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Data in many real world applications are high dimensional arditeg algorithms like neural networks may
have problems in handling high dimensional data. However, the Intrinsier®ion is often much less than
the original dimension of the data. Here, we use fractal basdmbdseto estimate the Intrinsic Dimension and
show that a nonlinear projection method called Curvilinear Component Anabys effectively reduce the
original dimension to the Intrinsic Dimension. We apply this apprdachlimensionality reduction of the
face images data and use neural network classifiers for GenderiCatiesif
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Gender Classification

1 Introduction

High dimensional data usually contain redundancies and may haveimseyant variables. Classifiers like
neural networks may need huge networks, with many free pasane&d cover the high dimensional data.
Networks, on such datasets, even if successfully trained, often mebfadly on their test sets. This bad
generalization may be due to the large number of free parameterengipigegrelevant information. To learn
relevant information from such datasets, a large number of datapeioisl be needed, which is often
impractical, and the training time needed for learning mlseases to a great extent. This problem with high
dimensional data is often referred in the literature as “curse of dimentio(Béliman, 1961).

The intrinsic dimension which is the true dimension, of the databeayuch smaller than the original data
dimension. The problem with high dimensional data can be circumventedilging the data to its Intrinsic
Dimension.

Principal Component Analysis (PCA) (Jolliffe, 2002) and Independent Compémalysis (ICA) (Comon,
1994) are linear projection methods and are the most popular sthtisdthods for dimensionality reduction.
Being linear methods, they work perfectly well on the lineaa.détowever real world data are often
nonlinear, in which case linear techniques are not appropriate. Hereseva powerful recent nonlinear
projection method, Curvilinear Component Analysis (CCA), for dimensikynaduction and show that it is
possible to reduce the data to its Intrinsic Dimension. We ap@ytebhnique on face images data and use
two classifiers, Multi Layer Perceptron (MLP), and Supporttd¥ieMachine (SVM) with a linear kernel, for
Gender Classification. We also investigate different methods for estinatiimgic Dimension.
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2 Intrinsic Dimension

Intrinsic Dimension (ID) can be defined as the minimum numbereef Variables required to define the data
without any significant information loss.

Due to correlations among the data, linear and nonlinear, a D dimaindata set may actually lie on a d
dimensional manifold (D> d) and the ID of such data is said to be d. For example a plabedded in a
three-dimensional space, as shown in Figure 1(a) has an ID af the two axes variables are linearly
dependent. Figure 1(b) shows the well known three dimensional horsesaadisti#bution. However, any
point in the data can be defined by a linear axis and a curvilinear axis, indicating tiais 2.

Dimensionality reduction algorithms reduce the data to a usgrededimension but do not inform about the
number of dimensions the data should be reduced to. ID estimation Gaprim step to dimensionality
reduction. There are a few methods in the literature, for estigntite 1D, which are mainly based on the
fractal dimension. As the name suggests a fractal dimension cambe integer value.The box counting
dimension, information dimension and the correlation dimension are the popular frabtdsne

(@) (b)

Figure 1. (a) A two dimensional plane embedded in a three dimensjmaa@ has an ID value of 2. (b) Three
dimensional horseshoe data distribution with an ID value of 2.

2.1 Box counting dimension

ID estimation using different approaches leads to different sokjtidepending upon the complexity of the
problem, and there is no unique definition of dimension. According to Gam@amastra & Vinciarelli,
2001), the so called box counting dimension also known as the capacity idm@niandelbrot, 1977) is the
most popular one.

