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Abstract 

The high capacity associative memory model 
is interesting due to its significantly higher 
capacity when compared with the standard 
Hopfield model.  These networks can use 
either bipolar or binary patterns, which may 
also be biased. This paper investigates the 
performance of a high capacity associative 
memory model trained with biased patterns, 
using either bipolar or binary representations.  
Our results indicate that the binary network 
performs less well under low bias, but better 
in other situations, compared with the bipolar 
network.   

1 Introduction 

The functionality of associative memory which 
emerges in the mammalian cortex can be simulated 
using a single layer, recurrent neural network 
(Hopfield, 1982).   In these models a training set of 
patterns is leant, so that the trained network will have 
these patterns as some of the fixed points of its 
dynamics.  The capacity of the network is the 
maximum number of random patterns that it can 
learn as fixed points. 

The canonical version of these models, named the 
Hopfield net, which uses a bipolar pattern 
representation (+1/-1) and one shot Hebbian learning, 
is known to have a low capacity and particularly poor 
performance when the training patterns are 
correlated.  Given a network with N units, the 
theoretical maximum capacity of the canonical 
Hopfield model is approximately 0.14N (for non-
correlated patterns).  Another critical drawback of 
this type of associative memory model is that there is 
no guarantee that the training patterns are 
memorized. 

Gardner (1988) introduced another associative 
memory model which used a perceptron type 
learning algorithm.  This model provides a 
significantly higher maximum capacity, which is up 
to 2N for uncorrelated patterns, and actually 
increases with bias in the training set (Gardner, 
1988), whilst still guaranteeing that all training 
patterns are memorized. 

The investigation of high capacity associative 
memory models trained with biased patterns (patterns 
in which the probability of +1 occurring is not 0.5), 
using either bipolar or binary (1/0) representations is 
interesting for three reasons.  Firstly, when compared 
with the bipolar representation, the binary 
representation is more biologically plausible as it 
does not assume negative neural activity.  Secondly, 
activity in the mammalian brain is known to be 
sparsely coded (Braitenberg & Schüz, 1998).  Finally, 
although the theoretical capacity of the network with 
biased, bipolar patterns is already known (Gardner, 
1988), the capacity and performance of networks 
trained with binary, biased patterns are still unknown.  
It is surprising that no one, up to now, has 
investigated this topic experimentally.  This paper 
gives the first experimental results on this topic.  
Results indicate that the binary network performs less 
well when the training set have low bias, but better in 
other situations, when compared with the bipolar 
network.  

2 Details of Model Investigated 

2.1 Bipolar and Binary Representations 

The Hopfield model usually uses a bipolar 
representation.  However it is also possible to 
construct a binary network.  In the standard Hopfield 
model, these two representations can be shown to be 
functionally equivalent (Amit, 1989), though the 
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choice of representation can affect the speed and 
efficacy of the learning algorithm.  For example, 
using a binary representation together with Hebbian 
learning, the network can have only half of the 
capacity of the same size of network with a bipolar 
representation (Hopfield, 1982).   

The simple perceptron learning rule is quite 
different when the patterns to be learnt are binary as 
opposed to bipolar. With binary patterns, learning 
only takes place on active connections, that is on 
afferent connections from units in the +1 state. In the 
bipolar case learning takes place on all incoming 
connections.  However, a previous study (Davey et al. 
2004) showed that there is no significant difference 
between networks with these two representations in 
performance when trained with unbiased patterns, 
although the binary network takes significantly 
longer to train. 

The situation may be different when combining 
biased patterns with the bipolar or binary 
representations.  The capacity of bipolar network 
with highly bias training patterns is known to tend 
towards infinity (Gardner, 1988).  However, the 
capacity of an analogous using a binary 
representation is still in question. 

2.2 Bias of the Patterns 

Investigations into associative memory models 
usually assume unbiased training patterns.  Formally 
the bias of a training set is the probability that any 
given bit is +1.  That is,

! 

prob(" = +1) = bias, given 

! 

