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EJS+EjsRL: an interactive tool for industrial robots 
simulation, computer vision and remote operation 

 
 

Abstract 
This paper presents an interactive Java software platform which enables users to easily create 
advanced robotic applications together with computer vision processing. This novel tool is 
composed of two layers: 1) Easy Java Simulations (EJS), an open-source tool which provides 
support for creating applications with a full 2D/3D interactive graphical interface, and 2) EjsRL, 
a high-level Java library specifically designed for EJS which provides a complete functional 
framework for modeling and simulation of arbitrary serial-link manipulators, computer vision 
algorithms and remote operation. The combination of both components sets up a software 
architecture which contains a high number of functionalities in the same platform to develop 
complex simulations in robotics and computer vision fields. In addition, the paper shows its 
successful application to virtual and remote laboratories, web-based resources that enhance the 
accessibility of experimental setups for education and research. 
 
Keywords: modeling, robot simulation, Robotics education, visualization tools 
 
 
 

1. Introduction 
 Robotics and Computer Vision (R&CV) systems have highly complex behaviours. The 
best and the most useful way to undertand how they work is through their modeling.  Models 
are usually used to characterize and optimize their performance via numerical solutions, so the 
highly complexity of R&CV systems need a reliable model to enable users solving real 
problems by means of the simulation. Thus, the development of powerful computational 
platforms that allow to model and simulate their behaviour constitutes a fundamental tool for 
designers, users, and researchers of these fields. 
 
 From the last two decades to nowadays, there has been a strong development of 
simulation tools devoted to R&CV systems. Some of these tools have been designed for 
professional applications, while others for educational and research purposes. In the field of 
industrial Robotics, and more specifically for robot arms, several graphical software 
environments such as RoboWorks [1], Robot Assist [2] and Easy-ROB3D [3] have been created 
in the form of stand-alone business packages for well defined problems. These are powerful 
tools, but they lack of resources in some aspects for higher education and research. In this way, 
numerous open-source tools, overcome these deficiencies. Among them, it is worth pointing out 
RoboSim [4], GraspIt [5], RoboMosp [6] and Microsoft Robotics Studio [7]. Other open source 
packages are in the form of toolboxes. Outstanding examples of this kind of platforms are 
RoboOp [8], Form [9], Modelica [10] and ViSP [11], based on an object-oriented design, and 
SimMechanics [12], RobotiCad [13] and Robotics Toolbox [14], Matlab-Simulink 
computational libraries 
 
 With regard to Computer Vision processing tools, several libraries and systems have 
been developed for research and education. It is worth mentioning the Open Computer Vision 
Library (OpenCV) [15], VIGRA [16] and VXL [17], some of the most complete and efficient 
computer vision libraries develop in C++ language. Besides, there are a few libraries written in 
Java. Java Imaging Graphics Library (JIGL) [18] and Java Advanced Imaging (JAI) [19] from 
Sun Microsystems represent toolbox applications for standard image-handling algorithms. 
 
 However, the majority of the above commented tools are independent software 
platforms which have been created in a separated way: on the one hand, robotics tools and on 
the other hand, computer vision programs. This feature represents a drawback when time comes 
to develop complex models which combine R&CV systems. Perhaps, only Robotics/Vision 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16369475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Matlab Toolboxes and ViSP provide a set of functions suitable for synthesis and simulation of 
both systems which can be programmed in an easy way under the same environment. 
Nevertheless, both toolboxes do not provide a user-friendly graphical interface support for both 
creating a personalized application and building solid 3D robot links together with their 
environment (external objects). This represents a drawback for educators and researches 
because they have to spend time and effort searching the suitable libraries and developing the 
application. In addition, they must have programming skills in order to develop the graphical 
interface with other external tools. 
 
 The approach presented in this paper is a new tool called EJS+EjsRL, which provides a 
complete functional framework for modeling and simulation of R&CV systems, all embedded 
in the same toolbox. In addition, this software platform gives full 2D and 3D graphical supports 
both for creating interfaces and complex robotic environments in an easy way. The main novel 
feature of this approach is that its software architecture contains a higher number of 
functionalities in the same platform than the existing software applications for that end (Table 
I). Most of these functionalities are included as high-level tools, with the advantage of allowing 
users capabilities to easily create R&CV applications with a minimum programming.  
 
 Some aforementioned tools such as RoboMosp and Microsoft Robotics Studio (MRE), 
are powerful systems with contain a high number of functionalities. MRE is designed for 
specific robots (mainly for mobile robots) and programming an arbitrary serial link manipulator 
entails editing code and programming the Robotics algorithms with detail. RoboMosp is well 
oriented to Robotics simulation, but does not contain other capabilities (see Table 1). In 
addition, both programs do not provide computer vision support for image processing. 
 
 The work presented here contains several advanced features for Robotics. It covers 
functions for solving problems ranging from kinematics, trajectory planning, programming, 
dynamics, object interaction, world modeling, importation of 3D model files and so on. It has 
been included Internet communication methods via HTTPS to enable user create remote 
applications. There are a higher number of Computer Vision algorithms than the JIGL and JAI 
Java libraries. Moreover, the tasks of creating the user interface (windows, control buttons, 
sliders, etc.) and developing the virtual environment of the simulation (3D objects) are quite 
simplified. Thus, EJS+EjsRL has the advantage respect to other libraries that provides vision 
and robotic functions together, and the users can simulate robot movements and sensorize them 
without changing the programming platform. All this leads to the deduction that the presented 
approach is a powerful tool to create advanced Robotics applications together with Computer 
Vision processing.  
 

