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Reduction of Nonlinear Intrachannel Effects by
Channel Asymmetry in Transmission Lines With

Strong Bit Overlapping
E. G. Shapiro, M. P. Fedoruk, S. K. Turitsyn, and A. Shafarenko

Abstract—We have examined the statistics of simulated bit-error
rates in optical transmission systems with strong patterning ef-
fects and have found strong correlation between the probability
of marks in a pseudorandom pattern and the error-free transmis-
sion distance. We discuss how a reduced density of marks can be
achieved by preencoding optical data.

Index Terms—Forward-error correction (FEC), numerical anal-
ysis, optical fiber communication, run length codes.

I. INTRODUCTION

OPTIMIZATION of the optical transmission system
parameters is a crucial task for the design of fiber links.

Numerical evaluation of system performance in terms of error
probability is still in progress, especially in the presence of
strong patterning effects (SPE), when the simulated transmis-
sion distance greatly varies from run to run. For high bit-rate
dispersion-managed fiber systems with many bits significantly
overlapping during transmission, the patterning effects are
quite significant. Consequently, the conventional approach [1]
needs to be modified to account for statistical variations of the
computed factor for different patterns used in simulations
[2], [3]. In this letter, we study the statistics of the numerically
calculated factor under SPE and examine the suppression of
intrachannel nonlinear effects when the probability of a mark
decreases.

A. Statistics of the Factor

For the sake of simplicity, but without loss of generality,
we assume, following [1], that the statistics of the received
marks and spaces can be approximated by two Gaussian
distributions: and

, respectively. The
factor is then defined as . Consider

varying patterns of bits where and are the

Manuscript received December 6, 2002; revised June 13, 2003. This work
was supported by the Russian Foundation for Basic Research under Grant
03-02-16 496-a.

E. G. Shapiro is with the Institute of Aautomation and Electrometry, Russian
Academy of Science, 630090 Novosibirsk, Russia.

M. P. Fedoruk is with the Institute of Computational Technologies, Russian
Academy of Science, 630090 Novosibirsk, Russia.

S. K. Turitsyn is with the Photonics Research Group, School of Engineering
and Applied Science, Aston University, Birmingham B4 7ET, U.K. (e-mail:
s.k.turitsyn@aston.ac.uk).

A. Shafarenko is with the Department of Computer Science, University of
Hertfordshire, Hatfield AL10 9AB, U.K. (e-mail: a.shafarenko@herts.ac.uk).

Digital Object Identifier 10.1109/LPT.2003.818061

numbers of marks and spaces. Under SPE,varies from pattern
to pattern and, in general, differs from the value of the “true”
for a very large (or infinite) pattern. In practice, it is important
to understand how the factor found from a finite-length
pattern correlates with the one corresponding to the infinite
pattern. Let and be the simulated
values of marks and spaces, respectively. Define, following [4],
the sample and for these and consider the distri-
bution of a random quantity .
Assuming that and are statistically independent,

is also normal distributed, with the standard devia-
tion and the mean .
Further, is
distributed by (chi-squared distribution with
degrees of freedom). Similarly, is distributed
by . We aim to estimate the probability that random

will be larger/smaller than the
“true” factor

.
Note that for systems with , we can approximate the

factor by . The variable is
distributed by (where

is the standard normal distribution and ),
which is the noncentral -student distribution with
degrees of freedom. Then for large, we can use the known
fact [4] that the distribution of approximates
normal with the mean value and dispersion

. When both and are large, we can greatly
simplify analysis by applying the known result that each of

and
is well approximated by the standard normal distributions (the
so-called Fisher’s approximation [4]). Therefore, in the limit
of large and
approximates a normal distribution with the mean value

which obviously tends to zero as . This result
implies that the probability for the factor of a
random pattern to be larger than the “true” tends to 0.5,
i.e., that overestimates and underestimates ofare equally
probable. System performance is usually analyzed in terms
of maximum propagation distance corresponding to a BER
less than (or ). Consider sample calculations
of factor for which error-free (with ) transmission
distances have been calculated and arranged in ascending order:

. It follows from the above result that the
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TABLE I
PARAMETERS OF THESYSTEM

Fig. 1. Distribution ofsinh [Q 3=2].

sample with the median value in this sequence gives the best
approximation of the “true” error-free distance.

