
JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 3, SEPTEMBER 2010 1

MACSimJX: A Tool for Enabling Agent Modelling
with Simulink Using JADE

Charles R. Robinson, Peter Mendham, and Tim Clarke

Abstract—MACSimJX provides the means for advanced mod-
elling and development of multiagent driven control systems.
This is achieved by drawing together two modelling tools used
extensively in their respective communities. These are Simulink,
a tool used for control systems development and JADE, an
environment for developing agents. Thus the strengths of their
particular domains of application may be drawn upon to facilitate
research and development in the joint field of decentralised
systems control. To the authors knowledge no other implemen-
tation such as this exists. MACSimJX, otherwise known as the
extension of MACSim with JADE, is available for download at
www.agentcontrol.co.uk.

Index Terms—MACSimJX for Decentralised Control, Simulink
with JADE, Agent-Based Systems, Sensor Fusion, Control Ar-
chitectures and Programming.

I. I NTRODUCTION

I N general, a decentralised system has its processing dis-
tributed such that each element in the system is capable

of functioning in isolation. However, there is the potential
for enhanced system performance because these processing
units can communicate and cooperate with each other. De-
centralised systems offer a number of advantages over their
centralised counterparts that includes greater robustness, time-
liness and fault tolerance. This paper reports an integrated
software framework that connects control system simulation
with multiagent theory to support the modelling of real-time
decentralised systems.

Multi-agent architecture, a concept that began to be properly
developed in the latter half of the 1980s [1], provides a natural
software support structure for decentralised systems. In this
context the wordagent is used to refer to a software entity
capable of operating by itself, with the ability to obtain infor-
mation from, and effect changes on, its environment. These
operations may include communication with other agents and
are carried out in order to achieve some predefined objectives.
There are many potential advances in system design that might
be achieved through the development and application of the
emerging multi-agent technology.

Simulink is a widely used tool in industry and academia. It isa
graphical front-end for MATLAB (Matrix Laboratory) which
allows representation of time varying systems through matrix
manipulation. Simulink provides a graphical representation of
these systems modelled through matrices. A vast array of
libraries are available that provide the ability to connecta

Charles R. Robinson is with THALES R&T France.

Peter Mendham is with SciSys UK Ltd.

Tim Clarke is with The University of York.

series of subsystem elements to construct and represent the
internal mechanics of such dynamic and embedded systems.

MACSimJX provides access from Simulink to such a multi-
agent architecture, this facilitates the development of software
control structures with features such as:

• Robustness, so that if part of the system fails the rest of
the system will continue to operate with minimal loss of
functionality.

• Scalability of the processing architecture.
• Fewer constraints on a system caused by computational

bottlenecks or communication bandwidth.
• Modularity in terms of both the design and implementa-

tion.
• Synergy of sensors such that the overall machine percep-

tion is improved beyond basic fusion of data.
• An enhanced awareness of the state of the world.

Thus MACSimJX is an interface that enables models of sys-
tems created in Simulink to exchange data with a multiagent
system created using JADE. A brief description of the agent
paradigm and JADE follows, after which the manner in which
MACSimJX integrates this with Simulink is discussed.

II. I NTELLIGENCE AND MULTIPLE AGENTS

The wordagentrefers to a concept rather than to a particular
entity or event. Concepts are general ideas that describe a class
or category of things or events that have unique features but
share common characteristics. Like other concept words such
as tree or dinosaur the meaning of the word agent encom-
passes a set of ideas that people believe represent its general
properties. This means that although it is possible to describe
agents and trees, many traits or characteristics will depend on
circumstances, the environment and our own experience. With
this important qualification, a general definition for an agent
is:

Definition: An agent is an autonomous entity in an embedded
environment that either solves problems by itself, or cooperates
with other agents to find a solution. It has control over its
internal state as well as its outputs and can run without external
intervention.

An embedded environment implies a system that receives its
information about the environment through sensors and acts
on the environment through effectors. A multi-agent systemis
a collection of these interacting agents and can exhibit allthe
features required in a decentralised setup. It has the capacity
to achieve tasks through the combined efforts of the individual
agents that could not be done alone. This is particularly the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16368928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 3, SEPTEMBER 2010 2

case where the agents have different functional capacities.
Agent systems have also been shown to exhibit emergent
problem-solving behaviours through cooperation not explicitly
part of the original design, one such example being swarm
intelligence.