 Another meaningful problem is the platform dependency. Some C++ tools such as 
RoboOp, ViSP or MRE are not portable for all the operating systems. The tool presented is 
based on Java [20], an advanced programming language which is platform independent. User 
requires only installing the corresponding Java plug-ins in order to execute Java applications. 
Java features allow users to share its computational resources in distributed environments.  
 

Features SimMechanism RoboMosp MRE Matlab Toolbox EJS+EjsRL 
Multiplatform support ● ●  ● ● 

Kinematics and Dynamics ● ● ● ● ● 
Path Planning ● ● ● ● ● 
Programming  ● ● ● ● 

Import VRML and OBJ  ● ● ● ● 
Collision Detection   ●  ● 

World Modeling  ● ●  ● 
Image Reading/Writing    ● ● 

Computer Vision functions    ● ● 
Remote Operation methods     ● 

Interface design   ●  ● 
External software connection  ● ● ● ● 
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Table 1. Feature comparison with other toolboxes 
 

 Summarizing, EJS+EjsRL presents a set of important features with regard to other 
existent tools such as: it integrates R&CV operations, it is easy to use and it does not require 
special programming skills for the final user. In addition, it is platform independent and it 
generates high quality graphical simulations. 
 
 The remainder of this paper is organized as follows: Section 2 describes the overall 
software architecture of the platform and the elements which compose it. Section 3 describes 
how to model and simulate a problem about a visual servo control application of a 6 rotational 
DOF robot. Afterwards, in Section 4, other features such as remote operation methods, external 
connection with other tools, augmented reality features and collision detection will be 
presented. Section 5 shows the simulation capabilities of EJS+EjsRL by means of several test 
cases. Section 6 describes a comparison with other tools in terms of accuracy and performance. 
Finally, the most important conclusions are discussed in Section 7. 
 
 
2. System Overview 
 In this section, a detailed description of the software architecture will be presented. 
First, the main components which make up the tool will be detailed. Next, the software 
architecture design will be explained. Finally, some issues about the code generation will be 
shown. 
 
2.1. Components 
 As mentioned before, there are two main blocks that represent the functional core of this 
software platform: an object-oriented Java library (EjsRL from this moment) which allows users 
to model both arbitrary serial-link robots and computer vision algorithms, and Easy Java 
Simulations (EJS), an open-source software which represents a powerful tool for easily 
developing simulations with a higher graphical interface capacity. The combination of both 
software tools (EJS+EjsRL) makes possible to easily and quickly create advanced R&CV 
simulations. 
 
 EJS is a freeware, open-source tool developed in Java, specifically created for the 
creation of interactive dynamic simulations [21]. EJS has been designed for people who do not 
need complex programming skills. Users can easily and quickly create interactive simulations. 
They need to provide only the most relevant core of the simulation algorithm and EJS 
automatically generates all the Java code needed to create a complete interactive simulation, 
including a wide range of sophisticated software techniques (such as handling computer graphic 
routines, communication protocols, multi-threading and others). EJS is totally implemented in 
Java language. This feature gives a full portability of the applications generated with this tool 
and they can be executed on different operating systems. In addition, external Java libraries can 
be used as auxiliary framework to develop the simulation code. This fact enables users to design 
more complex applications within the EJS environment, such as R&CV applications using the 
high-level library EjsRL. In short, EJS can be considered a powerful tool for easily developing 
simulations. Currently, there are a lot of applications which have been developed with this 
software for several science fields, research and teaching activities [22-25] and EJS has been 
employed to develop complex and advanced functionalities [26-28]. 
 
 EjsRL is a Java library specifically designed for EJS which provides a complete 
functional framework that enables it to model, design and execute advanced R&CV 
applications. All the components belonging to this software layer have been created in an 
object-oriented form thanks to Java language features. All the classes are well structured and 
organized. Fig. 1 shows a simplified class diagram of EjsRL, specifying the most important Java 
packages and classes, as well as its connections. For a complete description of all the classes 
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and packages, readers can visit the documentation of the main web page of the approach 
presented (http://www.aurova.ua.es/rcv/).  
 

There are four important blocks or modules which define the most high-level API of the 
EjsRL (Fig. 1): Robotics, Matrix Computation, Computer Vision and Remote Operation. In 
addition to the aforementioned blocks, the library incorporates import/export functions for 
different file formats in order to allow users to save and restore their designs. In relation to these 
four main modules, their functional architectures are based on the following criteria: 

- The Matrix Computation classes perform the mathematical computations required for 
solving all the R&CV algorithms. They cover the fundamental operations of 
numerical linear algebra, such as matrix and vector arithmetic (addition, 
multiplication, norms, etc).  

- The Robotics block covers the fundamental engine for arbitrary serial-link Robotics 
computation such as kinematics, trajectory planning and dynamics. Most of the 
methods implemented are based in the well-known standard Robotics algorithms. In 
addition, an interpreter of Java code has been included to allow users the compilation 
and execution of programming routines for robots in this language.  

- The Computer Vision classes contain a wide range of methods for image processing. 
It has implemented several standard Computer Vision algorithms which perform 
operations like image transform and conversion, image adjustments, convolution, etc. 
Moreover, it allows users to handle different types of images (binary, gray scale, 
colour) and it incorporates geometrical data manipulation (points, edges and 
segment).  

- The Remote Operation functions permit users to communicate with remote devices 
using the HTTPS protocol. They are composed by several classes to perform HTTPS 
orders in an easy way.  

