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Surfaces with radial structure do not fit well to squared detectors or sampling matrices. Cartesian grid sampling
provides a different density of nodes in sectors. Zernike polynomials are a complete set of orthogonal
polynomials defined on a unit disk often used as an expansion of such surfaces. In the fitting process, the
sampling distribution is not usually taken into account and might have undesirable effects on the final parameter

10 estimates. We propose applying weighted least-squares regression that compensates the unequal influence of
sectors due to the sampling distribution, assigning a weight function to the nodes grid and thus providing a better
fit in the central optical zone.
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1. Introduction

15 Common corneal morphology measuring devices [1]
digitally process an image reflected from a pattern and

projected onto a charge-coupled device (CCD) [2].

From this information, the obtained height map is

usually fitted through polynomial expressions [3] and,
20 later, it can be used for ray tracing [4] and aberration

calculation.
The goodness of fit of a surface model depends on

the number of samples N and their distribution.

Traditional least-squares fitting on an optical surface
25 does not pay attention to the particular sampling

distribution of the analyzed surfaces. Acquiring devices

are based on squared CCD, thus sampling is naturally

done with a Cartesian grid. The adequate distribution
of the nodes, which yields the best quality of approx-

30 imation depends both upon the geometry of the

domain and the properties of the approximating
functions. The uniform (x, y) grid is better suited for

translational-invariant domains and functions, and not

for rotationally symmetric polynomials on a disk.
35 Modern CCD devices provide very high sampling

density at the image plane, so selecting a set of nodes
for surface fitting should not be a problem.

Unfortunately, the samples are not defined by the

sensor, but by the projected structure. In the case of a
40 topographer, concentric rings are projected on to the

cornea and samples are defined by the black-to-white

and white-to-black transition on each reflected ring [2].

Thus, a typical topographer with 24 rings will provide

48 sampling points per semi-meridian thus limiting the

45radial sampling. In the case of a Scheimplug camera,

the Pentacam system is able to acquire 50 segments per

measurement, which limits the angular sampling. Most

devices provide curvature maps of 6000 to 10,000

points, which means one sample every 0.1mm.
50Let us consider a general case. In Figure 1, we have

plotted (dots) a quadrant of an 11� 11 Cartesian grid.

Conversion from Cartesian to polar coordinates

provides the following radial and angular samples

rp,q ¼ x2p þ y2q

� �1=2
, 04 rp,q 4R, ð1Þ

�p,q ¼ tan�1 yq=xp
� �

, ð2Þ

55where (p, q) are discrete indexes describing the samples

in a Cartesian grid, p ¼ 1, . . . ,N and q ¼ 1, . . . ,N.

Radii and angles resulting from Equations (1) and (2)

are also plotted in Figures 1(a) and (b), respectively, as

grey dashed lines. The reader should notice that the
60obtained radii (14 in our case) are not equally

distributed, i.e. radial sampling is not uniformly

spaced. The same situation happens with the angular

sampling, being sampled by 48 different angles (12 per

quadrant).
65Figure 2 illustrates a quadrant of an 11� 11

uniform polar grid (black dots) together with the

polar coordinates (grey crosses) resulting from the

conversion following (1) and (2) of the Cartesian grid

in Figure 1. It can be clearly observed that the number
70of radial samples for an angular coordinate varies

depending on the selected angle, and also that the

*Corresponding author. Email: julian.espinosa@ua.es

ISSN 0950–0340 print/ISSN 1362–3044 online

� 2011 Taylor & Francis

DOI: 10.1080/09500340.2011.556263

http://www.informaworld.com



XML Template (2011) [9.2.2011–6:50pm] [1–6]
K:/TMOP/TMOP_A_556263.3d (TMOP) [PREPRINTER stage]

number of the angular samples depends on the radial
coordinate. Moreover, the figure shows that the
samples distribution in the central zone is sparse,

75despite it being the most important region from an
optical point of view.