The box counting dimension is based on the following idea (Baker & Gdadl@®Q): consider a one-
dimensional line of length. The number of one-dimensional box®§), of lengthl, required to cover this
line can be given as(/1). Similarly, to cover a two dimensional box of lengtithe number of two-

dimensional boxes requiredris/1)?. In general, for a dimensional figure the number of boxes needed

would ber @ (1/1)° .
Taking logarithms gives the following equation.

logV (l)

"~ logr +log(/1) )
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In the limit of smalll, the term involvingr becomes negligible. The box counting dimension can then be
written as

=i logV (l) )
1-0 log(d/I)

The above equation can be approximated by measuring the sldpe @bt of the logarithmic values of the
number of required boxes (hon-empty boxes), to cover the data, and the inverse of taegtdge the box.
The illustration of box counting method on the horse shoe data distrimit@®00 data points is shown in
Figure 2. The data space is covered by a three dimensional lsbowas in Figure 2(a). The box is divided
into 8 boxes as shown in Figure 2(b) and further into 64 boxes as shdvigure 2(c) and the number of
non-empty boxes is calclulated at each stage. Figure 2(d) shewsx counting plot for the horse shoe data.
The slope of the linear part of the curve, which is the box counting dimension, is calcslat8d%®.

Shpe=19792

log V(1)

_ log(1/1)

(d)
Figure 2. (a) A box of edge length 2 covering the whole horsedibtyédution. (b) The box is divided into 8
equal boxes. (d) The box is further divided into 64 equal boxes (c) A plogarithmic values of the number
of non-empty boxes and the inverse of the edge length of the box.

2.2 Information dimension

The Box counting dimension, though it analyzes the geometrical sewafttine data, ignores the distribution
of the points on this structure. It discounts the information of the numbeints in the box. The
Information Dimension overcomes this problem. It uses Shannon’s infoormidrmula to quantify the
information conveyed by one box (Theiler, 1990). The Average Informatianbe given by the following
equation:
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1(1)=-2_plogp, (3)

whereP; is the probability that a point falls in th® box, and can be defined Bs= N; /N if N is the total
number of points ani; the total number of points in tfi& box.
The Information Dimension is then defined as:

d, =tim—0)_ (4)

-0 log(@/I)

The above equation can be approximated by measuring the sldpe @bt of the logarithmic values of the
Average Information and the inverse of the edge length of the box. Figure 3 shdmfsriimation Dimension
plot of a 2000 data point horseshoe distribution. The Information Dimensiba sddpe of the linear part of
the curve and is measured at 1.9211.

Slope=1.9211

logl(l)

0.5 |Og(1/|) 1 15 2

Figure 3. Information Dimension plot of the horse shoe data. It is calculatedshspé®f the linear part of
the curve.

In the case of uniform distribution of points, where each box holds equaber of points, the Information
Dimension is equivalent to Box Counting Dimension.

2.3 Correlation dimension

Both the Box Counting Dimension and the Information Dimension are ingakébd implement on high
dimensional data due to the computational load involved, as the number ofrimygases exponentially with
the dimensionality of the data. The correlatdimension (Grassberger & Proccacia, 1983) developed by
Grassberger and Procaccia is a better alternative for mggndional data. This method assumes that the data
is spatially correlated. A measure of this property is cdledorrelation integral l). It can be calculated

by using Equation (5).

PR K=1if d* <l
cli) = K where b
() N(N—l);jgl K=0,if d >I

()

WhereN is the number of data pointgs the length variable am«fj is the Euclidean distance between points

x; and x; in the datasex.
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The idea is that in d dimensional dataset, the total number of pair vasets closer to each other than
lengthl is proportional td raised tod. From this assumption the correlation dimensioran be calculated
from Equation (6).

L 0),

“ -0 log() ©)

C

The above equation can be approximated by caloglatie slope of the graph plotted of the logarithmi
values of the Correlation Integrahd length. Figure 4(a) shows the Correlation Dimenspot of a 2000
data point horseshoe distribution. The correlabmmensionshown in Figure 4(b) is the slope of the linear
part of the curve shown in Figure 4(a), and is mestsat 1.8768.
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Figure 4. (a) Correlation Dimension plot of the d®shoe data. (b) The Correlation Dimension isutzied
as the slope of the linear part of the curve.

The three dimensions discussed are shown to ledddy the following inequality:
d. <d, <d, (7)

The values of the three dimensions are usuallyeclos practice and if the points are uniformly disited,

the equality of Equation (7) holds (Grassbergerr&clacia, 1983). The three dimensions calculatedht®
horseshoe data also satisfies the above inequality.