 
2.2. Software architecture 
 The software design is based on a hierarchical coordination between EJS and EjsRL, the 
two high level layers of the software architecture. Each of them is divided into subsystems 
which must communicate and interchange data in order to develop advanced simulations (Fig. 
1). 

http://www.aurova.ua.es/rcv/�
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Figure 1. Software architecture of the tool and package-class diagram of EjsRL 
 
 In general terms, EJS provides a complete 2D/3D graphical interface support and model 
construction tools in order to easily build advanced applications. Furthermore, EjsRL gives all 
the R&CV algorithms which are necessary to simulate the system behaviour within an EJS 
application.  
 
 A specific simulation within the EJS’ environment includes the definition of the model 
and the definition of the view or graphical interface (Fig. 1). Into the model, users can declare 
different types of variables (int, double, String, Object) in order to describe the system. Java 
Object variable represents an abstract wrapper to call external objects from other Java libraries. 
The approach presented in this paper utilizes this property to create “robots” and “images” 
objects of EjsRL to use them into the EJS’ environment. In order to describe the model, users 
must write the differential equations that establish how these variables change in time or under 
user interaction. For this last step, EJS offers two options. The first is a built-in editor of 
Ordinary Differential Equations (ODEs) in which users write the system equations in a similar 
way to how they would write on a blackboard. Users can choose different standard algorithms 
(Euler–Richardson, Runge–Kutta, Fehlberg, etc.) to numerically solve them. The second facility 
is a connection with Matlab/Simulink that lets users specify and solve their models with the help 
of these tools [29]. This flexibility permits users to create advanced and complex simulations. 
This could be seen in Section 4.  
 
 In relation to the view, EJS provides a set of standard Java Swing (windows, panels, 
buttons, text files, string labels, sliders, combo-boxes, etc.), Java 2D (particles, polygons, 
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vectors, planes, images, etc.) and Java 3D components (box, cone, cylinder, ellipsoid, plane, 
vectors, etc.) (see Fig. 2, view components) to build the interface in a simple drag-and-drop 
way. In addition, VRML, 3DS and OBJ extern graphic files can be imported to the view. These 
graphical components have certain properties that the user can connect with the model variables 
and set a link between the model and the view. Therefore, the simulation turns into an 
interactive application where users can change the model variables and observe the simulation 
behaviour in the view. Other important robotic features of EJS are the Augmented Reality panel 
control (AR panel), where 3D virtual worlds can be complemented with real information inside 
the same interface, and object collision detection (Section 4). 
 
 The library EjsRL works as an external software interface to give to model variables of 
EJS the corresponding value in order to create R&CV applications. Thus, a model variable from 
EJS’ environment can be initialized with an Object instance of the Java library. This Object will 
contain embedded the R&CV engine and its methods will be able to be applied to the graphical 
components which will simulate the system behaviour. Therefore, creating an application that 
simulates a robot or a computer vision algorithm is greatly simplified.  
 
2.3. Code generation 
 EJS automatically generates all the Java code needed to create a complete interactive 
simulation once users have finished the construction of the simulation (model and view). In 
addition, EJS creates all the necessary files in order to run the final applications in three 
different ways (Fig. 1): as an applet embedded in a web page (html file), as a stand-alone Java 
application (jar file), and as a Java Web Start application (jnlp file). 
 
 
3. Using EJS+EjsRL: visual servo control simulation of a 6 DOF robot 

 This section describes how to easily design, model and simulate a visual servo control 
application of a 6 rotational DOF robot using the presented approach. The main requirements for 
the proposed problem is the implementation of a high part of the standard Robotics algorithms 
(kinematics, path planning and dynamics) adding an Eye-In-Hand (EIH) vision based control 
using corner features in the control loop to move the virtual robot previously created. This 
section shows an outline of the steps to carry out the development using EJS+EjsRL in order to 
get a solution for the simulation proposed. 
 
3.1 Creating the 6 rotational DOF robot 
 The first step in order to create the required simulation is to execute EJS and to insert the 
library EjsRL as external resource (Fig. 2). In this way, all the Robotics algorithms of EjsRL can 
be used within EJS’ environment for the simulation. Secondly, it is necessary to create the 6 
DOF robot in the model part. This action implicates to define the variables and to program a 
robot object specifying a minimum code.  
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EJS EnvironmentModel and View

Library EjsRL

Area to insert
the Java code

 
Figure 2. Overview of the EJS’ environment  

 
For creating an arbitrary robot arm object, users only have to know its Denavit-Hartenberg (DH) 
parameters [30], its physical features, the type of joints (rotational or prismatic) and its range of 
motion (maximum and minimum values). With these data, a Java object variable defined in the 
EJS’ environment has to be initialized using the robot’s constructor of the Robotics module of 
EjsRL. Fig. 3 shows the Java code which must be inserted in the model of EJS’ environment 
(Fig. 2, “Area to insert the Java code”) and the variables that must be created to program the 
robot arm of 6 rotational DOF. The parameter type indicates the kind of each joint (rotational ‘R’, 
prismatic ‘P’) for the robot’s constructor. 