All these facts might have an undesirable effect,
leading to a poor quality in the approximation to the
surface. In the fitting process, each node has the same

80weight. However, if we consider radial sections in the
surface, it is clear that the density of nodes varies from
center to periphery. Hence, the influence of each of
these zones in the fitting is not the same any more. This
is particularly important in surfaces whose curvature

85changes from center to periphery.
Zernike polynomials are used as a polynomial

expansion of corneal heights and optical wavefronts.
As a complete modal set, any surface S(�,�) can be
approximated by a linear combination of polynomials

90as follows [5,6]:

Sð�, �Þ �
Xk�1
j¼0

cjZjð�, �Þ, ð3Þ

where k is the number of terms in the expansion and cj
are the coefficients associated with their Zernike
polynomial, Zjð�, �Þ. The estimation of cj parameters
in Equation (3) is obtained by solving the ordinary

95linear least-squares (OLS) problem [7] described by the
system of equations S ¼ Zc, with c being the k
expansions coefficients, S a (N, 1) vector of a discrete
set of elevation data and Z a (N, k) matrix of k discrete
Zernike polynomials evaluated at N coordinates.

100The optimality of the nodes distribution for
Zernike polynomials has not been studied in depth,
although there are works which analyze different
sampling patterns [8,9]. The application of a fitting
method on the set of samples marked with grey crosses

105in Figure 2 can lead to the obtaining of coefficients
which describe the optical features of the peripheral
cornea but fail in the description of the central optical
area, which is the most important for vision.
Occasionally, it can happen that, for very large

110pupils, where there is a great difference in the density
of nodes between the center and periphery, the Zernike
fitting is completely wrong for describing vision under
standard conditions, mainly due to the error when
adjusting the central optical area. Fitting methods may

115take into account and compensate such effects and
provide more accurate results.

Weighted least-squares regression (WLS) [10]
permits controlling the level of influence of each data
point on the parameter estimate. WLS fitting mini-

120mizes ðS� ZcÞ0WðS� ZcÞ, where W ¼ diagðwp,qÞ, a
diagonal matrix with the weights wp,q corresponding to
each ( p, q) sample, is the weighting matrix. It is a

Figure 1. Quadrant of an 11� 11 Cartesian grid (black
dots). Radial and angular coordinate sampling [(a) and (b),
respectively] resulting from converting from Cartesian to
polar coordinates.

Figure 2. Quadrant of an 11� 11 uniform polar grid (black
dots) together with the polar coordinates (grey crosses)
resulting from the conversion of the Cartesian grid in
Figure 1.
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powerful tool that can improve the parameter assess-

ment when compared to OLS solution, but the right
125 selection of weights is an art.

The aim of this work consists of improving the
determination of the Zernike polynomials approxima-

tion by proposing a weight function that compensates

the unequal influence of different surface zones in the
130 fitting. Starting from the original data obtained with a

standard device and thus, already sampled in the

Cartesian grid, we adjust the significance of each
sample and perform a fitting so that reconstruction

accuracy in the central optical zone is significantly
135 improved. The proposal is tested over theoretical and

real corneal surfaces resulting in a significant improve-

ment when compared with the ordinary least-squares

fitting method.

2. Method

140 The unequal density of nodes in different zones of the

sampled surface is expected to be counteracted by

assigning weights wp,q to the nodes depending on their
location. Nodes near the pupil center should have a

higher influence than those in the periphery, thus
145 taking into account the unequal density of samples

between zones seen above. First, we have defined a

polar grid (squares in Figure 3) together with the limits

of their areas of influence, i.e. sectors. This grid,
uniformly spaced in a polar domain, is used to spatially

150 allocate the samples in the pupil and to determine the
weight for each node.

The number of radial samples of the polar grid has

been determined from the maximum number of unique

radii that could be found for an angle in the Cartesian
155 grid, which results A ¼ ðNþ 1Þ=2, while the number of

angular samples has been defined from the maximum

number of angles, B, that were sampled in a unique
radius in the Cartesian grid. Hence, the coordinates of

the polar grid are obtained from (4):

ra, �bð Þ ¼
2aþ 1

2A
R,

2b

B
p

� �
: ð4Þ

160 The area of the pupil has been divided into sectors Ga,b,
a ¼ 0, . . . , ðA� 1Þ, b ¼ 0, . . . , ðB� 1Þ, the result of

combining B angular sections with A radial sections.