Accurate ID estimation of most real world data,luling our face images data, is difficult becauf¢he
availability of only few data points and the noiseéhe data. However this does not mean that IPnesion is

not useful. A rough estimation of ID can be doneusyng any of the above methods, where after few
dimension values near to the estimated ID are densil and the dimension which gives the best reanlbe
selected as the true dimension of the data.

3 Dimensionality reduction

Many techniques for dimensionality reduction hawerb proposed in the literature. However, Principal
Component Analysis (PCA) (Jolliffe, 2002) and maezently Independent Component Analysis (ICA)
(Comon, 1994) are the ones mostly used. PCA, ealpeds a well known technique in the field of leac
Recognition (Sirovich & Kirby, 1987), (Turk & Peatid, 1991). These are linear techniques and look fo
linear dependencies in the data. Nonlinear metisada as Nonlinear Multidimensional Scaling (Shepgard
Carroll, 1965) and Sammon’s Nonlinear Mapping (Samm1969) have the ability to reduce the
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dimensionality of nonlinear data. However, thesghoas suffer from huge computational costs and the
inability to unfold strongly nonlinear data (Demaes & Herault, 1997). We use a recent algorithiteda
Curvilinear Component Analysis (CCA) proposed byriaetines and Herault (Demartines & Herault, 1997),
which overcomes some of the shortcomings of theratientioned methods and has the ability to rethee
dimensionality of strongly nonlinear data.

3.1 Curvilinear component analysis

The structure of the CCA network consists of twyels, the first one of which performs vector quzation
on the dataset and the second layer called theqtrap layer performs a topographic mapping ofdinecture
obtained by the vector quantization layer. The gotipn layer is a free space, which takes the sbéplee
submanifold of the data.

While dimensionality reduction methods reduce th@ethsion of the data, vector quantization methods
reduce the number of data points. The main purmdseector quantization in CCA is to reduce the
computational cost. As our face images dataseglaively small (400 faces), we do not perform wect
guantization and hence we discuss, here, onlyrtjegsion part of the CCA.

The idea of CCA is to preserve distances in thaeitigmd output spaces; all the possible distancesekea
points in the input space should match the resgedistances in the output space. However, presenvaf
larger distances many not be possible in the caserdinear data, as a global unfolding of the rfwadiis
required to reduce the dimension. In this casis, iftnportant that at least local (smaller) distanskould be
preserved. For this, CCA uses a neighbourhood famethich ensures the condition of distance matgisn
satisfied for smaller distances while it is relaxXedlarger distances. Preservation of smalleradisés (local
mapping), may then lead to the stretching of ladistances (global unfolding).

The projection layer of CCA minimizes an error ftioo which is given as

ZN:ZN:(di),(i_diTj)zFA( IYJ) Ojzi (8)

i=1 j=1

I\)ll—‘

Where difj and diY'j are the Euclidean distances between poiatglj in the input spac¥ andoutput spac&
respectively. F, (diYJ.) is the neighbourhood function, selected such théavours smaller distances over

larger ones. Minimizing the error function with resp to the pointy. in the output space by a normal
stochastic gradient would give the following updatie.

oY, = a(t)Z "d % o o )~(a7 - s M —v) ©)

i

a(t), the learning rate, and the neighbourhood funcEgp(tdiY,j) can be time varying.

The stochastic gradient update method of EquaBprcgn be conceived as selecting a p¥jnt the output
space, while the remaining points are pinned. Ehected point is moved (updated) according to trerame
influence of all the pinned points. This methodupidating has the following drawbacks (Demartines &
Herault, 1997).
1. The computational cost is of the order ®fN?) as all the possibl&i(N-1)/2 distances need to be
calculated at each time step.
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2. The sum of all influences may lead to an averagifigct, which leads to a small update amount
resulting in slow convergence.

For these reasons CCA uses a different update chetttere the selected point is pinned while theaiaig
points are moved according to its influence. TH®nignoring the derivative part of Equation (9)e thpdate
rule of CCA can be written as:

X Y

7Y, =a@F (@) ) o (10)

ij
The algorithm for projection of the training daande summarized as follows.