//DENAVIT-HARTENBERG variables
/*Fist Column (q)*/                      /*Second Column (d)*/   /*Third Column (a)*/     /*Fouth Column (alpha)*/
DHParams[0] = q[0]+Math.PI/2;   DHParams[6] = l1;        DHParams[12] = 0;      DHParams[18] = -Math.PI/2;
DHParams[1] = q[1]-Math.PI/2;   DHParams[7] = 0;          DHParams[13] = a2;     DHParams[19] = 0;
DHParams[2] = q[2]+Math.PI;     DHParams[8] = 0;          DHParams[14] = 0;       DHParams[20] = Math.PI/2;
DHParams[3] = q[3];                    DHParams[9] = l4;         DHParams[15] = 0;       DHParams[21] = -Math.PI/2;
DHParams[4] = q[4];                    DHParams[10] = 0;        DHParams[16] = 0;       DHParams[22] = Math.PI/2;
DHParams[5] = q[5];                    DHParams[11] = l6;       DHParams[17] = 0;       DHParams[23] = 0;

//DHq. Variables that change in the DH table
DHq[0] = 0;DHq[1] = 1;DHq[2] = 2;DHq[3] = 3;DHq[4] = 4; DHq[5] = 5;

//Geometry
geometry[0]=l1;geometry[1]=a2;geometry[2]=0;
geometry[3]=l4;geometry[4]=0;geometry[5]=l6;

//Robot
char[] type = {'R','R','R','R','R','R'};
robot = new Robot(6, type);
((Robot)robot).setDHParams(DHParams,DHq);
((Robot)robot).setGeometry(geometry);
((Robot)robot).setQLimits(qLimits);
((Robot)robot).setInitPos(1,1,0);

EJS VARIABLES

 
Figure 3. Java code for the model in order to create a 6 rotational DOF robot. 

 

 After programming the robot object, the next step is to perform the interface or view. As 
stated, EJS provides a set of components to build the interface in a simple drag-and-drop way. In 
the case of a robotic simulation, the interface can be composed by the 3D solid construction of 
the robot and its workspace, and other standard components to control the application (windows, 
panels, buttons, sliders, plots, etc.). Fig. 4 shows the construction of the interface for the example 
proposed. The component drawingPanel3D is the 3D environment where the robot and its 
workspace will be displayed. Here, it is defined each one of the 3D links of the robot by means of 
the VRML component, which allows to import models from existent VRML files. As 
commented before, all the interface components of EJS have certain properties which are used 
for the simulation. Fig. 4 shows the properties of the VRML component (Position and Size, 
Visibility and Interaction and Graphical Aspect). The position and transform fields will be used 
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to move the robot (see subsection 3.2) since they will be connected with the model variables 
which define the robot arm.  
 
 Fig. 4 also shows a dialog (Move Joints) where some sliders controls (q1…q6) have been 
added from the view components. These sliders are connected with the q variable of the robot 
model. In this way, users will be able to move the robot specifying a joint position by means of 
this control dialog. 

VRML Objects

3D Solid

 
Figure 4. Interface construction of the Robotics application proposed 

 
3.2 Kinematics simulation of the virtual robot 
 Robot kinematics deals with the analytical study of the motion of a manipulator. There 
are two well-known problems: the forward and inverse kinematics problems. The Robotics 
classes of EjsRL implement both algorithms in order to give motion to the 3D links of a specific 
manipulator defined in an EJS’ view.  
 
3.2.1. Forward Kinematics 
 The implementation of the forward kinematics problem is based on a sequential 
multiplication of the homogeneous transformations that describe the spatial relation between the 
joint values and the spatial location of the end effector. This algebraic algorithm can be easily 
programmed and simulated with EJS+EjsRL. Fig. 5 shows the Java code to resolve the forward 
kinematics computation of the robot considered. The joint values q are got from the dialog 
Move Joints for updating the DHParams array of the model. Afterwards, the homogeneous 
transformations of each link are computed using the method FKinematics of the Robotics 
module of EjsRL. Finally, these matrix objects (A01…A06) are inserted in the property 
Transform (see Fig. 4) of the VRML components to move them according to this algorithm. 
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public void forwardKinematics () {

  //Update the current values of the joints
  DHParams[0] = q[0] + Math.PI/2;
  DHParams[1] = q[1]-Math.PI/2;
  DHParams[2] = q[2]+Math.PI;
  DHParams[3] = q[3];
  DHParams[4] = q[4];
  DHParams[5] = q[5];

   //Compute the forward kinematics
A01 = ((Robot)robot).FKinematics(DHParams[0],1);
A02 = ((Robot)robot).FKinematics(DHParams[1],2);
A03 = ((Robot)robot).FKinematics(DHParams[2],3);
A04 = ((Robot)robot).FKinematics(DHParams[3],4);
A05 = ((Robot)robot).FKinematics(DHParams[4],5);
A06 = ((Robot)robot).FKinematics(DHParams[5],6);

}

q = (-45.6,..,-16.8)

A01..A06

Interface Move Joints

Virtual robot

 
 

Figure 5. Java code for the forward kinematics of the 6 rotational DOF robot modelled with VRML objects 
 
3.2.2. Inverse Kinematics 
 The numerical solution developed in EjsRL for the inverse kinematics problem is based 
on the robot Jacobian operator. This algorithm is an iterative procedure where the initial 
position affects both the search time and the solution found. In addition, some solutions could 
not be possible if the joint values computed describe an end-point out of reach of the 
manipulator.  
 