Jenningset al. [2] list many of the applications to which
agents have been applied in industry, commerce, medicine
and the entertainment sector. However, these authors stated
that the agent community suffered from the lack of a system-
atic design methodology or an industrial strength multi-agent
toolkit. Since then, these shortcomings have been addressed,
or are being addressed, by FIPA and the development of
several agent frameworks. A software agent framework is one
that incorporates the various agent theories and provides a
support structure of and for functions that facilitate the rapid
development of a system based on these concepts.

JADE provides a framework that allows quick implementa-
tion of many of the inherent features one would expect for
developing a multi-agent system. Much of the complexity is
kept hidden from the user to allow ease of use. In addition,
JADE has been steadily gaining support and has been more
widely used over the last few years. For these reasons, and
with support from a review in [3], JADE was chosen to be
the framework to assist agent modelling for Simulink through
MACSim.

A. The Java Agent Development Environment (JADE)

JADE was originally developed under TILab, formerly CSELT,
in Italy [4] to address the lack of support available for building
agent systems. As its name suggests, this framework offers
an environment in which to create agents written in Java. It
provides the runtime environment, which the agents require
in order to operate. It also provides an extensive library of
classes with methods built around the FIPA specification of
agent characteristics and graphical interfaces for monitoring
active agents.

Each instance of a runtime environment is called acontainer
and several of these make up aplatform. The first container
to be created needs to be designated as themain container;
subsequent containers then register with this as they join the
platform. Containers can be spread across several networked
computers. The main container hosts an agent management
service (AMS) and a Directory Facilitator (DF). The AMS
ensures that each agent has a unique name and can be used
for loading and removing agents from the platform. The DF
provides a means for agents to publicise their specialised
services or for looking up the services provided by other
agents. It is often referred to as theYellow Pages[5].

Agents operate from within the containers. The structure of
an agent consists of asetup()method, one or more behaviour
methods, and atakeDown()method. The setup() method is
executed the first time an agent is created and runs only once.
It sets all the initial conditions needed to get the agent up and
running and includes the behaviours required for the agent.

The behaviour methods can run concurrently and are respon-
sible for carrying out the main tasks of an agent. This includes

communicating with other agents. An agent can be put tosleep
if it has no behaviours operating and can be awakened again
after a specified period, or on receipt of a message requesting
the execution of an action. This can be very useful because
the agent consumes no processing power when it is in sleep
mode.

To date, JADE has been applied, at least in theory, to a wide
variety of areas including urban and aircraft traffic control
[6], [7], providing travel industry support [8], manufacturing
[9] and robotics [10], [11].

III. A RCHITECTURE

Whilst Simulink is really effective for carrying out simulations,
it falls short of offering the tools necessary to set up an agent
framework. One very useful aspect of Simulink, however, is
that it provides a work-around for adding functionality in the
form of S-functions. These allow programs to be written in
other languages, particularly C, that can be encapsulated in the
Simulink environment and then used where desired, running
in their native language.

Despite this prospect of a solution, where the agents could be
created through C++ or Java code in one of these functions and
run in Simulink, there is a further complication. S-functions
are unable to handle multiple threads of execution: they
become unstable if several processes run concurrently inside
Simulink [12], [13]. Unfortunately, this functional property is
essential for a multi-agent system. To overcome this problem,
a program called MACSim was created which still utilises the
S-function ability of Simulink, but only as a gateway to pass
data to a program outside MATLAB with parallel processing
capacity.

A. Structure of MACSim

MACSim, or theMulti-Agent Control for Simulinkprogram,
described in [12], was purposely developed as a medium
through which a program for implementing agent designs
developed in C/C++ or Java might pass data to and from
Simulink. Although MACSim is written primarily in C++, it
includes a wrapper to enable interaction with Java programs.
MACSim has a client-server architecture, where the client
part is embedded in Simulink through an S-function, and the
server code is then incorporated in the separate program as
indicated in Figure 1. Communication between the client and
server is then performed through the use ofnamed pipesin
Windows. Use of MACSim circumvents the multi-threading
issue because a separate program can now be used with
protocols in place to ensure synchronicity if so desired.

Simulink

MACSim Client

Multi-threaded program

MACSim Server

Fig. 1. Structure of MACSim.

JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 3, SEPTEMBER 2010 3

While a developer has the option of writing their own C++ or
Java agents from scratch, it is frequently more efficient to build
on what is already available. Thus MACSimJX extends the
functionality of the server side of MACSim to allow Simulink
to interact specifically with JADE. The developer thus has the
added capabilities of this agent development environment at
their disposal. This extension using JADE is described next.

B. Extending MACSim to use JADE

MACSimJX provides the means, utilising JADE, to receive
data from Simulink via the MACSim interface and to pass
this on to relevant agents for processing. Once the agents have
finished working on the data, the data must be returned to
Simulink along the same channels. The agents are designed to
accomplish some goal, such as optimisation of incoming data.

For this purpose it seemed logical to divide the agent model
into two parts, the Agent Environment (AE) and the Agent
Task Force (ATF). The environment is a transformation of the
MACSim server, previously mentioned, to provide a trans-
parent connection between Simulink and the JADE agents.
It contains the ground-work required for any generic agent
model spread across Simulink and a JADE program, including
responsibility for passing any data between the two programs.

The other part, the ATF, contains the agents responsible for
interacting with the Simulink data. Some simple protocols
need to be followed by the agents of the ATF to ensure
the appropriate exchange of data with the AE. For all other
purposes, these agents may be developed as normal, with
the behaviours and goals one may wish to see implemented
in a real-life system. The arrows in Figure 2 outline the
communication paths for the three sections of the complete
model.

Fig. 2. Outline of the complete model.

The rest of this section considers the JADE classes for the
agent environment and the basic communication standards
that need to be built into agents designed for the ATF. It
focuses on the characteristics of the code and classes provided
by the framework to get an agent up and running. JADE
has a framework where a good proportion of the underlying
structure, used for implementing agents, is deliberately hidden
from the user to avoid making the development cycle over-
complicated.

Someone using JADE will have functions they wish their
agents to perform and, at least initially, will only want to

concern themselves with the programming of these functions.
It should be possible to place these straight into some agent
template in order to get their agents up and running. JADE
provides what is termed an API (Application Programming
Interface) which is effectively a library describing the different
classes and functions with the parameters they require and
return after running. These classes provide the backbone
for agent development with JADE, at least in terms of the
general agent properties, and make the whole process relatively
painless. In the API it is possible to search for the properties
one wishes an agent to exhibit, including those related to agent
behaviours, communication methods between agents, and the
resulting interaction of agents.

To assist with this rapid prototyping of agents, a template is
suggested. Derived from [14] and [4], the skeletal code for this
is shown in Listing 1. It can be divided into several major parts.
The agent code commences by importing the various libraries
of functions that include those required for use in the agent
being designed. The class name of the agent type being created
is then declared. Inside this are the two main functions,setup()
andtakeDown(), their names being sufficient to describe their
purpose. Following these is a selection of inner classes, in
this case one, containing the various behaviours the agent will
exhibit and which are to be initialised through the setup()
method. There are some basic behaviour types provided by
JADE, such as the OneShotBehaviour (executes once) and
the CyclicBehaviour (repeats its code continuously). These
behaviours can be utilised to create customised behavioursin
which the programmer places the desired agent functions and
also the code for communication with other agents.

Thus, the code of Listing 1 can be filled out fairly easily, with
the desired agent properties expressed inside the behaviour
functions. Implementing the agent is then simply a case
of executing the JADEruntime environmentfrom command
prompt and calling the relevant agents. Detailed examples are
provided in the JADE tutorial guide [14], Programmer’s Guide
[4] and Administrators Guide [15].

C. The Agent Environment

The AE acts as an interface for the JADE agents and Simulink.
It has been suggested [12] that such an interface should be
responsible for the following:

• Keeping track of all current agents and facilitatingthe
dynamic ‘birth’ and ‘death’ of agents.

• Synchronisation with Simulink through MACSim.
• Providing the current input and time step data when

requested.
• Storage of data to be output back to Simulink and

allowing for these data to be altered.
• Having the capability to broadcast messages to the agent

population.

The first requirement indicated above is handled automatically
by JADE through its DF which is, in effect, an agent that
acts like the ‘yellow pages’ where agents register with the
services they can offer and can search for those they require.
Synchronisation is optional, agents can either wait for data

JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 3, SEPTEMBER 2010 4

Code listing 1
import jade.lang.acl.*;
import jade.core.Agent;
import jade.core.behaviours.*;

public class SkeleAgent extends Agent {
// Initialise class variables.

protected void setup() {
/* Attempt to initialise agent,

* including its various behaviours.