" as the state of a unit in a training pattern.  The 
restriction of unbiased patterns is useful for 
mathematical simplicity, but is often neither 
biological plausible nor practical.  First of all, 
evidence from neuroscience (Abeles, 1982; 
Braitenberg & Schüz, 1998) indicates that the mean 
firing rate of the cortex is significant less that 50%, 
suggesting pattern activity with low bias.  Secondly, 
in empirical areas such as image recognition, the 
patterns tend to be biased.   

In the experiments reported here the training 
patterns are given a bias ranging from 0.1 to 0.9. 

2.3 High Capacity Associative Memory 
Model 

A description of the high capacity associative 
memory model is now given.  The model uses two 
processes: training and network dynamics.   

To train a network of perceptrons to act as an 
associative memory, the input and output layers 
consist of the same set of neurons. The weights can 
then be trained using any perceptron training 
procedure, so that the network autoassociates. See 
Figure 1. 

 
Figure 1.  An abstract model of perceptron training. 
The red arrow represents the weights in an 
autoassociator of perceptrons.  The blue arrow 
represents the recurrence of dynamics.  The network 
will change states until a fixed point is reached. 
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model learns patterns by modifying the N by N 
weight matrix denoted by W.  After training, a 
specific pattern of unit states is first presented to the 
network.  The network state is then modified 
according to an update rule that defines the network 
dynamics, until ending up with a stable state. 

Denoting the weight of the connection from unit j 
to unit i in W by

ij
w , the training of the Gardner 

model modifies all ij
w iteratively based on the unit 

state 
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parameter, the learning threshold, denoted by T.  The 
whole process of training can be described as: 
 
Begin with a zero weight matrix 
Repeat until all units are correct 
Set the state of the network to one of 
the 
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For each unit, i, in turn: 
Calculate its local field 
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into unit i according to: 
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    Note that there are significant differences in 
training between a bipolar representation and binary 
representation. In the formula  
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= #1 in a bipolar network, but 
0=

p

j
! in a binary network.  This indicates that the 
training of a binary network only takes place on the 
afferent (incoming) connections from the units with 
+1 state, whilst the training of a bipolar network 
takes place on all afferent connections.  Therefore the 
training of a binary network is expected to be a lot 
longer than the one of a bipolar network. 

In the dynamics of this model, the changes of unit 
states are given by: 
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        where " S i  is the new state of Si

. 
The update of unit states can be either 

synchronous or asynchronous.  In our experiments 
we use asynchronous random update.  In the 
traditional Hopfield network, the asynchronous 
update as well as the symmetric weight matrix 
guarantee that the network state can be released to a 
fix point (Hopfield, 1982).  However, the model in 
our experiments has no symmetric weight matrix. 
Nevertheless, the network almost always converges 
to a fixed point.  If a pattern is in one of the fixed 
points of the network then this pattern is successfully 
stored and is considered a fundamental memory. 

3 Experiments and Results 

3.1 The Measure of Effective Capacity 

To measure performance, we are interested in not 
only the actual capacity of the network, but also the 
network’s ability to correct noisy patterns.  Therefore 
the Effective Capacity (EC) (Calcraft, 2005; Calcraft, 
2006) of the network is used in this paper.  Effective 
Capacity is a measure of the number of patterns 
which a network can restore under a specific set of 
conditions. The network is first trained on a set of 
random patterns. Once training is complete, the 
patterns are each randomly degraded with 60% noise, 
before presenting them to the network. After 
convergence, a calculation is made of the degree of 

overlap between the output of the network, and the 
original learned pattern. This is repeated for each 
pattern in the set, and a mean overlap for the whole 
pattern set is calculated. The Effective Capacity of 
the network is the highest pattern loading at which 
this mean overlap is 95% or greater. 

