
General homomorphic overloading

Alex Shafarenko
Dept. Comp. Science, University of Hertfordshire, AL10 9AB, U.K.

a.shafarenko@herts.ac.uk

No Institute Given

Abstract. A general homomorphic overloading in a first-order type sys-
tem is discussed. Type inference is applied within predefined classes each
containing an arbitrary first-order subtyping hierarchy. We propose a
computationally efficient type inference algorithm by converting the at-
tendant constraint-satisfaction problem into the algebraic path problem
for a constraint graph weighted with elements of a specially constructed
non-commutative star semiring. The elements of the semiring are mono-
tonic functions from integers to integers (including ±∞) with pointwise
maximum and function composition as semiring operations. The com-
putational efficiency of our method is due to Klene’s algebraic path me-
thod’s cubic complexity. Our algorithm is applicable to type inference in
the presence of unknown external types and supports distributed type
inference.

1 Introduction

The concept of homomorphic overloading (h-overloading for short) is not com-
pletely new, although to the best of our knowledge it has not been laid into the
foundations of any type system before. The original idea probably goes at least
as far back as Reynolds’s paper [6], where he remarked that ”the key to ensu-
ring that implicit conversions 1 and generic operators mesh nicely is to require
a commutative relationship between implicit conversions and homomorphisms”.
To illustrate this, consider the following example. Let a generic operator f be
defined on two types: f1 : a1 → b1 and f2 : a2 → b2, and let also a1 � a2 and
b1 � b2. Under such conditions, the operator application f x is naturally ambi-
guous. Indeed if x : a1 it has the type a2 as well so then which of the results
f1 x or f2 x is expected? The usual principle is to choose the least type, i.e. that
of f1, so the result is (f1 x) : b1. However this is coercible to b2 which gives rise
to the question: what is the relationship between the value of f1 x raised to the
type b2 and the value of f2 x?

Reynolds suggests that the results for so overloaded operators must be the
same. For instance, if we consider, following [6], +1 : (int, int) → int and +2 :
(real, real) → real we find that x +1 y coerces to type real to give precisely the
value of x+2y (assuming that the available range of integers can be represented as

1 i.e., coercions — A.S.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1637048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


floats without rounding, which is usually the correct assumption). It is easy to see
that in this example the coercion from integer to real serves as a homomorphism
from (int,+) to (real,+), hence our term “homomorphic overloading”. Paper
[7] does not treat this homomorphism as a vehicle of type inference, but rather
as a category-theoretical basis for formal semantics of a language that includes
generic operators and coercions. By contrast, our concern is exactly the former.

In [4] we showed that a primitive form of h-overloading, where the type
signature was constrained to fixed supertypes and subtypes of participating type
variables, allowed fast type inference in the presence of unknown external types.
The resulting types were inferred as explicit functions of the external types
using the longest path algorithm on a constraint graph. We further showed the
utility of h-overloading by giving an example of a language for stream processing
that benefited from it. However, our solution was not generic, as it limited the
variety of overloaded operators to a very restricted set of “offset-homomorphic”
operators with a special type signature. Thus arbitrary h-overloading was not
supported, in particular, there was no provision for arbitrary user-defined generic
operators.

In this paper we shall lift restrictions on the h-overloaded signatures, which
will make user-defined families of h-overloaded operators possible, while retai-
ning the original complete inferability of types shown in [4]. We will introduce a
combined overloading scheme which uses h-overloaded types within archetypes,
which are groups of types belonging to disjoint subtyping hierarchies. This makes
it possible to combine general type checking with automatic inference of homo-
morphic types.

The rest of the paper is organised as follows. In the next section we will
review some of the basic concepts of the homomorphic type theory. Section 3
will introduce a new abstraction for defining type constraints: a star semiring
of integer functions. We shall re-formulate the type inference problem as an
algebraic path one and will find the solution to the former in terms of the latter.
Section 4 focuses on the solution algorithms and implementation issues. Section
5 discusses applications of our method to various programming languages, and
finally there are some conclusions.

2 H-overloading

Before introducing homomorphic overloading formally, we must note that h-
overloading does not need to be the only overloading mechanism in a language
that benefits from it. Indeed, one important reason to use overloaded operators is
to avoid the proliferation of notation by reusing symbols based on their informal,
mnemonic aspect. Where h-overloading is possible, it can be left implicit since,
as we shall show, its disambiguation is always automatic and computationally
efficient. By contrast, non-homomorphic overloading requires explicit declara-
tions of type (or class of types, as in Haskell) since genuine ambiguity may arise
when the program context does not constrain the choice of an overloading tightly
enough. Using another of Reynolds’s examples, if ‘+’ were to denote both string



concatenation and arithmetic addition, an assignment such as a := b + c, where
all three variables are external to the program unit, would leave the type ambi-
guous, requiring an explicit declaration of type. H-overloading of the numerical
instances of ‘+’ would enable generic declarations like a, b, c : numeric rather
than requiring, for example, a more specific (and restrictive) a, b, c : int but it
would not eliminate type declarations completely, since the possibility for a, b
and c to be of string type cannot be ruled out automatically.

Thus we consider types as being qualified by an ‘archetype’ specification,
which is explicitly declared and is not subject to inference (although it is, of
course, subject to type checking in a standard way). Here by archetype we mean
a set of all subtypes of a well-defined type. For instance, numbers form an arche-
type with the usual subtyping into integers, reals and complex numbers; pairs
of numbers form an archetype which contains a lattice of subtypes, etc.