The samples included into these sectors accomplish the
relation (5)

xp,yq
� �

2Ga,b if

a
AR4 x2pþ y2q

� �1=2
� rsðaÞ

� 	
4 aþ1

A R,

2b�1
B p4 tan�1

yq
xp

� �
� �sðbÞ

h i
4 2bþ1

B p:

8>><
>>:

ð5Þ

165The contained samples in each sector vary and they

are not uniformly distributed either in the radial or

angular dimension, presenting different deviations with

respect to the coordinates of the polar grid, ðra, �bÞ,
which are considered the expected values. We establish

170a weight function in each sector Ga,b taking into

account, on the one hand, the number of nodes lying in

each sector �(a, b) and, on the other hand, the variance

of the nodes in each Ga,b taking as expected value

ðra, �bÞ. Hence, the weight function is expressed as

wp,q ¼ w 1ð Þ
p,qw

2ð Þ
p,q;

w 1ð Þ
p,q a, bð Þ ¼ � a, bð Þ½ �

�1;

w 2ð Þ
p,q a, bð Þ ¼

rs
2 að Þ cos 2�s bð Þð Þ � 2rs að Þra

� cos �s bð Þ þ �bð Þ þ r2a cos 2�bð Þ

( )2
4

3
5
�1

;

ð6Þ

175where the bar over stands for the mean. Note that the

last equation in (6) consists of the inverse of the

variance of the nodes in each sector. It is a measure of

the amount of variation within the values of the node

positions and somehow describes how far nodes lie
180from the expected value. The higher the variance is, i.e.

the higher the mean of these squared distances is, the

less weight to the nodes of the sector is assigned. The

application of expression (6) needs an additional

consideration. Different sectors can share the same
185node, for example the central ones share the (0, 0)

sample. In these cases, the node is divided into each

sector which contains it, thus appearing as a fraction of

samples. Hence, these fractions of samples are inter-

preted as fractions of the area of the pupil that each
190node represents.

Figure 3. Polar grid (grey squares) and sectors boxed in grey
(we highlighted one of them).
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The performance of WLS Zernike polynomial
fittings has been evaluated with respect to an OLS
one up to order 7 over theoretical and real surfaces.
First, we have tested the method with aspheric surfaces

195 with different conic constants. The change of curvature
from the center to the periphery will emphasize the
benefit of our method over the classic OLS. As a limit
case, we have compared the results obtained on a
bifocal surface. Errors in the central area and in the

200 whole surfaces have been evaluated. Finally, we have
analyzed a real case of a post-LASIK cornea.

3. Results

As stated above, we first have analyzed the theoretical
cases. We use one of the most classic forms used to

205 describe the refractive properties of an ophthalmic
surface in the eye S(x, y), solving the equation

ð1þ KÞSðx, yÞ � 2RcSðx, yÞ þ x2 þ y2
� �

¼ 0, ð7Þ

where Rc and K are radius of curvature and the conic
constant parameter respectively. On the one hand, we
generated a conical surface with Rc¼ 7.9mm [11] and

210 K varying from �6 to 0 in a pupil area of diameter 6
mm sampled in a 61� 61 Cartesian grid. Although the
variation of K values is not realistic for ophthalmic
sufaces in the eye, we select such a range in order to
enhance the difference between the methods. Both OLS

215 and WLS Zernike polynomials fitting have been
applied and we have reconstructed the surfaces from
the obtained coefficients.

In Figure 4, we plot the root mean square deviation
(RMSD) of the reconstructed height and power maps

220 with respect to those of the generated surfaces. Power
maps result from considering the surfaces separating
the media of refractive indexes 1 and 1.3375. RMSD
values are so low due to the fact that we are
considering quite simple theoretical cases without

225 noise. Concerning RMSD resulting from the compar-
ison of height reconstruction, WLS fitting provides
same order results as the OLS one. Conversely, RMSD
in power maps is better for the WLS fit than for the
OLS, raising the difference between both methods as K

230 gets lower (higher in absolute value) or equivalently as
dissimilarity among curvature in axis and periphery
gets higher. Let us point out that, when using least
squares to minimize the ‘2-norm of the error, good
approximation of a function does not mean good

235 approximation of its derivative. Thus, errors in heights
have no direct correspondence with power errors and
vice versa [12], as happens in Figure 4, where it can be
seen that lower RMSD in height reconstruction does
not assure a good optical modelling. Analysing a conic

240 surface with K¼�0.21, similar to a real cornea [13],

we found that, although WLS fitting provides a slightly
higher height-RMSD than OLS (4.10� 10�4 versus
3.89� 10�4 mm), the difference in the inner optical zone
of pupil diameter 3 mm is almost one order of

245magnitude lower (0.83� 10�4 versus 4.88� 10�4 mm).
An extreme case of curvature variation from center

to periphery is a bifocal surface. We took a surface
sampled in a 61� 61 grid consisting of a conical

surface described by Rc1¼ 7.9mm and K¼�0.21 in an
250inner area of diameter F1 ¼ 3 mm and an external ring

zone from F1 up to F2 ¼ 6 mm with Rc2¼ 8.1mm and
K¼�0.21. Again, differences between initial and
reconstructed maps are compared using the RMSD.