 Fig. 6 shows the Java code for the inverse kinematics implementation of the robot 
proposed and its simulation in the virtual environment. The method IKinematics receives the 
position and orientation of the end effector (Matrix T) and the current joint values of the robot 
(array q_current) as input parameters. The method also checks that the solution proposed is 
inside the area of reach of the manipulator. Finally, the robot is moved to the suitable position 
using the function for forward kinematics explained before. 
 

public void inverseKinematics () {

//Current values of vector q
   double[] q_current = {q[0],q[1],q[2],q[3],q[4],q[5]};

 //Position and orientation of the end effector (X,Y,Z,Rollº,Pitchº,Yawº)
  Matrix T = new Matrix(4,4);
T.set(0,3,X); T.set(1,3,Y); T.set(2,3,Z);T.set(3,3,1.0); //Position
T.setMatrix(0,2,0,2,Maths.transRPYtoR(Roll, Pitch, Yaw)); //Orientation

 //Call to the inverse kinematics algorithm
  Solution sol = ((Robot)robot).IKinematics(T, q_current);
  if(sol!=null){
        q[0] = sol.getElemSolution(0); q[1] = sol.getElemSolution(1);
        q[2] = sol.getElemSolution(2); q[3] = sol.getElemSolution(3);
        q[4] = sol.getElemSolution(4); q[5] = sol.getElemSolution(5);

//Move the robot with the updated q values
        forwardKinematics();
  }
}

X,Y,Z,Roll,Pitch,Yaw

q = (85.09,..,-86.54)

Virtual robot

 
Figure 6. Java code for the inverse kinematics implementation 

 

3.3 Path planning implementation 
 EJS+EjsRL allows users to easily perform the simulation of path planning trajectories for 
n-axis robot arms in both Cartesian and joint spaces. On the one hand, the built-in ODEs editor 
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implemented in EJS is employed to generate the position, velocity and acceleration values. This 
feature allows users to write differential equations to model the problem. On the other hand, the 
Robotics classes of EjsRL contain a path planning construction module which computes the 
acceleration parameters of several trajectories from their imposed constrains. 
 
 Two steps are only necessary in order to create a path planning algorithm for the 6 DOF 
robot proposed: 
1. To write the differential equations of the basic motion of a multi-body system. These are the 
typical equations for the description of a movement in space. Fig. 7 shows these equations in the 
ODEs editor of EJS. These equations compute the sequence values of the position (q) and 
velocity (VPlan) of all the robot joints from the acceleration of the trajectory (APlan). 
2. To compute the acceleration of the path planning algorithm proposed using one of the 
functions provided by the Robotics package. The trajectory planning module returns the 
acceleration parameters of several trajectories which will be used in the motion equations.  
 
 There are a lot of methods implemented in the Robotics module for the simulation of 
the robot motion. It can be mentioned splines (third, fourth and fifth order), cubic interpolators, 
synchronous, asynchronous and linear trajectories, and the 4-3-4 polynomial path planning 
algorithm. Fig.7 shows the Java code to program this interpolator in order to determinate the 
acceleration array for the differential equations of motion. The joint values generated are given 
to the kinematics model to simulate the robot movement as it is shown in Fig. 8, where some 
EJS plot controls have been used to visualize the more interesting variables of the trajectory. 

 

public void path434 () {

//Input contrains (initial point, final point, maximun velocity)
  double[] qi = {qd1, qd2,qd3,qd4,qd5,qd6};
  double[] qf = {qd1f,qd2f,qd3f,qd4f,qd5f,qd6f};
  double[] vqMax = {vq1max,vq2max,vq3max,vq4max,vq5max,vq6max};

//Time constrains
 double tace = 0.1;
  double tdec = 0.2;

 //Computation of the APlan values
  double[] vSyncro = ((Robot)robot).Synchro(qi,qf,vqMax);
APlan = ((Robot)robot).Coef434(tace,tdec,vSyncro);

}

ODE Solver

 
Figure 7. ODEs of basic robot motion and Java code to program the 4-3-4 polynomial trajectory 
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3D Trajectory
qi

qf

 
Figure 8. Simulation of a 4-3-4 polynomial trajectory for the 6 rotational DOF robot 

 
3.4 Dynamics features  
 The Robotics module of EjsRL implements numerical methods to solve the forward and 
inverse dynamics problems. Fig. 9 shows the implementation of the inverse dynamics problem 
of the 6 rotational DOF robot with an external force. Mass, inertias and friction properties must 
be known in order to solve this algorithm. The array variables VPlan and APlan belong to the 
velocity and acceleration of the path planning previously computed. 
 

public void inverseDynamics(){

//Set the dynamics parameters of the robot
    ((Robot)robot).setMassRobot(mass);
    ((Robot)robot).setInertiaRobot(new Matrix(Inertia));
    ((Robot)robot).setVisFriction(friction);

//External force
    double mExternal = 1.0;
    double IxxExt, IyyExt, IzzExt;
    IxxExt = mExternal*0.3*0.3*0.167;
    IzzExt = IyyExt = IxxExt;
    Matrix IExternal = new Matrix(1,3,0.0);
    IExternal.set(0,0,IxxExt);IExternal.set(0,1,IyyExt);IExternal.set(0,2,IzzExt);
    ((Robot)robot).setExternalInertia(mExternal, IExternal);

//Newton-Euler computation
Tau = ((Robot)robot).NewtonEulerAlgorithm(VPlan, APlan);

}

EJS VARIABLES

 
Figure 9. Programming the inverse dynamics with an external force of the 6 rotational DOF robot 

 
3.5 Adding computer vision features for visual servo control 

The Computer Vision classes of EjsRL provide a complete library for the development 
of image processing algorithms within EJS’ environment. There are approximately fifty 
different functions implemented in this module, ranging from basic operations (format 
conversion, image adjustment, histogram, etc.) to image feature extraction (point and edge 
features). Moreover, EJS+EjsRL provides a functional framework for easily reading and writing 
images from/to the interface. 
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In order to show the capabilities of Computer Vision package for easily implementing a 
computer vision algorithm in the virtual robotic environment previously created, the proposed 
simulation deals with an EIH vision based control using four corner features in the control loop. 
The control action and the interaction matrix used in this control algorithm are based on a 
classical 2D visual servoing task [31], according to the following expressions: 
 

( )*
c 1 s

ˆ=λ− −+v L s s                                                       (1) 
 

 
                       (2) 

 
 

where s are the current visual features, s* are the desired visual features, and λ is the 
proportional controller; (x, y) are the point coordinates of each feature; and Z is the current 
distance from the EIH camera to the each feature. 
 