One archetype may qualify several type attributes at the same time. For ins-
tance, numerical arrays can be assumed to have the following attribute structure:

narray(etype, rank),

where narray is an archetype of numerical arrays, which is declared, etype is
the type of the array element taken from the subtyping hierarchy int � real �

complex and rank is the number of array dimensions taken from the hierarchy
0 < 1 < . . . < rmax, where the coercion from lower to higher rank is achie-
ved by infinite replication of the corresponding array in the extra dimensions.
This archetype was assumed in [4] in defining a stream processing language,
where all operators were overloaded homomorphically in etype and rank. Ano-
ther example could be the string archetype: text(len), where len is the maximum
size of the string, with obvious subtyping. Our subtyping scheme is, at the mo-
ment, first-order as we do not allow functional subtyping, the reason being that
contravariance of function-argument types destroys the semiring construction
described in Section 3, making type inference inefficient. This circumstance pre-
vents our typing scheme from being used in a general functional language. We
do nevertheless take full account of contravariance of non-functional types, ma-
king our approach applicable to first-order, single assignment languages, such as
SAC[17] and ASTL[15], as well as imperative languages with atomic subtyping,
notably Fortran. Here contravariance manifests itself in the downward coercion
of an assignment target and is the reason that the least type of a variable is
required to be sufficiently high.

In the rest of the paper, we shall assume the archetype qualifiers of all
(sub)expressions in a program to have been deduced from the archetype de-
clarations and the program text, so that they can be omitted from type signa-
tures without creating an ambiguity. We also assume that two types can be in
a subtype relation only if they come from the same archetype; in this sense
all archetypes are disjoint. An n-ary operator is assumed to act on the Carte-
sian product of types, on which subtyping is defined in the standard way, i.e.
component-wise.

Our focus will be on the inference of the least permissible types in a program
where all operator overloadings are required to satisfy the following



Homomorphism restriction For any (overloaded) operator F , an instance
F2 : a2 → b2 is said to be homomorphic to an instance F1 : a1 → b1 iff a1 � a2,
b1 � b2 and (∀x : a2)b21F1x = F2a21x, where a21 is the type coercion a1 → a2

and b21 is the coercion b1 → b2. For any overloaded operator F and any pair
of its instances F1,2 having identically qualified signatures, one instance must be
homomorphic to the other.

Proposition 2.1 The set of identically qualified instances of an overloaded
operator that satisfies the homomorphism restriction is linearly ordered.

This follows from the fact that homomorphism is an antisymmetric relation,
which is also transitive since the coercions are compositional, i.e. (∀t1t2t3 : t1 �
t2 � t3)c31 = c32 ◦ c21, where cij is the coercion tj → ti). Note that the linear
order of instances induces a linear order on the operand and result subtypes. This
does not mean that the subtyping structure of an archetype must be a chain; it
only has to contain a chain for every overloaded operator family defined on it.
Thus, different operator families can potentially use different chains within the
archetype without violating the homomorphism restriction. For any h-overloaded
n-ary operator family F with k instances, we will write its type signature as
follows: F : ω1 × ω2 × . . . ωn → ω0, where all ωi are chains of length k in their
respective archetypes. The potential confusion with the type signature of a single
operator where ωi are sets of values will be avoided by using small Greek letters
only for chains of types. A type signature in this form does not by itself define the
relationship between the output type of the operator family and its input types,
it only defines the ranges of those types within their corresponding archetypes.

The homomorphic restriction has two important consequences. Firstly, it
completely disambiguates operator application: F x can always be interpreted
as the application of the lowest instance of F compatible with the type of x. If
the programmer meant a higher instance and applied a further operator to the
result assuming that type, this is not a problem, since the result of applying the
lower instance is coercible to the output type of the higher one, yielding exactly
the same value.

Secondly, since Proposition 2.1 places the input and output types on chains
in subtyping orders, in any well-typed expression the output type chain ω1 of
an operator F1 belonging to the expression must mesh with the input chain ω2

of the next operator F2 up the expression tree. This means that, firstly, the
output archetype of F1 should be the same as the input archetype of F2, which
is not our concern since the archetype checking is assumed to have been done.
Secondly, at least one element of ω1 must be a subtype of some element of ω2

so that the result of F1 can be coerced to an input type of F2. Let xmax be the
greatest element of ω1 coercible to ω2:

xmax = max
ω1

{x | (∃y ∈ ω2)x � y} .

Then the operator F1 can be restricted (without loss of generality) to just those
overloadings for which the output type is at most xmax. On the other hand F2

can be restricted, also without loss of generality, to just those overloadings for
which the input type is at most xmax (for arity 1). Similar conditions must be



⊥

x
m

ax

y
1

y
2

x
1

x
2 F

1 output 
F

2 input 

F
ig

.
1
.
M

esh
in

g
ty

p
e

ch
a
in

s

satisfied
in

all
operands

of
F

2
if

its
arity

is
greater

than
1.

F
inally,

a
coercion

m
ap

c
:
ω
′1 →

ω
2

can
be

constructed:

c
x

=
m

in
ω

2 {y|
x�

y}
,

w
here

ω
′1

=
{x|

x∈
ω

1 ∧
x�

xm
ax }

,

and
inserted

betw
een

F
1

and
F

2 .
It

is
obvious

from
the

existence
of

xm
ax

that
for

any
x
∈

ω
′1

the
set

on
the

right-hand
side

is
nonem

pty,
and

so
the

function
is

w
ell-defined.It

is
also

easy
to

see
that

c
x

is
a

non-decreasing
function.F

igure
1

gives
an

exam
ple

of
tw

o
m

eshed
chains,

w
here

their
com

m
on

archetype
is

a
lattice.

T
he

coercion
m

ap
is

depicted
by

curvy
arrow

s:
c⊥

=
⊥

,
c
x

1
=

y
1

and
c
x

2
=

c
xm

ax
=

y
2

A
nother

source
of

coercion
is

occurrences
of

program
variables.