Cal cul ate the Euclidean distances between all pairs of points in the
I nput space.
Initialize the points in the output space randomy or using PCA
Initialize epoch t=0
For each epoch t,
Begi n

Cal cul ate «(t) and -.

For each point v, in the output space,

J
Begi n
d* —d”
Y, =Y, +0Y, where OY, = a(t)F, (diY,j)%(Yj -Y,)  Oj#i
i
End
| ncrenent t
End

Mapping of a new point (test data) from the inpuacgX to the output space, in CCA, involves reducing
the error function of Equation (8) and is iteratimehe same sense as the actual learning prodesgever,
the update rule is the stochastic gradient of Hgoat9) without the derivative part. The algorithior
projecting a new point can be summarized as follows

Cal cul ate the Euclidean distances between the new test point and all the
trai ning points.
Initialize the test point in the output space randomy or using PCA
Initialize epoch t=0.
For each epoch t,
Begi n

Cal cul ate «(t) and -.

X Y

- Y dii _dij C
Y =Y +0Y, where OY, =a()) F, (di’j)T(Yi -Y,)  Oj#i
j=1 i
| ncrenent t
End
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We use the first few variables obtained by the Rféjection, for initialization of the points in thmutput
space. This initialization, rather than a randora,anduces some prior information about the subfolhof
the data. The learning rate and the neighbourhadthware calculated as an exponential decay.

3.1.1 Projection evaluation

The quality of a projection can be evaluated by‘thedX representation (Demartines & Herault, 1997)slt i

a plot of all the possible distances in the inpuaice,dx’s, versus their respective distances in the output
spacedy'’s. For a linear projection thed{-dxX plot should be linear. Figure 5(a) shows the @ctipn of the
plane in a three dimensional space, of Figure 1ifad, two dimensional space. Thidy“dX plot, shown in
Figure 5(b) indicates a linear projection as tlyés and dx’s are proportional at all scales. However, for a
nonlinear projection a complete distance matchllasaales may not be possible. Figure 6(a) shoves th
projection of the horseshoe data, of Figure 1{ba two dimensional space. The projection is nealirwith
only smalldy’s matchingdx’s, shown in Figure 6(b). Unfolding can be observeddy > dx) occurring for
larger distances.
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Figure 5. (a) Projection of Figure 1(a) from a thtemensional space to a two dimensional spaced ®)
The “dy-dX representation indicates a complete linear pt@eaowith no unfolding.
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Figure 6. (a) Projection of the horseshoe dataigtire 1(b) from a three dimensional space to a two
dimensional space by CCA. (b) Thay“dX representation indicates a nonlinear projectiathm wnfolding @y
> dx) occurring at higher scales.
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4 Gender classification

Two different datasets are used. The first oneistsef 100 distinct adult, frontal face grey scahages (50
male and 50 female). The face images are fromdhenfing databases: AR (Martiniz & Benavente, 1998),
FERET (Phillipset al, 1998), and JAFFE (Lyorst al, 1998). The dataset consists of faces of differaces
and age groups, taken under different lighting @¢oomts. Some examples are shown in Figure 7.

(30 @

Figure 7. Examples of the raw face imagedathsetl

Taking the midpoint of the two eyes as a refergaiat a 60 90 part is extracted from each of the X228
face images. Histogram equalization is applied han déxtracted images to normalize for different tiiggdp
conditions. Some of the extracted and histogranalespd faces are shown in Figure 8. The dimensitynai

this dataset is 5400. We refer to this resultatdstt aslatasetl
-

et

Figure 8. The first row faces are the 60 x 90 etimas of the original 128 x 128 face images. Téeosd
row shows face images after histogram equalization.