In order to implement the visual servo control, firstly it is necessary to obtain a view 
projection from the end effector of the robot. For that end, EJS has a property which allows 
users to create a virtual camera in the 3D robotic environment. Fig. 11 shows the appearance of 
the interface developed, where the window “Virtual Camera” shows the projection of the EIH 
virtual camera. Secondly, this projection must be processed in order to extract the corner 
features of the object. Fig. 10 shows the Java code which computes corner detection in the 
virtual camera’s image. Initially, the image of the virtual camera control is obtained (variable 
vcamera) and the image objects are created. Afterwards, the processing algorithm is defined by 
means of the ImageFunction interface. Finally, the image is processed (processImag method) 
and the point features are detected using one of the implemented algorithms, for example the 
SUSAN method [32]. These point features can be seen in the window “Virtual Image” of the 
Figures 10 and 11. The evolution of both velocity module and point features showed in Fig. 11 
validates the correct convergence of the visual servo task. 

 

public void Corner_Detection(){

  //Get the Virtual Camera component
  ControlElement vcamera = _view.getElement("Virtual Camera");

  //Create the image objects
  ImageObject initial_Image = new ImageObject(vcamera.getImage());
  ImageObject result_Image = null;

  //Proccess the image and extract the point features
  ImageFunction f1 = new FColorToGray(); //Function Color_to_Gray
  ImageFunction f2 = new FSusan();  //Function Corner Detector
  result_Image = new ImageObject(f2.processImg (f1.processImg(initial_Image)));

//Get the Virtual Image component and insert the result image
   ControlElement vimage = _view.getElement("Virtual Image");
   vimage.setImage(result_Image);
}

Virtual Camera Projection

Virtual Image  
Figure 10. Java code for the implementation of the point features detection in the EIH virtual camera 

 

2

s 2

1/ Z 0 x / Z xy (1 x ) yˆ
0 1/ Z y / Z 1 y xy x

 − − +
=  − + − − 

L



 13 

3D Trajectory
1

2 3

4
1

23

4

|Vz|

|Vy|
|Vx|

Point features’
detection

Point features’
extraction

Virtual Camera

Virtual Camera projection

 
Figure 11. Appearance of the final application for the simulation of a visual-servoing task using point 

features 
 
 
4. Advanced features   
 
4.1. Remote operation support 
 The Internet communication methods implemented in EjsRL are based on GET 
messages of HTTPS. In addition, with HTPPS, all the data are encrypted, which allow 
applications to communicate over secure connections.  
 

The Remote Operation classes can be used for several remote operations such as the 
teleoperation by high-level commands of real devices. The control of an IP camera from a client 
interface could be an example of that. IP cameras usually have a web server and their pant-tilt-
zoom movements can be remotely controlled. Fig. 12 shows an example where a simple Java 
program moves an IP camera (camHost parameter). This client program developed in EJS 
environment sends a HTTPS request to the camera host. It is worth noting the classes which 
implement the communication engine are DataSend and PetitionHTTP. The first one wraps all 
the user arguments (argsHTTP variable) and their corresponding values (valuesHTTP variable) 
in an object for the HTTPS command. Secondly, the class PetitionHTTP gets the DataSend 
object, builds the HTTPS request and sends it.  
 

public void IPCameraConnection{

ArrayList argsHTTP = new ArrayList(); //Arguments in the HTTP petition
ArrayList valuesHTTP = new ArrayList(); //Values in the HTTP petition

    DataSend send; //DataSend object
 String camHost =  “http://www.robualabcam.eps.ua.es/”;

//Arguments and values
    argsHTTP.add(“host”);        valuesHTTP.add(camHost);
    argsHTTP.add(“camera”);   valuesHTTP.add(“1”);
    argsHTTP.add(“move”);      valuesHTTP.add(“right”);

  //Contruction of the DataSend object
    send = new DataSend(argsHTTP, valuesHTTP);

//Send the HTTP petition
    PetitionHTTP.petitionGet(send);
}

Client Program

Internet

IP Camera Server
(http://robualabcam.eps.ua.es)

Real Environment

Classes from
EjsRL library

 

Figure 12. Remote control of an IP camera using HTTPS communication 
 

4.2. External connection with Matlab  
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 EJS has a connection with Matlab/Simulink which lets users specify and solve their 
models with the help of these tools [29]. Thus, the model can be defined with Matlab code in a 
Matlab function (m-file), with a Simulink block diagram or with both. Fig. 13 shows the 
appearance of an application developed using this feature about a decoupled control of a 3 
rotational DOF robot where the electrical model is computed by a Simulink diagram and the 
path planning together with the 3D graphical simulation (mechanical part) are developed using 
EJS+EjsRL. In the upper part, it can be seen the simulation of the robot with its respective plot 
controls, which show the input and the output values. Simulink diagram is set up by the PID 
control of each DOF, the power amplifier stage and the engine blocks with the model of a DC 
motor. The torque values are transferred to the forward dynamics method of EjsRL to compute 
the acceleration for the path planning algorithm. Feedback variables q and v are values obtained 
directly from the path planning and connected with the Simulink blocks. 
 