W
hen

a
va-

riable
occurs

in
a

contravariant
context,

e.g.
on

the
left-hand

side
of

an
assign-

m
ent,

the
context

defines
a

type
chain

(corresponding
to

the
top-level

operator
on

the
right-hand

side)
and

the
type

of
the

variable
m

ust
be

upw
ards

of
an

out-
put

type
belonging

to
that

chain.T
he

latter
w

illbe
sub

ject
to

type
inference

and
is

a
prioriunknow

n.Since
there

can
potentially

be
severalcontravariant

contexts
in

the
program

involving
the

sam
e

variable,
the

variable
type

m
ust

be
the

least
upper

bound
of

the
corresponding

output
types.

T
he

variable
m

ay
also

occur
in

a
covariant

context,
at

w
hich

point
the

type
derived

from
the

contravariant
contexts

w
illbe

coerced
up

to
the

least
m

em
ber

ofthe
input

type
chain

assum
ed

by
that

covariant
context.

T
he

difference
betw

een
m

eshing
a

variable
w

ith
an

operator
and

m
eshing

tw
o

operators
is

subtle.
T

he
procedure

exem
plified

in
fig

1
effectively

m
aps

a



chain onto another chain preserving the order, whereas in the case of variable-
to-operator meshing, the least upper bound of the elements of the output chains
is represented as a partially ordered subset of the archetype. A coercion map
has to map this partially ordered subset onto the input chain of its associated
operator. There is a useful factorisation, however, which reduces this kind of
meshing to the previous kind. Let us consider the following example program

x := F (x,y);
...
x := G y

where F : α1 × α2 → β, G : α3 → γ, the type of x, tx is given by tx 	
(b
 g), where b ∈ β, g ∈ γ are the (unknown) output subtypes of the operators.
Note that depending on the shape of the β and γ chains within their common
archetype, the least upper bound of b and g can sweep an arbitrary bounded
subset, which does not have to be a chain.

For illustration, let us insert coercion functions into the program explicitly:

x := CxF F (CFx x, CFy y)
...
x := CxG G (CGy y)

Obviously, the output type of CFx is

min
α1

{w | w 	 (b 
 g)} = max(min
α1

{w | w 	 b},min
α1

{w | w 	 g}) ,

which can be simplified to maxα1(cbb, cgg) where cb and cg are coercion maps
of the kind discussed earlier. Observe that the agreement in type only involves
operator output types, b and g with the type of the variable x being directly
dependent upon them. Thus the types of program variables can be eliminated
from the typing scheme; the output type variables of the corresponding top-level
operators hold sufficient information.

In the general case the dependency of an input type of an operator on the
output types of other operators via a variable has the form maxn

i=1(fi xi) for
some n, where fi is a map from a specific output chain to the common input
chain. This construction is very important as it makes it possible to replace fi by
functions mapping a chain offset (which is a nonnegative integer representing the
distance of a particular type along the chain from its bottom end) onto a chain
offset. One can then reason about types solely in terms of those offset numbers.
This follows from the factorisation exemplified above, i.e. from the fact that for
any chain ω in a partial order P and any bounded set S ⊆ P

min
ω

{x | x � (
⊔

S)} = max
ω

{By | y ∈ S}

where B : P → ω is given by

Bx = min
ω

{y | y 	 x}



provided that such B exists.
Crucially, under h-overloading, a similar type representation exists for the

operators themselves with respect to their multiple operands. It is given by the
following

Proposition 2.2. For any homomorphically-overloaded n-ary operator F :
(a1, a2, . . . , an) → b, the output type offset b̂ can be expressed as a function of
the input type offsets âi as follows:

b̂(â1, â2, . . . , ân) = max(f1â1, f2â2, . . . , fnân) ,

where fi : Ii → I0 are some non-decreasing functions, 1 ≤ i ≤ n, Ii = [0, ki] is
the offset range of the ith operand, ki is the type offset of the highest overloading
in the ith operand relative to the lowest overloading operand type, and I0 = [0, k0]
is the output type offset range, with k0 the difference between the maximum and
the minimum output types along the subtype chain.

The proof of Proposition 2.2 follows from the observation that each operand
separately demands a certain lowest overloading, and that it is also compatible
with all overloadings higher than that one. Consequently, the least output type
corresponds to the highest demand, which explains the maximum in the formula.
The non-decreasing nature of the functions fi comes from the fact that raising
the type of ith operand along its chain can only make it too high for the current
overloading and hence demand a higher one, with a higher output type.

For convenience, we extend the function domains so that Ii = I0 = Z ∪
{−∞,+∞} = Z

∞ for all i and assume that (∀x < 0, i)fix = −∞ and (∀x >
ki, i)fix = +∞. The latter assumption models a type error by yielding an infini-
tely high supertype when the input type range is exceeded, and the former one
is motivated by the semiring construction in Section 3. We shall call functions
such as fi and the above-mentioned coercion map c type maps when they are
expressed in offset form Z

∞ → Z
∞. The range of x ≥ 0 in which f x < ∞ is

the carrier of the type map f . Since our type maps are based on finite subtype
chains, we shall assume that all carriers are finite. The set of all such functions
will be denoted as F below.

To summarise, the type analysis of a program written in a language with
h-homomorphic operators breaks down into the following stages:

1. analysis of the explicit archetype declarations contained in the program.
2. analysis of the operator definitions, including the structure of h-homomorphism

within each archetype.
3. archetype checking throughout the program
4. determination of coercion maps induced by meshing, with a subsequent

conversion into offset form; elimination of variables by connecting co- and
contravariant occurrences by type maps.

5. recording of all type signatures and converting them into offset form; recor-
ding of the type maps.

6. type inference

It is the last stage that we focus on in the next section.