Differences in RMSD of power maps between the
255initial and fitted surfaces for the different methods in

the central area have been 0.45D for the WLS and

0.95D for the OLS. Therefore our method is able to
improve the calculation in 0.5D with respect to the
classical method. In the whole zone the improvement is

260of around 0.2D (0.52 and 0.69D, respectively).
Regarding reconstructed height maps, OLS fitting
provides double RMSD (8.51� 10�1 mm) than the

WLS one (3.19� 10�1 mm) in the inner zone and a
similar value for the whole area (6.71� 10�1 and

2656.44� 10�1 mm, respectively).
Finally, we have compared both fitting techniques

over a real cornea. Normal corneas are expected not to
have discontinuities; however, pathological or surgi-
cally intervened corneas, which are interesting in the

270clinical environment, are likely to have significant

abrupt changes in their shape. The proposed method
compensates the unequally weighted sampling, limiting
the influence of the peripheral area over the central one
when fitting to a model and thus giving accurate

275reconstruction of the central optical zone. This fact can
be of special interest in the evaluation of wavefront

Figure 4. RMSD of reconstructed height (H) and power (P)
maps with reference to the initial ones as a function of the
conic constant K both using WLS and OLS fitting.
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aberrations of surgical intervened corneas as those
undergone to LASIK [14,15], where the central cornea
is flattened, or even PresbyLASIK [16], where a

280 multifocal corneal surface is created.
We have taken a cornea with LASIK treatment and

analyzed the performance of both WLS and OLS
Zernike polynomials. In Figures 5(a) and (b), height
differences between the surfaces resulting from

285 applying both techniques and the initial one are
shown. It can be seen how the WLS fitting provides
a more accurate approximation of the surface than the
OLS one in the central zone (F5 4mm). WLS
reconstruction gets slightly worse over a diameter of

290 around 4 mm, however, this area is in the border of the
natural pupil diameter in photopic conditions, and so
its influence on the overall image quality is marginal.

We have also shown in Figures 5(c) and (d) the error in
diopters. We can see that the error can reach 0.5 D in

295the center. Although none of the methods is capable of
a perfect fitting of the surface, the error in the OLS
method provides a poor approximation in the central
area, while the WLS fitting permits a better fitting.

In an overview of the obtained results, we have
300compared the performance of both WLS and OLS

Zernike fitting in theoretical corneas, as well as real
ones. In the conic surface case, WLS provides an
optically more accurate adjustment than the OLS, a
fact that becomes evident in Figure 4. We have also

305analyzed both methods over a synthetic bifocal
surface, finding 0.5D of improvement in the central
optical zone description by the WLS fitting with
respect to the OLS one. Finally, in the case of a real

Figure 5. (a)–(b) Height and (c)–(d) power differences between the reconstructed surface, both using OLS [(a) and (c)] and WLS
[(b) and (d)] fitting, and the actual measured one of a LASIK undergone cornea. (The color version of this figure is included in
the online version of the journal.)
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measured cornea after LASIK surgery, an immediate
310 conclusion of comparing differences in height in

Figure 5 is again that WLS provides a more accurate
description in the central optical zone. This fact can be
used for better designing of ablation profiles or
minimizing errors in laser ablation algorithms.

315
4. Conclusions

We have proposed a weight function that compensates
the unequal density of nodes in different zones of the
sampled surface and allows the improvement of
Zernike polynomials fitting of optical surfaces. The

320 reader should notice that the proposed technique does
not require a new sampling pattern or resampling of
the existing matrix, but a weight function is applied on
the original nodes.

The method limits the influence of the peripheral
325 area over the central one and thus gives accurate

reconstruction of optical surfaces, mainly of the optical
central zone. This fact will be of special interest in the
evaluation of wavefront aberrations of corneas with
sharp changes of curvatures from center to periphery

330 (e.g. corneas having undergone surgery).
Notice that the method does not impose a change

in the bounding conditions or in the sampling method,
but an efficient way of calculating the fitting polyno-
mials. Thus, it is of easy implementation in existing

335 systems and the obtained results permit a classical
interpretation of the Zernike coefficients in terms of
optical aberrations. The significance of the Zernike
coefficients of the modal approach is conserved,
allowing a direct relation with optical aberrations

340 and thus having this advantage over other reported
methods [17–19].
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