Feedback values

PID Controls

DC Motors

Forward
Dynamics

ODEs
Path Planning

Acceleration

Plot Controls

Amplifiers

Simulink model

Torques

3D Simulation

q1=π/2

q2=π/3

q3= - π/4DH Systemsq1, P = 85, D = 1.5

q2, P = 195, D = 5.7

q3, P = 90, D = 1.2

q, v

 
 

Figure 13. Position control of a 3 rotational DOF using EJS+EjsRL and Simulink 
 
4.3 Augmented reality features  
 EJS contains the AR panel, a control where virtual worlds can be complemented with 
real information inside the same 3D environment. The functionality of this control is based on 
the insertion of an image at the background of the 3D environment and to project the virtual 
objects with the same position parameters as the world. In order to do that, it is only necessary 
to specify the direction of the image in the AR panel’s properties and the extrinsic parameters of 
the real camera (position and orientation of the world reference system). Fig. 14 shows an 
example of an application which uses the AR panel. Here, an image from a real robotic plant is 
combined with a virtual environment that models some of the objects of the real site. 
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Real Image
(Background) Virtual Objects

Augmented Reality Panel  
                  Figure 14. An application which uses the AR panel 

 
 
4.4. Collision detection 
 The 3D components of EJS contain certain properties for object interaction. The most 
important one is the object collision detection. If this property is activated, the 3D object will be 
able to detect the collision with other 3D objects of the virtual environment that have activated 
this option. Fig. 4 (see Section 2) shows the properties of the VRML components which 
compose the end effectors of each one of the robot. The field “Collision” is activated (true) in 
both objects, so the simulation will detect the collision when the objects collide. User can 
program the action to do when the 3D object has detected a collision, for example stop the robot 
trajectory. 
 
 
5. Other experimental examples developed with EJS+EjsRL 
 This section describes other advanced examples whose development is based on 
EJS+EjsRL. Fig. 15 shows the appearance of these applications. These examples and other can 
be accessed from the following web page dedicated to EJS+EjsRL: 
http://www.aurova.ua.es/rcv. 

 
 The first example (Fig. 15.a) is a virtual and remote laboratory for training and learning 
in Robotics. All the R&CV features such as kinematics, path planning, programming, object 
recognition and remote operation has been developed using the library EjsRL. The system, 
called RobUALab.ejs [27, 28], can be accessed from http://robualab.eps.ua.es and allows users 
to simulate and test positioning commands for a robot by means of a virtual environment, as 
well as execute high level commands in a real remote robot through HTTPS commands. In 
addition, it has an interface with augmented reality support where images of the real robot are 
complemented with some data from the virtual environment. Currently, this application belongs 
to a network performed by different virtual and remote laboratories from Spanish universities, 
called “AutomatL@bs” (http://lab.dia.uned.es/automatlab/index_en.html).  
 
 The other two experimental applications are about multi-robotic systems. EjsRL allows 
users the instantiation of different robot objects since it has been created in an object-oriented 
form. The second application (Fig. 15 b) is a robotic hand simulated which represents virtually a 
real system developed by the company Barrett Technology [32]. Fig. 15b shows the interface of 
the application developed with EJS+EjsRL, where it can be seen the 3D virtual environment. In 
this simulation has been included some robotic concepts related with kinematics, path planning 
and dynamics. The third simulation (Fig. 15 c) is about a multi-robotic system composed by two 

http://www.aurova.ua.es/rcv�
http://robualab.eps.ua.es/�
http://lab.dia.uned.es/automatlab/index_en.html�
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manipulators: a PA-10 robot of 7 rotational DOF and a 3 rotational DOF robot (RRR). This last 
serial robot is coupled to a link of the upper part of the PA-10. Furthermore, the robot RRR has 
a virtual camera at the end as an EIH configuration. Fig. 15c shows the interface of the 
application developed. On the left, it can be seen the 3D virtual environment, which displays the 
workspace where the robots are located. On the right, it is represented the virtual projection of 
the EIH camera located at RRR.  

 

 
Figure 15. Several advanced robotic applications developed using EJS+EjsRL 

 

6. Computational efficiency. 
 Performance and accuracy are two very important aspects to be considered for any 
modeling and simulation software tool. This section deals with the comparison between 
EJS+EjsRL and other software tools in relation with these capabilities.  
 
 The majority of the software tools for R&CV are based on three programming 
languages: C/C++, Java and Matlab. The performance and accuracy of the software tools are 
directly related with the computational efficiency of the programming language and with the 
algorithm’s accuracy. Thus, in order to perform a good comparison, different tools related with 
these programming languages were chosen.  
 
 The comparison is based on three test cases, one for Robotics, another for Computer 
Vision and finally another for R&CV. In the case of the Robotics test, a comparison between 
the computation accuracy of the inverse dynamics was made for the 6 rotational DOF robot 
previously considered (Section 3) with the mass and inertial properties showed in Fig. 9. With 
regard to the Computer Vision test, the computation time of the Harris algorithm on the same 
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image was measured. Finally, the test about R&CV is the computation time of an iteration of 
the virtual visual servo control showed in Section 6. 
 
 The hardware platform used for the comparison tests was a PC Intel Pentium running at 
1.73 GHz with 1GB of RAM. The Robotics test were computed for a zero pose, with null joint 
velocities and accelerations, no external forces acting on the end-effector, and a gravity force 
along the waist axle of the manipulator. The Computer Vision test was made using the image 
showed on Fig. 10 (256x256 pixels, RGB 8bpp). The computation time measured includes 
loading the initial image, processing the algorithm and displaying the resulting image. The 
results obtained in both cases are reported in Table 2. Finally, the R&CV test was based on the 
example show in Section 3. The computation time ranges from the feature extraction of the 
image to the velocity computation of the robot. The comparison performed in shown in Table 3. 
 