The Effective Capacity of a particular network is 
determined as follows: 
 
Initialise the number of patterns, P, 
to 0 
Repeat 
Increment P 
Create a training set of P random 
patterns 
Train the network 
For each pattern in the training set 

Degrade the pattern randomly by 
adding 60% of noise 
With this noisy pattern as start 
state, allow the network to 
converge 
Calculate the overlap of the final 
network state with the original 
pattern 

End For 
Calculate the mean pattern overlap 
over all final states 

Until the mean pattern overlap is less 
than 95% 
The Effective Capacity is P-1 

3.2 Results 

The experiments were implemented in a neural 
network with 500 and 1000 fully connected units (in 
previous experiments we found that the network size 
effects were insignificant providing the number of 
units was over 300).  In previous studies it was found 
that a learning threshold of 10 gave a good 
performance of the network (Davey, et al, 2004).  
Thus for simplicity the learning threshold of the 
model is restricted to 10.  This network was then 
trained with either bipolar or binary patterns, whose 
biases were varied from 0.1 to 0.9, and the EC values 
were measured.  Each experiment was repeated 5 
times and the average value together with the 95% 
confidence interval are reported. 

Figures 2 and 3 give the main results of the 
experiments.  In a previous study it was shown that 
the bipolar and binary networks perform the same 
when trained with unbiased patterns (Davey, et al, 
2004).  This result is confirmed here by the identical 
performance when the bias of the training set is 0.5. 
The performance of the bipolar and binary networks 
is significantly different when trained with biased 
patterns.  With the bipolar representation, the 
performance is symmetrical about bias 0.5.  That is,  
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Figure 2.  Effective Capacity results for a 500 unit, fully connected network with bipolar and binary representations.  Biases 
of the patterns (as in the proportion of units which are on) are varied from 0.1 to 0.9.  The results are averaged over 5 runs 
and intervals with 95% confidence are also given.  The performance of the bipolar and binary network is identical when 
trained with unbiased patterns (ie bias = 0.5).  With biased patterns, the binary representation performs better than the bipolar 
one, except for patterns of very low bias.  The fall of performance of the binary network  
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Figure 3.  Effective Capacity results for a 1000 unit, fully connected network with bipolar and binary representations.  
Other settings are the same as Fig. 1.  Results are similar to the 500 unit network. 

 
 



for example, the EC at pattern bias 0.9 is identical 
to the one at pattern bias 0.1.  This is of course a 
simple consequence of the symmetry of +1/-1.  The 
result also indicates that the network performance is 
improved as the patterns become correlated.  This is 
in line with Gardner’s theoretical prediction 
(Gardner, 1988). 

The results for the binary network are surprising.  
The first point to be made is that for most of the 
biases, the binary network performs better than or 
at least as well as the bipolar network.  Only at the 
extreme of very low bias is the binary network 
significantly worse than the bipolar network.  This 
is presumably due to the low proportion of units 
which are on.  However, a detailed analysis of the 
binary network with training set bias of 0.1 finds 
that about 15% of the connections have no 
contribution to the network (the weights of these 
connections are zero), suggesting that the removal 
of these useless connections will improve the 
network’s efficiency.  
In the binary network, the performance falls when 
the bias is raised to 0.9.  A detailed investigation 
indicates that it is caused by the significantly high 
attraction of the all 1 state, which is also found in 
the biased situation of a sign-constrained, bipolar 
network (Wong, 1992). 

4 Conclusion 

This paper extends Gardner’s original model which 
used bipolar representation to a model with either 
bipolar or binary representation, and provides 
experimental results of their performances.  The 
major finding of this paper is that although the 
performance of the binary representation is poor in 
the standard Hopfield network, it usually performs 
significantly better than the bipolar representation 
in a high capacity associative memory model 
trained with biased patterns.  Only in the extreme 
situation where the bias of the training set is very 
low, does the binary representation performs worse 
that the bipolar one.  These results are interesting 
since the binary and correlated patterns are more 
biological plausible than the bipolar, unbiased 
patterns which used in the traditional model. 
    Of course the real mammalian cortex is not a 
simple fully connected, binary network.  In fact, 
researches on the connectivity of the mammalian 
cortex found that it is a so sparse network with 
special connecting strategies (Braitenberg and 
Schüz, 1998; sporns, et al, 2004).  For example, the 
human’s cerebral cortex has approximate 1011 
neurons and 1014 connections, which means that 
each neuron is connected with only thousands of 
other neurons.  So it is also interesting to 
investigate other aspects of the associative memory 
such as the connectivity effects (Davey, et al, 2006). 
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