* Add the behaviour for receiving

* agent messages.

*/

addBehaviour(new AgentBehaviour1());
Object[] args = getArguments();
if (args != null && args.length > 0) {
// Operate on the received parameters
// provided by agent initiator as args.
}
else { // Unable to create agent.
System.out.println(No arguments.);
System.out.println(Ending agent.);
takeDown();
}

}

protected void takeDown() {
// Remove agent from system.
}

class AgentBehaviour1
extends CyclicBehaviour {
public void action() {

ACLMessage msg = receive();
if (msg != null) {
// Process the message
}

}
}

}

from Simulink before carrying out any actions, or also perform
tasks while waiting for new data. The other requirements
mentioned above are handled by the various components of
the AE that will now be described.

The code for the agent environment is composed of seven
classes, two of which represent actual agents. The core classes
are theAgentServer, AgentCoordinator, EnvironmentAttributes
and theTimeStepDataclass. The other three provide some
extra functionality for designing agents and are theTimePro-
filer, UsefulAgentMethodsand theMatrix class. The methods
contained by these classes are detailed in the MACSimJX
API. The AE is outlined in Figure 3. Here you see a more

detailed representation of the Agent Environment with the
two JADE agent classes, AgentServer being responsible for
interacting with Simulink and AgentCoordinator managing
exchanges with the ATF.

The afore mentioned responsibility of current input and time
step is handled by the EnvironmentAttributes class, along with
the number of inputs to and from Simulink (these can be
accessed by the relevantget and set methods). Storage of
data is done in the TimeStepData class which keeps track of
changes made by the agents until it is ready to be sent back
to Simulink. Finally through the JADE services functionality,
any agent subscribed to the ”Agent” service will receive any
broadcast to this service.

Fig. 3. An outline of the Agent Environment.

D. The Agent Task Force

The ATF consists of all the agents that jointly operate on
the data arriving from Simulink in order to accomplish some
task. All of these agents will havesetup() and takedown()
functions and probably some behaviour functions. However,
with the exception of communication protocols with the AE,
the implementation of the functions will take on very different
forms depending on the particular task the designer wishes
them to achieve.

An example is shown shortly to demonstrate the implementa-
tion of an ATF. However, there are several common features
it is appropriate to draw to the reader’s attention beforehand.
An overview is provided in Figure 4, where between theFirst
AgentandLast Agent, there can be any number of other agents.
Each having the ability to communicate with the other agents
of the task force, and with the AgentCoordinator from the AE.
The diagram depicts the general behaviour of theLast Agent.
As an example, it is given a filter behaviour, but with the
exception of applying the Kalman filtering, the same series of
steps apply to the other agents.

Each designed ATF is ideally given its ownsub-packagewith
inner packages for each type of agent it uses. The agent

JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 3, SEPTEMBER 2010 5

package contains the agent class along with any associated
classes to supplement the agent class. Inspection of the ATF
diagram shows that there are also three standard messages
that a designer may wish to implement in their agents. These
messages being identified as:

• UpdateData - Provides the new data arriving from
Simulink at each sample step.

• DataAmended - A confirmation that data amended by an
agent has been received by the AE.

• Shutting Down - An instruction received from another
agent to end current processes and terminate.

These three messages are primarily for interaction between
the agents of the AE and ATF. It is assumed the developer
would wish the freedom to determine the mechanisms of
communication within their own ATF. Some of these agents
may have no need to communicate with the AE, relying on
others to pass on the needed data.

JADE

Communication

Channels

Agent Task Force

Agent

Environment

First

Agent

Nth

Agent

Last

Agent
filterBehaviour -

Await three types of

messages. If UpdateData

received, extract data,

process it (apply Kalman

filter) and return to

sender. If DataAmended

received, the above

operation was successful.

Should the 'Shutting Down'

message arrive, remove

agent from system.

Fig. 4. Overview of the ATF.

IV. D EMONSTRATION

This section provides an example of the procedure that is
followed in order to set up some agents for an ATF. For
the sake of clarity a straightforward scenario is used. Two
different sinusoidal-type signals are fed from Simulink through
MACSimJX. Both signals are then communicated to the ATF.
In this example, the ATF consists of two agents. These will
apply some arithmetic to the signals, that is, one agent finds
the sum of the signals and the other finds the difference, and
these results are sent back to Simulink.