3 Type Inference

A primary constraint set As usual, type inference begins with associating fresh
type variables with all subexpressions in the program. In our case, these variables
represent type offsets from Z

∞ rather than type values for the reasons explained
earlier. For every operator occurrence, the operator type maps are invoked to
produce a type constraint in the form:

v0 =
n

max
i=1

(fivi) ,

where vi, i = 0 . . . n are any of the type variables just introduced. The constraints
can be broken down into a set of simpler constraints in what we shall call cano-
nical form:

τ0 ≥ fi τi ,

on the assumption that the minimum type assignment is sought. All canonical
constraints in a program constitute the primary constraint set. This set can be
assumed to contain exactly one constraint for every pair of types a and b. Indeed,
if there are two constraints between these types, a ≥ f1 b and a ≥ f2 b, then they
can be replaced by an equivalent constraint a ≥ f1⊕2 b, where for all x ∈ Z

∞,
f1⊕2 x = max(f1 x, f2 x) = (f1 ⊕ f2)x. (We denote the operator of the pointwise
maximum of two functions by ⊕.) On the other hand, if there are no constraints
between a and b, then the constraint a ≥ 0b can be added, where 0 : Z

∞ → Z
∞

such that for all x ∈ Z
∞, 0x = −∞. Thus one can speak of an n× n constraint

matrix Cij defining the primary constraint set for n type variables. Each element
of Cij is the function Z

∞ → Z
∞ that occurs in the constraint between types xi

and xj in canonical form.
Note that some of the type variable are associated with program variables

which are external to the program unit being compiled and which are, conse-
quently, not subject to inference. The purpose of type inference is to express the
least type of each program variable as a function of those external types.

Constraint set expansion The simplest type inference procedure would be to
initially assign 0 to all type variables associated with internal variables, and
then iterate the constraint set until a fixed point is reached or a type variable
acquires the value of infinity. In matrix form, we seek a solution to the constraint
satisfaction problem x = C x as a fixed point of the iterative process:

x[0] = 0; x[k+1] = C x[k] .

Here C x denotes
⊕n

i=1 Cij xj .
The procedure is sound, since at each iteration it delivers a lower bound of

all types implied by the primary constraint set. Also, due to the non-decreasing
nature of all matrix elements of C, at each iteration which does not deliver a fixed
point, it produces an increased lower bound for at least some type variables. Since
the carriers of all matrix elements are finite, a fixed point exists and is reachable.



Obviously, the constraint set is satisfiable iff none of the lower bounds delivered
at the fixed point is infinite.

This solution has two potential problems. First of all, the number of iterations
is only bounded from above by the total length of all type chains, since at each
iteration (which does not result in a fixed point) only one type variable has to
increase. Secondly, since the numerical values of the external type parameters
are unknown, iterations have to be performed with the matrix C by raising it to
a power (using function composition as multiplication and ⊕ as addition). This
by itself is a costly operation, to perform even once.

We propose a more efficient algorithm, based on the algebraic path problem,
which we consider next.

Algebraic structure of F Recall that the elements of the constraint matrix are
drawn from the set F of nondecreasing functions Z

∞ → Z
∞ that yield −∞

on all x < 0 and +∞ on sufficiently large x ≥ 0. Consider a six-tuple Φ =
(F,⊕,�, ∗,0,1) where ⊕ is as defined above, � : F × F → F is a function
composition, ∗ : F → F is Kleene’s star operation:

f∗ = 1 ⊕ f ⊕ (f � f) ⊕ (f � f � f) ⊕ . . . ,

0 ∈ F is as defined above and 1 ∈ F is the identity function2: 1x = x for x ≥ 0,
1x = −∞ otherwise.

Proposition 3.1 ⊕, � and ∗ are closed in F.
Indeed, the ⊕ operation is closed in F since the point-wise maximum of two

nondecreasing functions is a nondecreasing function, whose carrier is included
in the union of the carriers of the arguments and so is finite. Likewise, the
composition of two nondecreasing functions is a nondecreasing function. The
behaviour of this function at negative arguments and ±∞ is proven immediately
by substitution; the carrier of the result is the same as that of the first operand,
so � is closed in F.

Finally, the star operator is defined in terms of the fixed point of a series,
each member of which is computed from elements of F using the operators ⊕
and �. Since they are both closed in F, the star operator itself is closed in F if
the fixed point exists. The fixed point does exist, since the series of partial sums
is point-wise nondecreasing and since Z

∞ includes +∞. In fact, we will show
below that the fixed point can be computed in a finite number of steps by an
efficient algorithm, which means that the series for the star operator is always
finite for any element of F. This obviates the proof that the star construct is well
behaved; such a proof would usually be required for an infinite star series. ‡

Proposition 3.2 (F,⊕,0)and(F,�,1) are monoids, the former is commuta-
tive. Indeed, function composition is associative and so is point-wise maximum.
The elements 0 and 1 are obviously the identities of the respective operations. ‡
2 Strictly speaking the identity function is not in F since it does not have a finite

carrier; nor is 0. However, we include them in F as special elements. The use of both
1 abd 0 with ⊕, � and ∗ does not lead to further infinite-carrier elements.



Proposition 3.3 Operation � distributes over ⊕ both on the left and on the
right:

a � (b ⊕ c) = (a � b) ⊕ (a � c) and (b ⊕ c) � a = (b � a) ⊕ (c � a) .

The proof is by point-wise application, using the nondecreasing nature of func-
tions a, b and c. ‡

Proposition 3.4 0 is a null with respect to �: 0� x = x� 0 = 0 The proof
follows immediately from the construction of the element 0. ‡

Propositions 3.1-4 form the proof of the following
Lemma 3.5 Φ is a star semiring.

Inference procedure Now consider the constraint satisfaction problem again. Let
us associate every type variable with a vertex of a weighted, directed graph G.
Each edge (vi, vj , f) of the graph represents the constraint

vi ≥ f vj .

