding
of the global software process and its behaviours.

7. Acknowledgements

We are grateful to the referees of Software Evolvability
06 and to Martin Loomes and David Bowes for their
valuable comments.

8. References

[1] K. Beck, Extreme Programming Explained, Addison
Wesley, Boston, MA, 2000.
[2] A. Capiluppi, M. Morisio and J. Fernandez-Ramil, “The
Evolution of Source Folder Structure in actively evolved Open
Source Systems”, Proc. Metrics 04, 2004.
[3] B.W. Chatters, M.M. Lehman, J.F. Ramil and P. Wernick,
“Modelling A Software Evolution Process”, Software Process:
Improvement and Practice, 5 (2–3), 2000, pp.91–102.
[4] P.J. Dunning-Lewis and C.J.W. Townson, “Using Actor
Network Theory Ideas In Information Systems Research: A
Case Study Of Action Research”, Working Paper 2004/025,
Lancaster University Management School, 2004.
[5] G. Kahen, M.M. Lehman and J.F. Ramil, “Empirical
Studies of the Global Software Process – The Impact of
Feedback”, Proc. Workshop on Empirical Studies of Software
Maintenance (WESS’99), Keble College, Oxford, UK, Sept. 3–
4, 1999.
[6] B. Latour, Aramis, or the Love of Technology, trans. C.
Porter, Harvard, 1996.
[7] B. Latour, Reassembling the Social, Oxford, 2005.
[8] M.M. Lehman and J.F. Ramil JF, “The impact of feedback
in the global software process”, Journal of Systems and
Software, 46 (2), 1999, pp.123–134.
[9] M.J. Loomes and C.L. Nehaniv, “Fact and Artifact:
Reification and Drift in the History and Growth of Interactive
Software Systems”, Proc. Fourth International Conference on
Cognitive Technology: Instruments of Mind, Lecture Notes in
Computer Science 2117, Springer, 2001, pp. 25–39.
[10] M.J. Loomes, C.L. Nehaniv and P. Wernick, “The
Naming of Systems and Software Evolvability”, Proc.
Software Evolvability 05, Budapest, 26 September 2005, IEEE
Computer Society Press.
[11] M.J. North, N.T. Collier, and J.R. Vos, "Experiences
Creating Three Implementations of the Repast Agent
Modeling Toolkit," ACM Transactions on Modeling and
Computer Simulation, 16 (1), ACM, January 2006, pp.1–25.
[12] Privacy International, “European Commission Begins
Consultation on Data Retention”,
http://www.privacyinternational.org/article.shtml?cmd%5B34
7%5D=x-347-64804, 5 August 2004, referenced 30 June 2006.
[13] A. Sidorova and S. Sarker, “Unearthing Some Causes of
BPR Failure: An Actor-Network Theory Perspective”, Proc.
Americas Conference on Information Systems 2000, Long
Beach, CA, August 10–13, 2000, Association for Information
Systems.
[14] Ventana, Vensim Software,
http://www.vensim.com/software.html, referenced 30 June
2006.

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

[15] P. Wernick “A Belief System Model for Software
Development: a framework by analogy”, PhD thesis,
University College London, London, 1996.
[16] P. Wernick and T. Hall, “Simulating Global Software
Evolution Processes by Combining Simple Models: An Initial
Study”, Software Process: Improvement and Practice, 7,
2002, pp.113–126.
[17] P. Wernick and T. Hall, “The Impact of Using Pair
Programming on System Evolution: a Simulation-based
Study”, Proc. IEEE International Conference on Software
Maintenance 2004, IEEE Computer Society Press.

[18] P. Wernick and T. Hall, “Can Thomas Kuhn’s paradigms
help us understand software engineering?”, European Journal
of Information Systems, 13 (3), 2004, pp.235–243.
[19] P. Wernick and M.M. Lehman, “Software Process
Dynamic Modelling for FEAST/1”, Journal of Systems and
Software, 46, 1999, pp.193–201.
[20] B. Williams-Jones and J.E. Graham, “Actor-Network
Theory – a tool to support ethical analysis of commercial
genetic testing”, New Genetics and Society, 22 (3), December
2003.
[21] E. Yourdon, Death March, Prentice Hall, 2003.

Figure 1: an ANT-based model of the global software process

System
change

input queue

Sponsor/
owners

Users
System

development
owners

System
salespeople

Projec t
manager

Developers System
as fielded

System de
sign/ archit

ecture

Immutable
toolsMutable

tools

Actor

Mediator

Key

Wider
development
organisation

Competitors
to user

organisation

Competitors
to developer
organisation

Wider society

Wider user
organisation

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