The second dataset, a much larger dataset, wasbysedn et al. (Suet al, 2002). This dataset consists of
400 adult frontal face grey scale images (200 raatk 200 female) each with 1800 resolution. All face
images were warped to the same scale, orientatidmpasition, by geometric alignment of centreshaf ¢yes
and corners of the mouth. Histogram Equalizations when applied on the resultant images. The
dimensionality of this dataset is 10000. We redethis dataset atataset2

4.1 Datasetl

This dataset is randomly divided into 5 subsetsh wiach subset having 80 (40 male and 40 femate) fo
training and 20 (10 male and 10 female) for testifige test sets are not overlapped with their Espe
training sets and other test sets.

Intrinsic Dimensionality of this dataset is caldeld using thecorrelation dimensiormethod discussed in
Section 2.3. As stated eatrlier, ID estimation @fl reorld data is difficult. Figure 9(a) shows ther@lation
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Dimension plot fodatasetl As the plot is not linear like the plot of thereeshoe data shown in Figure 4, we
select different intervals and measure the slogbefinear fit of that interval. The ID values findhese plots
of different intervals are different; the ID estitiaa of the plot in Figure 9(b) is 7 while it is 141 both Figure
9(c) and 9(d). We select the worst case dimensloaslthe Intrinsic Dimension of tilatasetl.
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Figure 9. (a) The Correlation Dimensiplot for datasetl The ID estimation varies at different intervalfieT
interval taken in (b) gives ID as 7, while (c) il gives ID as 11.

As the ID value of 11 selected for this datasetlmarconsidered as only a rough estimation, we ttifdrent
dimensions around this value.

We use two classifiers, a MLP and a SVM with a Imiearnel (Other kernels like Radial Basis functand
Polynomial function are tried, but linear kernebguced better results). The average error ratestbed sets
on this dataset, for different CCA dimensions drew in Table 1. The error on CCA data with 6 disiens
was quite high with both MLP and SVM and the erre@ntvdown as the dimension is increased. The
minimum dimension with optimum result is 14. Thay“dX plots of the CCA projections, shown in Figure
10 can explain the results of Table 1. Figure 18faws CCA projection to 6 dimensions. The plot is
distorted, with distance linearity occurring onliy \&ery small distances, indicating a bad projectidbhe
projection quality improves as the dimension igéased. Figure 10(d) and 10(e) with CCA projectian$4
and 16 dimensions respectively, has distance liyeazcurring at larger distances.

Table 1. Average Error Rates Over 5 TestseBathset] with Different CCA Dimensions

Method  MLP (%) SVM (%)

CCA-6 40 43

CCA-8 31 28
CCA-10 31 24
CCA-12 28 24
CCA-14 23 17
CCA-15 26 17
CCA-16 25 20

CCA-18 26 19
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Figure 10. The dy-dX plots of CCA projections to (a) 6 dimensions @jlimensions (c) 10 dimensions (d)
12 dimensions (e) 14 dimensions (f) 16 dimensi®&sjection to 6 dimensions is more distorted witiyo
few starting small distances being linear. Thegmtipn quality improves as the dimension is inceeas

For comparision, we tried classification on dattaoted by PCA reduction. For &hdata point dataset, there
will be N-1 meaningfulPrincipal ComponentsMore details can be found in (Sirovich & Kirby,88. As

this dataset has 80 faces there will be 79 meamlipgincipal components. However the first 67 comgruts
accounted for 95% of the total variance of the .dBtaprojecting the data onto these 67 componertsvere

able to reduce the 5400 dimensional data to a ®émsional data. We refer to this data as PCA-6a. dae

also tried classification on the actual data, withany dimensionality reduction, and we refer tig thata as
RAW data. Table 2 shows that both dimensionaliguotion approaches produced better results than the
RAW data, with PCA-67 faring better than CCA-14.r Rmbmparison, another PCA reduction to 14
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dimensions is obtained, by projecting the data dinéofirst 14 components. We refer to this as tGaAR4
data. The classification in Table 2 shows that PidAserformance is worse than that on the RAW datze
“dy-dX plots of PCA-67 and PCA-14 data shown in Figuteekplains their performance. The PCA-14 plot,
in Figure 11(b), shows mismatch of distances adclles.

It can also be seen, from Table 2, that the SVM gabetter classification than the MLP.