Since the (internal) program variables occur in both covariant and contravariant
contexts, the graph is not necessarily acyclic, and may contain infinite as well as
finite walks. Each walk corresponds to a chain of primary constraints connecting
its ends, and hence to a secondary constraint corresponding to the (finite or infi-
nite) �-product of the weights of the participating edges. The tightest constraint
between any types vi and vj due to the primary constraint set is the ⊕-sum of
the weights of all walks Wij in graph G from vertex i to vertex j:

Pij =
⊕

w∈Wij

(
⊙

i∈w

fi) ,

where the selection of vertices from the walk w in the �-product is in the walk
order. This is a formulation of the classical algebraic path problem [11] for the
semiring Φ and graph G.

The solution to the algebraic path problem is the matrix Pij of semiring
values. We will define an efficient algorithm for its computation below. For now
let us assume Pij has been computed, and proceed to the type assignment.

Proposition 3.6. Divide the set of type variables {vk | 1 ≤ k ≤ n}, into
external ones k ≤ ne, which are not subject to type assignment, and the rest
ne < k ≤ n. The least type assignment is given by the following formula:

vk = min
v∗

k

{x | x ≥ nemax
i=1

(Pki vi)} = Pkk � nemax
i=1

(Pki vi) ,

where v∗
k is the set of solutions of the equation x = Pkk x. The outline of the

proof is as follows. First of all, observe that any type assignment for the variable
vk has to satisfy the secondary type constraint vk ≥ Pkkvk. Since Pkk ≥ 1 point-
wise (since at any rate vk ≥ vk), only the fixed points of Pkk are suitable as
potential type assignments for vk. Secondly, vk must be large enough to satisfy all
primary and secondary constraints induced by the external types, which explains



the above formula. The third part of the equation is due to the fact that Pkk is
the point-wise maximum of all cyclic chains on vertex k, hence Pkk �Pkk = Pkk

and so, for all x ∈ Z
∞, Pkk(Pkk x) = Pkkx. This means that Pkkx is a fixed

point of Pkk. The fact that this fixed point is the least one greater than or equal
to x is due to Pkk ≥ 1 point-wise and to its nondecreasing nature.

One might think that vk must be large enough to satisfy the constraint indu-
ced by any other internal variable vj : vk ≥ (Pkjvj). We claim that this happens
automatically. Indeed, assume the contrary, i.e. that for some j, vk < (Pkjvj).
By the above assignment vj ≥ Pjj � Pjivi (recall that Pjj is a nondecreasing
function, so it distributes over the maximum), and so vk < Pkj � Pjj � Pjivi

for any external vi. The right-hand side reduces to Pkivi by definition of P and
semiring distributivity. Hence vk < Pkivi, which contradicts our type assignment
and proves its validity. ‡

4 Implementation

The type inference method proposed in the previous section requires the ability
to compute the algebraic path matrix Pij efficiently. This is achieved by Kleene’s
algorithm in O(n3) semiring operations using the following iterative process. Set
the initial value P

[0]
ij according to the primary constraint graph. For any edges

(i, j) not found in the graph set P
[0]
ij = 0. For k = 1 . . . n do:

(∀i, j)P [k]
ij = P

[k−1]
ij ⊕ (P [k−1]

ik � (P [k−1]
kk )∗ � P

[k−1]
kj )

The solution is Pij = P
[n]
ij .

At each iteration, the algorithm requires 2N2 semiring multiplications and
N2 semiring additions as well as one star operation. We consider the implemen-
tation of those next.

We propose the representation of semiring elements as sorted lists of pairs
(a, v) where a ≥ 0 is the value of the function argument and v is its result.
The list is sorted in the ascending order of a. The value of the function for the
arguments greater than the last one listed are assumed to be +∞. The empty
list corresponds to the maximum element of Φ, φmax: (∀x ∈ Φ)x⊕φmax = φmax.
The elements 0 and 1 are represented as special values recognised by all three
operators.

It is easy to see that the � operation in this representation is little more
than the classical database join of the operands equating the v field of the first
operand and the a field of the second; it yields a sorted list as a result. Both
source lists are only traversed once, thanks to the nondecreasing nature of the
semiring elements and the fact that any emerging lists are already sorted. The
⊕ operator is implemented as a join in the field a of both lists followed by the
pointwise maximum of the corresponding v fields. Of course the a field does not
even need to be stored, as it contains merely the sequential number of the list
element.



The star operator is slightly trickier to implement. Observe that since Φ is
idempotent (i.e., (∀x ∈ Φ)x ⊕ x = x), (f ⊕ 1)∗ = f∗, which can be proven by
substitution. Hence without any loss of generality we can assume that f x ≥ x
for all nonnegative x. The first step is to identify closed intervals of x, [bi, ei]
such that:

f (bi − 1) ≤ bi − 1,

f k > k for bi ≤ k < ei and

f ei = ei.
If no such interval exists, it is easy to see that f x = x for all x ≥ 0, in which
case f∗ = f = 1. Indeed, since for any f ∈ Φ, f(−1) = −∞ and f(+∞) = +∞,
there is at least one suitable pair of ei and bi. Hence the middle condition is not
satisfied, which means that for all k f k ≤ k, hence f ⊕ 1 = 1.

In the general case, the carrier of f is partitioned into one or more closed
intervals of the above sort with possibly intervals where f x ≤ x occurring in
between those. We then apply the following

Proposition 4.1. Within each interval [bi, ei], f∗ x = ei.

Indeed acting f on any point within the interval will produce a greater result
not exceeding ei (which is the value of a nondecreasing function at the right
end of the interval where it is nondecreasing, hence the maximum). Therefore,
repeated application of f will eventually reach ei which is a fixed point.

The star algorithm should consequently proceed in two passes. In the first
pass, the closed intervals are identified by scanning the list and comparing the
current and previous elements. At the same time any elements for which v < a
are adjusted to v = a. In the second pass, the answer is computed by filling up
the intervals with their final value of a. This is best accomplished by placing
the list elements on top of a stack during the first pass, and reading them off
the top of the stack in the second, so that the ends of intervals could propagate
backwards.