The initial step is to set up the model being used in Simulink.
This is shown in Figure 5, where the two signal generation
blocks are shown connected to the MACSim block. The
MACSim block is the client that will be exchanging data with
the agents. The outputs from the MACSim block are then
connected to scopes for analysis. The final component of the

Simulink model performs the same arithmetic operations as
used by the agents. This is to provide a comparison with the
agent output for the sake of validation.

Summation of
Signal 1 and Signal 2

by agents.

The difference between
Signal 1 and Signal 2

by agents.

Summation of
Signal 1 and Signal 2

in Simulink.

The difference between
Signal 1 and Signal 2

in Simulink.

Out1

Subtract signals
Signal 2

Signal 1

Scope 4

Scope 3

Scope 2

Scope 1

MACSim

S−Function

Out1

Add signals

Fig. 5. Simulink example model.

0 1 2 3 4 5
−5

0

5
Signal 1

S
ig

na
l v

al
ue

 (
V

)

0 1 2 3 4 5
−5

0

5
Signals added by agents

0 1 2 3 4 5
−5

0

5
Signal 2

S
ig

na
l v

al
ue

 (
V

)

Time (s)
0 1 2 3 4 5

−5

0

5
Subtraction by agents of Signal 2 from Signal 1

Time (s)

Fig. 6. Scope output.

The next stage is to develop the agents required for the ATF.
This commences by customising the JADE agent template,
shown in Listing 1, for use with MACSimJX, and then incor-
porating the arithmetic operations into the agent behaviours.

In order for agents to interact with MACSimJX, there are
three message types the agent should be prepared to receive.
These have the ID tags ofUpdateData, DataAmendedand
Shutting Down, as mentioned in the previous section. The
most important of these messages, for agent operation, is
UpdateData which consists of a data structure containing an
array representing the input ports of the MACSim block, and
the current data sample at each of these ports. Upon receiving
such a message, the agents carry out their processing, in this
case some arithmetic, and then return a message to the sender,
usually the AE, containing a data structure with the resultsand
indicating the elements that were changed. To illustrate this
part of the design, with an agent interacting with MACSimJX,

JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 3, SEPTEMBER 2010 6

the behaviour segment of Listing 1 is extended and shown in
Listing 2.

Following the design of the agents, all that is left is to run
this ATF alongside Simulink. To do this, the agent class
files should be placed in an appropriately named folder under
MACSimJX\ATFs. MACSimJX is then executed (by running
a .jar file), which opens a GUI allowing the relevant details
to be entered, such as adding the location of the agents class
files, the number of inputs\outputs of the MACSim block in
Simulink and the sample rate. With these details completed,
theContinuebutton is clicked and our agents are now ready to
operate. Finally, the Simulink model is opened, the simulation
time specified and then set to run. Figure 6 shows sample data
that has been run through the system for five seconds.

The TimeProfiler class provides some information about the
ratio of time spent in Simulink and the AE to the time in
the ATF. In the current example, due to the simplicity of
the simulation, about 99 percent of the time was spent on
the JADE side. TimeProfiler additionally provides methods to
locate bottlenecks that might exist in a developers agent code
in order to assist with this aspect.

A more advanced example of using MACSimJX may be found
in [3], where a Boeing 747 is modelled in Simulink and data
from its sensors are sent to agents for fusion where centralised
and decentralised Kalman filters are tested.

V. CONCLUSION

An overview has been provided of a useful enabling tool called
MACSimJX. The desirable nature of decentralised multi-
agent-driven systems were discussed. Simulink, an industry
standard program for modelling dynamic real-time systems,
was introduced and its shortcomings with respect to multi-
threading were described. MACSimJX provides a bridge to
rectify this problem, the support taking the form of JADE.

Thus an integrated software framework is available for the
development, testing and analysis of multi-agent control sys-
tems. It incorporates an interface (MACSimJX) that enables
the co-simulation of dynamic systems (under Simulink) and a
multi-agent system (JADE). This opens up a very wide field
of investigation, in particular for the design of complex and
dynamic multi-agent control systems.

ABBREVIATIONS

AE Agent Environment.
AMS Agent Management Service.
API Application Programming Interface.
ATF Agent Task Force.