Table 2. Average Error Rates Over 5 TestseBBathsetl

Method  MLP (%)  SVM (%)

RAW 30 27
PCA-67 19 12
CCA-14 23 17
PCA-14 34 32

dx
o)
]

L L L L L L L L L L L L L
0] 5 10 1% 20 25 30 35 40 o i 10 15 20 25 30 3k 40
%
(2) (&)

Figure 11. Thedy-dX plots of PCA projections to (a) 67 dimensions {d)dimensions. The plot is distorted
for 14 dimensions with nonlinearity of distancesalitscales, while the plot for 67 dimensions isstho
linear.

4.2 Dataset2

This dataset is divided into 5 subsets with eadissuhaving 320 faces (160 male and 160 female) for
training, 50 faces (25 male and 25 female) foringstand 30 faces (15 male and 15 female) as datain
set. The validation sets are used for stoppingraifor the training of the MLP.

A rough ID estimation was performed, similar to tpeocess fordatasetl The ID is measured as
approximately 14. Again different CCA dimension® dried as shown in Table 3. The PCA gave 273
components accounting for 95% of the total variaoicéhe data. The projection of the data onto tHz&2
components resulted in a 273 dimensional data. &l to this data as PCA-273. Table 3 shows theagee
error rates over 5 testsets. It can be seen thaverage error rates for CCA above 10 dimensmssnilar,
however the minimum dimension with optimum ressltGCA-12. The performance of the PCA-273 is
similar to that of CCA-12. There is not much diface in the classification performances of the Mic@
SVM.
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Table 3. Average Error Rates Over 5 TestseBBathset2

Method  MLP (%) SVM (%)

PCA-273 6.55 6.25
CCA-6 13.75 11.25
CCA-8 9.5 9.25
CCA-10 8.25 8
CCA-12 6.75 7
CCA-14 6.75 7.5
CCA-16 6.5 7.5
CCA-18 8.25 7
CCA-20 8.75 7.5
CCA-22 7.75 7.5

5 Discussion

PCA projection to account for 95% of the total aage of the data resulted in 67 dimensionsdfiaset]
while it resulted in 273 dimensions fdataset2 As the number of data points increases, the nuwibguch
PCA dimensions also increases. This, however, doesecessarily mean that the ID also increasespan
results show similar ID estimation for both dataseLCA is able to successfully reduce the original
dimension to the ID for both datasets.

If the “dy-dX plot of the CCA-14 ofdataset] Figure 10(e)is considered, the projection can be seen as
reasonably linear, with no strong unfoldindy (> dx). The larger distances in the original dataspaee a
replicated with good fidelity in the output spad@&is indicates the projection of the data in a deshsional
space by CCA is not strongly nonlinear. In contthst PCA projection in a 14 dimensional space ghlli
distorted as shown by Figure 11(b). This shows ithebility of the PCA to deal with even slight
nonlinearities.

CCA favours smaller distances over larger onesait be seen in all thedy-dX plots of Figure 10, that
smaller distances in both input and output spacesnatched. Even in a distorted plot of Figure }Gfeere
are few small distances that are matched. PCA girojes, in contrast, seem to favour larger distandée
“dy-dxX plot of PCA projection in a 14 dimensional spasbpwn in Figure 11(b), shows distortion at all
scales. However, the smaller distances are motertdid than the larger distances. Even in a fairdiform
PCA projection in a 67 dimensional space, showrrigure 11(a), there is a slight mismatch in smaller
distances. This may suggest a bad local mappirlRd#.

Three different fractal methods, which considerfeddnt properties of data to estimate the Intrinsic
Dimension, are also investigated. Correlation Disi@m which considers spatial correlation propeiftyhe
data, is found to be feasible in the case of highedsional data, due to it's relatively lesser cataponal
cost.

Finally, based on our experiments, we make thewoilg conclusions:
1. The ID of our face images data is much lower tlnegir toriginal dimension.
2. Linear methods like PCA are unable to effectivedguce the nonlinear data to its ID, whereas
nonlinear methods like CCA can effectively do this.
3. Classification in the ID space works.
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