One last observation: in the previous section we stated that f∗ maps any x
to the nearest fixed point equal or exceeding x. Clearly our algorithm has this
property.

From the description of the semiring algorithms, it is clear that their compu-
tational cost is O(L) where L is the length of the longest chain in the subtyping
system. An obvious optimisation would be to exploit the fact that there are
usually much fewer instances to an operator than there are different subtypes in
a type. Consequently, the type maps are likely to be step functions with many
different a corresponding to the same v. The above algorithms can easily be
modified for such functions: only the first record with the same v need be kept,
the join algorithm must compare for ≥ instead of equality, etc. As a result the
computational cost of semiring operations could be reduced to O(V ) where V is
the maximum number of overloadings defined for any operator in the program.



5 Applications

The type scheme introduced in this paper was developed as part of the ASTL
project [15], which is based on a Grid-aware stream-processing language ASTL.
ASTL describes nodes of a stream-processing network which are connected by
channels, called “streams”. Each channel is a statically typed entity, capable of
carrying a certain structure of records. Several streams can be fed into a node,
which can produce output streams as well. The nodal program of ASTL is called
a “stream transformer” and is presented as a combination of an interface and
a set of stream recurrence relations which describe how data is processed. The
interface names input and output streams and defines necessary information for
matching the record structures against user-defined patterns in order to extract
elementary fields. The fields are treated as typed entities, which are subject to
subtyping.

Since ASTL was proposed for distributed numerical computing on the Grid,
it supports a hierarchy of numerical types, from Boolean to complex, which it
treats as a single type chain. Binary arithmetic operators, such as (+) act on a
chain in a tuple type lattice, having homomorphic overloadings as follows:

+:(cmplx,cmplx)->cmplx
+:(real,real)->real
+:(int,int) -> int

Here each overloading is homomorphic to the one above it with respect to the
argument and result coercions. Moreover, since ASTL is intended for computa-
tional applications, it treats each variable as potentially array-valued. The array
rank, i.e. the number of dimensions, is treated as a static type attribute, again
with subtyping. Arrays are subtyped by infinite replication in further dimen-
sions. For instance, a replicated scalar is a subtype of a general 1-dimensional
array, a replicated 1d array is a subtype of a 2d array, etc. This approach allows
natural specialisation of modules with respect to translational symmetry of array
data: for instance, a matrix dot product can be treated as two rank coercions
(from 2d to 3d), one for either operand, a generic 3d multiplication followed by a
+-reduction in the third dimension. This way unnecessary proliferation of multi-
dimensional versions of array operators is avoided while providing a complete
array toolkit, not dissimilar in expressive power to the APL. Array subtyping is
treated strictly homomorphically, just like the numerical subtyping. This means
that an operator applied to low-dimensional arrays would act consistently on
those operands’ higher-dimensional versions as well. Not only does this save no-
tation, it also makes the program far more readable compared to the cryptic
style of APL, without reducing the possible variety and functionality of specific
array-processing operations.

The body of the stream transformer defines the relations between the input
and output stream values as a set of pure, tail-recursive functions, which are
defined in the form of a single assignment to a stream variable. It uses the nu-
merical and array forms of subtyping for specifying a transformer as a set of



generic recurrence relations, which can be specialised by the compiler automa-
tically whenever the environment types become known. Those types are ones
associated with the input streams in the interface section of the module. They
are set by the Grid environment when transformers are connected up by streams.
However, thanks to the theory presented in this paper, the transformers can be
fully analysed individually, before this happens. Indeed, it is a requirement in
ASTL that each overloaded operator that occurs in a recurrence relations inside
a transformer satisfies the homomorphism restriction. There is no support for
higher-order functions, so arrow types do not occur in user-defined constructs,
and thus arrow-type contravariance is avoided. There are, however, assignments
to variables (if only occurring once), and so the contravariance of an assignment
target is present. The user can specify arbitrary homomorphically-overloaded
functions as families of external subroutines linked to a stream transformer.

To summarise, all the enabling conditions of the proposed general homo-
morphic overloading scheme are satisfied in ASTL. Therefore, all output types
exported by the interface of a transformer are bound by Proposition 3.6 to some
nondecreasing functions of the input types. The functions in question can be
derived from the source of an individual transformer by applying the type infe-
rence procedure described above. At this stage, despite the lack of external type
information, errors can be diagnosed and the maximum allowable type of the
input streams can be ascertained from the diagonal elements of the constraint
matrix. A type error occurs when the least allowable value of a type variable
is +∞, or when the maximum allowable type of an input stream type is −∞.
The graph-theoretical nature of Kleene’s algorithm, which is at the core of our
type-inference procedure, helps to trace back the provenance of errors in order
to produce readable diagnostics for the programmer [16].

Another unique feature of the proposed homomorphic type scheme is the
availability of distributed type inference, which we discuss next.

Distributed type inference In our earlier work [4] we stated that flexible type
systems are especially useful in distributed environments where program modules
often represent generic services offered to other modules communicating over a
network. In a distributed computing environment, modules are often deployed
on different hosts and are connected by data streams, which can be represented
as variables common to two or more modules. Input stream variables occur in
expressions inside the module but not on the left-hand side of an assignment or
in other contravariant contexts. Their type is imported from the module where
these variables are defined and made available for export.

Due to the direction of type coercions, the types of input variables are only
bounded from above, while the types of the output variables are generally also
bounded from below as they do occur in contravariant contexts. The stream
leaving one module and coming to another can be coerced up at the receiving end
or rejected. The whole system of interconnected modules must come to a common
type assignment before starting to operate, and after any reconfiguration that
replaces, removes or adds modules.



The procedure outlined in the previous section obtains a relation between
input and output types of every module whereby the type of the variables in the
output interface is dependent on the type of the variables in the input interface,
the latter considered a given. The next task is to find the type assignment for
all stream variables where the joint constraint set of all modules is satisfied and
no type of a stream variable can be lowered without violating one or more of the
constraints.