 Robotics Test (Nm) Computer Vision Test (ms) 
Language Matlab C/C++ Java Matlab C/C++ Java 

Tool Robotics Toolbox RoboOp EJS+EjsRL CV Toolbox OpenCV EJS+EjsRL 

Results {0, 0, -87.0392, 0, 
0, 0} 

{0, 0, -87.0392,  
0, 0, 0} 

{0, 0, -87.0392, 
0, 0, 0} 125 60 85 

Table 2. Comparison of performance and accuracy between EJS+EjsRL and other tools I 
 

 R&CV Test (ms) 
Language Matlab C/C++ Java 

Tool Robotics Toolbox ViSP EJS+EjsRL 
Results 95 25  75 

Table 3. Comparison of performance and accuracy between EJS+EjsRL and other tools II 
 

 With regard to the results obtained in the Robotics test, the approach presented here is in 
a level of accuracy very close to Matlab and C++, which are usually considered to be very 
precise for a great number of applications. In the case of the Computer Vision and R&CV tests, 
it is clear that OpenCV and ViSP have a higher computational efficiency that other since are 
based on C++ language. However, EJS+EjsRL (Java) is faster than Robotics and CV Toolbox 
of Matlab. In addition, in these computer vision operations only 15 ms is used to load and show 
the image. In this way, the computational efficiency of EJS+EjsRL regarding interactive 
capabilities is very high, because it utilizes a minimum time to process user interactions.  
 
 
7. Conclusions  
 In this paper, a free Java-based software platform for the creation of advanced robotic 
and computer vision applications has been presented. This new tool is composed by two parts: 
1) a high-level Java library called EjsRL, which provides a complete functional framework for 
modeling and simulation of robotic and computer vision systems; 2) EJS, an open-source tool 
which provides full graphical interface support. The integration of both parts permits to create 
complex and advanced robotic applications, since provides a higher number of functionalities 
than other software platforms available nowadays. 
 
 EjsRL allows users to model complex robotic systems within EJS, to perform high-level 
Computer Vision algorithms and to execute remote operations. All the classes have been 
implemented in the same platform, a feature which has not been developed before in other tools. 
For modeling arbitrary serial-link manipulators, users only have to specify their DH parameters 
and their physical properties. Then, the Java platform creates an object which has embedded all 
the robot behaviour (kinematics, dynamics, programming, etc.). In the case of computer vision 
methods, the library contains a lot of implemented algorithms (Computer Vision classes), in 
addition to input/output operations for easily reading and writing images. Finally, the Remote 
Operation functions provide client-server communication support over the HTTPS protocol 
which can be used to develop applications with remote operation features.  
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 The user-friendly interface of EJS enables users to easily and quickly create advanced 
Java applications. In addition to its full computer graphical support, this software provides 
several advanced features such as VRML and OBJ extern file importation and object collision 
detection. Thus, the approach presented is very suitable to develop research and educational 
applications in the R&CV fields apart from adding novel features that are not found in other 
toolboxes available today.  
 
 Finally, the paper presents several high-level applications, which combine both R&CV 
functionalities, in order to validate some of the system capabilities. These experimental 
examples illustrate a part of the possibilities of the tool presented. Most of these applications 
have been used as teaching tools for undergraduate students in several courses about Robotics 
since 2009. These applications have been positively accepted by the students because they are 
very grateful to experiments with realistic and interactive virtual environments. 
 
 Currently, the library EjsRL is being improved in order to incorporate an interface for 
the OpenCV library. For that end, there are modules of Java such as JRMI (Java Remote 
Method Invocation) and JNI (Java Native Interface) which permit to access to other external 
libraries written in other programming languages.  
 
 
Obtaining EjsRL and EJS 
EjsRL can be obtained from http://www.aurova.ua.es/rcv. In this web page there is a lot of 
information about how to use the library and readers can execute all the examples showed in the 
paper. In addition, there is a HTML document that explains with detail all the Java classes. EJS 
can be downloaded from http://fem.um.es/EjsWiki, where readers can experiment with a lot of 
simulations developed with this software. In order to use them in any operative system, it is 
necessary to install two Java runtimes: JRE (Java Runtime Environment) 1.6 and Java 3D 1.5 or 
higher. 
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Figure Captions 
Figure 1. Software architecture of the tool and package-class diagram of EjsRL. 

Figure 2. Overview of the EJS’ environment. 

Figure 3. Java code for the model in order to create a 6 rotational DOF robot. 

Figure 4. Interface construction of the Robotics application proposed. 
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Figure 5. Java code for the forward kinematics of the 6 rotational DOF robot modelled with 

VRML objects. 

Figure 6. Java code for the inverse kinematics implementation. 

Figure 7. ODEs of basic robot motion and Java code to program the 4-3-4 polynomial 

trajectory. 

Figure 8. Simulation of a 4-3-4 polynomial trajectory for the 6 rotational DOF robot. 

Figure 9. Programming the inverse dynamics with an external force of the 6 rotational DOF 

robot. 

Figure 10. Java code for the implementation of the point features detection in the EIH virtual 

camera. 

Figure 11. Appearance of the final application for the simulation of a visual-servoing task using 

point features. 

Figure 12. Remote control of an IP camera using HTTPS communication. 

Figure 13. Position control of a 3 rotational DOF using EJS+EjsRL and Simulink. 

Figure 14. An application which uses the AR panel. 

Figure 15. Several advanced robotic applications developed using EJS+EjsRL. 

 


	EJS+EjsRL: an interactive tool for industrial robots simulation, computer vision and remote operation