DF Directory Facilitator.

FIPA The Foundation for Intelligent Physical Agents.

JADE Java Agent Development Environment.

Code listing 2

class AgentBehaviour1
extends CyclicBehaviour {
public void action() {

/* Initialise data structure,

* and other local variables.

*/
// Prepare agent to receive a message.
ACLMessage msg = receive();

if (msg != null) {
String message=msg.getConversationId();

if (message.equals("UpdateData")) {
//In this example, from the AE.

/* Try to extract data structure from

* the new message, and from this,

* the the data array and length.

*/
/* The agent then performs any data

* operations required before other

* ATF agents are considered. If these

* initial results are required by other

* ATF agents, they are sent as a data

* structure in a new message. Otherwise,

* the agent waits until receiving all

* expected data from other ATF agents.

*/
/* For this example the agent now finds

* either the sum or the difference

* between the two data array elements.

* Having completed the calculations,

* results are returned to the AE.

*/
}
if (message.equals("DataAmended")) {
// i.e. a response from AE confirming
// receipt of data from this agent.

// If no further operations required,
// end current conversation with AE.
replyToAgent(msg.getSender(),

"ProcessingComplete");
}
if (message.equals("Shutting Down")) {
// Terminate the agent.
takeDown(msg.getSender());

}
} else {

// Put agent to sleep.
block();

}
}

}

JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 3, SEPTEMBER 2010 7

REFERENCES

[1] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and
practice,”The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–
152, 1995.

[2] N. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agent re-
search and development,”Autonomous Agents and Multi-Agent Systems,
vol. 1, no. 1, pp. 7–38, 1998.

[3] C. R. Robinson, “Decentralised data fusion using agents,” Ph.D. disser-
tation, The University of York, 2008.

[4] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa,Jade Programmers
Guide, TILab S.p.A., 2005.

[5] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “Jade- a white
paper, in ”exp in search of innovation - special issue on jade,” TILAB,
Tech. Rep., 2003.

[6] Z. Li, F.-Y. Wang, Q. Miao, and F. He, “An urban traffic control system
based on mobile multi-agents,” inIEEE International Conference on
Vehicular Electronics and Safety, Beijing, China, October 2006, pp. 103–
108.

[7] M. Pěchoucěk, D.Šišlák, D. Pavĺıček, and M. Uller, “Autonomous
agents for air-traffic deconfliction,” inProceedings of the fifth interna-
tional joint conference on Autonomous agents and multiagent systems,
Hakodate, Japan, May 2006, pp. 1498 – 1505.

[8] B. Balachandran and M. Enkhsaikhan, “Development of a multi-agent
system for travel industry support,” inInternational Conference on
Computational Intelligence for Modelling, Control and Automation and

International Conference on Intelligent Agents, Web Technologies and
Internet Commerce, Sydney, Australia, December 2006, p. 63.

[9] D. Naso and B. Turchiano, “A coordination strategy for distributed
multi-agent manufacturing systems,”International Journal of Production
Research, vol. 42, pp. 2497–2520, 2004.

[10] J. Eze, H. Ghenniwa, and W. Shen, “Distributed control architecture for
collaborative physical robot agents,” inIEEE International Conference
on Systems, Man and Cybernetics, Washington, D.C., USA, October
2003, pp. 2977 – 2982.

[11] P. Santana, V. Santos, and J. Barata, “Dsaar: A distributed software
architecture for autonomous robots,” inIEEE Conference on Emerging
Technologies and Factory Automation, Prague, Czech Republic, Septem-
ber 2006, pp. 1017–1020.

[12] P. Mendham and T. Clarke, “Macsim: A Simulink Enabled Environment
for Multi-Agent System Simulation,” inProceedings of the 16th IFAC
World Congress, Prague, Czech Republic, 2005.

[13] J. M. Solanki and N. N. Schulz, “Using intelligent multi-agent systems
for shipboard power systems reconfiguration,” inProceedings of the 13th
International Conference on Intelligent Systems Application to Power
Systems, November 2005.

[14] G. Caire,Jade Programming for Beginners, TILab S.p.A., 2003.
[15] F. Bellifemine, G. C. amd Tiziana Trucco, G. Rimassa, and R. Munge-

nast,Jade Administrator’s Guide, JADE Board, 2006.