Stream reconciliation As modules are connected with data streams, it is
tempting to use these for conveying type information prior to run time. The
following distributed type-reconciliation procedure is proposed.

Each module approximates its input type variables by zero and calculates
the type of the output variables using Proposition 3.6. These output types are
passed along the data links to the receiving module in a special message. When
a module receives such a message, it treats the received type values as a new
approximation of the input type variables. It then generates a new approximation
of the output types to be sent to the corresponding inputs, etc.

Since the input types increase with each approximation, the output types stay
the same or increase as well. If the output types of the module remain the same
after an approximation, a termination point is reached: no more messages will be
sent by this module. It is easy to see that after a finite number of messages have
passed between the modules, each module either reaches a termination point or
receives types that makes one of the output types infinite. In either case the
inference process terminates.

The modules in a module network need to know that they all have reached a
termination point and whether or not errors have been encountered. The former
task is an instance of a well-known distributed termination-detection problem
(see survey [8] for existing algorithms). The latter task can either be incorporated
in the termination detection infrastructure or it can be completed separately by
back-propagation of failure to the neighbouring nodes.

The problem with stream reconciliation is that its complexity depends on
the size of the longest path in the module dependency graph as well as the range
of types. A long path and a large type range could cause reconciliation to be
very slow. Next we consider a faster method which has been inspired by a known
message-routing strategy in data networks.

Bellman-Ford relaxation
We use as a basis the Bellman-Ford algorithm [9], which determines (shortest

or longest) distances from all nodes of a routing network to a single distinguished
node, and propose a similar strategy for distributed type inference.

According to the type inference procedure of the previous section, the type
of an internal variable is the “greater” (in the sense of ⊕) of the type due to
the module’s own constraints and that due to the constraints imposed by the
external variables. The following asynchronous parallel implementation follows
the sketch in [13].

For each module m:



initially For each output type variable ti broadcast the value of the least
fixed point of Pii to all modules s such that the variable ti is exported from m
to s.

relaxation step Upon receiving a type message on any of the input links,
set the corresponding tj and then using Proposition 3.4 recompute all ti that are
exported to other modules. If, as a result, any of the ti variables have changed,
send the new types to all the modules that these variables are shared with. If
the received type message exceeds the maximum admissible type for the corres-
ponding type variable and thus causes an infinite type to be produced, a reject
message is generated and sent back to the originator. The latter is then in a
position to forward this message further back, if necessary until it reaches the
source of the contradiction.

This solution has two problems. One has already been encountered in the
reconciliation procedure, namely that we require a termination detection mecha-
nism to determine the point when no further corrections to the type variables
can be made. The second problem is more serious. The asynchronous version
of Bellman-Ford is known to exhibit exponential complexity in arbitrary graphs
[13]. Fortunately in any component-based system there is usually some form of
centralised control. The solution to our problem is to use the central control
point to enforce synchrony on the type inference procedures operating at indivi-
dual components. Namely, the relaxation step is synchronised with receiving a
request from the central control point, and, after completing the step, each com-
ponent sends a confirmation message back to the control, which triggers the next
round after all confirmations have been received. Obviously, every component
must now send its output type messages whether the output types have changed
during the step or not.

The complexity of the synchronous Bellman-Ford algorithm is linear in the
number of components so the termination point is guaranteed to be reached
realistically fast.

Further applications Our overloading scheme has potentially a greater range of
applications despite the lack of support for higher-order functional types. One
of the interesting challenges would be to apply the idea of type homomorphism
to an imperative language, e.g. Fortran, where subtyping of numerical types is
semi-explicit: variables have to be declared as real, integer, etc., but operators,
such as +, implicitly recognise subtyping hierarchies. It would be quite useful
to be able to introduce a single type “number” with a subtyping hierarchy ta-
king care not only of the various classes of numbers, but also various levels of
precision, range etc. The programmer would not necessarily need to know any
of the subtyping rules for an operator, being reassured by the type system that
if the external data for a given subroutine are correctly typed then the rest of
the variables will be specialised as appropriate by the compiler without loss of
generality. That includes not only subexpressions, which, obviously, are typed
by the compiler anyway, but, importantly, any variables defined inside a module.
It is easy to see, that the type inference procedure we have proposed will work
here as well, as long as the homomorphism of operator overloading is enforced



(which can be done by slightly re-defining all operators and intrinsic functions)
and provided that there is no higher-order functions used as operators — which
is the case in most imperative languages. In fact, even the explicit declaration
of external types can be avoided by type reconciliation similar to the one descri-
bed above; it can be shown that in the absence of recursion (a common case in
Fortran) external types can be reconciled by a single sweep across the procedure
call graph. When recursive subroutines are used (and Fortran requires that any
such subroutines are explicitly declared recursive), one could either demand an
explicit type declaration, or resort to a fixed point calculation, which is outside
the scope of this paper.

6 Discussion and Related Work

The issue of type inference with atomic subtyping has a long history. We cite
papers [1, 2, 7] as ones where foundation work was done. However, the main
thrust of this work is towards treating homomorphism of types. This issue was
not approached systematically until a simplified theory was given by us in [4].
Our concept of type homomorphism is consonant to Lievant’s idea of “discrete
polymorphism” proposed in [3], where it was suggested that overloadings should
be treated as models of a single theory. We believe that h-overloading is less
restrictive as it allows higher instances to “expand” the functionality of the
lower ones without destroying the consistency between them.

Technically, the most relevant to our work is the paper by Rehof and Mogen-
sen [13], where a method is described for what they termed a “definite constraint
satisfaction problem”. Here all constraints are presented in a form similar to ours:
v0 ≥ f(v1, . . . , vk), where f is a nondecreasing function. Then an algorithm is
presented, with a complexity linear in the number of constraints, (i.e. quadratic
in the number of variables n) which finds the least solution. The main difference
is that in [13] the system of constraints is assumed to be closed, i.e. all variables
are subject to type minimisation within the constraints. In our work we approach
a more general problem of constraint satisfaction with external parameters so
that the solution is a function of those. Immediately the domain ceases to be a
semilattice and the algorithm from [13] becomes inapplicable. We have proposed
a slightly more costly solution, with the cost O(n3), but which allows external
types to be parameters in the type assignment. Here n is the number of type
variables; since one can assume there is no more than one constraint involving a
pair of type variables, the number of constraints does not exceed nc = n2, giving
a complexity estimate of O(n3/2

c ). This measure is not dramatically worse than
Rehof-Mogensen’s, and certainly is not bad enough for the typical number of
type variables in a module to render type inference unfeasible.

In reality, nc � n2 since it can be shown that most type variables are localised
inside expression subtrees, each participating in precisely two constraints: one
constraining the root of the subtree with respect to its children, and one where
the root participates as a child of its parent tree. The only type variables that
deviate from this pattern are those associated with actual program variables (as



opposed to subexpressions), which are assigned, exported, etc. Since there are
not too many of them in an individual module (perhaps a few hundred at worst),
our version of Kleene’s algorithm is likely to be computationally feasible.

In graph-theoretical terms, the relationship between [13] and our method
is similar to the relationship between Dijkstra’s shortest path algorithm and
Folyd-Warshall’s all-pair shortest path: the Dijkstra algorithm computes positive
shortest distances from a single graph vertex (the bottom of the lattice order
in Rehof-Mogensen’s procedure), while the Floyd-Warshall technique computes
minimum (or maximum) pairwise distances and does not require the edges to
be positively weighted.

7 Conclusions

A type inference solution for a general first-order, atomic subtyping with ho-
momorphic overloading has been proposed. We have shown that after archetype
checking, an h-overloaded operator produces type constraints characterisable by
nondecreasing functions on the expanded integer set. A star semiring Φ was pro-
posed to capture algebraic properties of such functions. Using Φ, we have built a
type inference procedure based on Kleene’s algorithm. The procedure infers the
least types of all internal variables in the program as explicit functions of the
external types. We have discussed possible applications of the method, including
those in an open environment, where type inference is distributed.

Future work will proceed in two directions. First of all, the proposed type
inference technique will be applied to more languages. In the first place, we are
planning the application to the language SAC (single-assignment C), see [17].
SAC supports a very general view on arrays, similar to APL and as such can
benefit from a disciplined implicit subtyping. The second direction is towards
easing the limitations of our method. We wish to support higher-order functio-
nal types for which contravariance currently prevents the semiring construction
described in this paper. The consequence of this is that the “sum of products”
for Pij loses the benefits of distributivity and hence becomes combinatorially
large. We believe a possible approach to this may be in terms of graph partitio-
ning into purely covariant subgraphs connected by contravariant edges, where
the fact that there would typically be a small number of such edges might lead
to a computationally-feasible algorithm.

References

1. L.Cardelli and P.Wegner. On understanding types, data abstraction, and polymor-
phism. Computing Surveys, 17(4):471-522, 1985.

2. J.Mitchell. Type inference with simple subtypes. Journal of Functional Program-
ming, 1:245–285, 1991.

3. D. Lievant Discrete Polymorphism. Proc. 1990 ACM Conference on LISP and
Functional Programming, pp. 288–297, 1990.

4. A. Shafarenko. Coercion as homomorphism: type inference in a system with sub-
typing and overloading. PPDP’2002, Pittsburg, PA. October 6-8, 2002



5. A.Shafarenko. RETRAN: a Recurrent Paradigm for Data-Parallel Computing.
Computer Systems Science and Engineering, vol 11, No 4, July 1996, pp 201-209

6. J.C. Reynolds. Using category theory to design implicit conversions and generic
operators. In: SemanticsDirected Compiler Generation, LNCS vol 94, pages 211-
258. SpringerVerlag, 1980.

7. J.C.Reynolds. Three approaches to type structure. In: TAPSOFT proceedings,
LNCS vol 185, pp.97-138, 1985.

8. J.Eifrig, S.Smith and V.Trifonov. Type inference for recursively constrained types
and its application to OOP. Theoretical Computer Science, December 1995, vol.
152, no 2, p. 326–345.

9. J. Matocha and T. Camp, A Taxonomy of Distributed Termination Detection
Algorithms, The Journal of Systems and Software, vol. 43, no. 3, pp 207-221, 1998.

10. L. R. Ford and D.R. Fullkerson. Flows in Networks. Princeton University Press,
Princeton NJ, 1962

11. G. Rote, ”Path Problems in Graphs”, in G. Tinhofer, E. Noltemeier, M. Syslo
(eds.), Computational Graph Theory, Springer-Verlag, Computing Suppl. 7, Wien,
1990, pp. 155–198.

12. Y. Fuh and P. Mishra. Type inference with subtypes. Theoretical Computer Science
73:155-175, 1990.

13. J. Rehof and T. Mogensen. Tractable constraints in finite semilattices. In R. Cousot
and D. Schmidt, editors, Proc. of 3rd Int. Static Analysis Symposium (SAS’96),
pages 285–300. Springer LNCS vol. 1145, 1996.

14. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. p. 507-509.
15. A. Shafarenko. Stream Processing on the Grid: an Array Stream Transforming

Language. SNPD 2003, pp. 268-276
16. J. Hansen and A. Shafarenko Error reporting in a type system with homomorphic

overloading. University of Hertfordshire Department of Computer Science. Internal
Report.

17. Sven-Bodo Scholz: Single Assignment C: efficient support for high-level array ope-
rations in a functional setting. J. Funct. Program. 13(6) pp. 1005-1059 (2003)