B. Numerical Modeling

For the purposes of verification of the above theory, we chose
a symmetric dispersion map. The periodic cell starts with the
standard fiber (SMF) followed by the dispersion compensating
fiber (DCF), then again by the piece of SMF (of the same length
as the first SMF), and finally by 10-dB EDFA amplifier. The
fiber parameters are listed in Table I.

Average dispersion was0.03 ps/nm/km. Parameters of the
input unchirped Gaussian pulses are: width: 6.7 ps; peak power:
4.95 mW. We have examined the statistics of four-channel
wavelength-division-multiplexing (WDM) transmission with
150-GHz channel separation at 40 Gb/s in each channel. The
highest frequency channel was operating at 1548.2 nm. Instant
detection at every numerical step was performed to locate the
maximum performance pointsinside the map period. Fig. 1
presents the distribution of calculated after
350 runs with random patterns of 512 b; here,is taken at

km in the worst of the four WDM channels. In
agreement with the above theory, the distribution approximates
normal (the probability of a type 1 error for this from thetest
is 0.02). There is a patterning effect in the system due to large
bit overlapping. This leads to a strong correlation between the
number of marks in the pattern and degradation of the signal.
Fig. 2 shows the correlation coefficient (see, e.g., [4]) between
the number of marks in the pseudorandom pattern and the
value of . Negative correlation coefficient indicates that the
degradation of the factor is related to the number of marks
in the pattern.

Fig. 2. Correlation between the number of marks in the pattern and the value
of Q factor.

Fig. 3. Effect of the probability of marks on transmission distance (the dashed
curve is bandwidth-adjusted).

Fig. 3 shows how the error transmission distance decreases
with the rising probability of marks in the pattern. The infor-
mation content of a binary digit is

, where is the probability of marks. In partic-
ular, when marks and spaces are equally probable the infor-
mation content of one binary digit is exactly equal to 1 b. As
the value of deviates from , the information content drops
roughly as the square of the deviation. The information content
of a string of bits is proportional to its length and to the con-
tent of each bit, assuming the absence of correlations. Hence,
the product (here, TD is error-free trans-
mission distance) is proportional to the standard figure of merit
for fiber lines (bandwidth times distance). Furthermore,
has the natural meaning of “bandwidth-adjusted” transmission
distance.

Note that as the probability of marks decreases, so too does
the average energy contained in the packet. To compensate for
this (and ensure a constant level of nonlinearity in the system
for all patterns), the energy of each mark was proportionally in-
creased. This explains why the unadjusted curve bends down
at low probabilities of marks. This effect accentuates the max-
imum in the bandwidth-adjusted curve, where a similar degra-
dation occurs due to the information content going down as the
contrast between mark and space probabilities increases. There
is, thus, a well-defined optimal encoding regime for the trans-
mission system in question.
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Discussion: The results of our simulations indicate that the
density of marks in the message dramatically affects the quality
of transmission. It is, therefore, desirable to preencode the mes-
sage in such a way that the number of marks is kept near op-
timum before transmission. This can be achieved by bit stuffing,
i.e., by inserting additional spaces, which are to be discarded, or
“unstuffed,” by the receiver. The insertion of the spaces could be
in fixed randomly chosen positions, in which case the sequence
remains uncorellated as a whole, or, rather more promisingly, in
those positions where the local density of marks exceeds a cer-
tain limit. In the latter case, we introduce certain correlations,
which are not covered by the transmission analysis presented
above directly; however, it stands to reason that a system with
local interactions between pulses should respond to local bursts
of load as well. In the case of fixed insertion positions, extra
spaces will often be inserted into a run of spaces where they
do not affect the physics of transmission and so could well be
wasted.

Targeted insertion of spaces is well known in digital
recording where it is referred to asrun-length limited (RLL)
encoding. The RLL is applied as a modulation technique which
prevents runs of marks exceeding a certain, usually small,
length from occurring on the recorded medium. It supports very
efficient encoding–decoding solutions based on linear com-
plexity algorithms. The downside of the additional correlation
that results from RLL is not only the need to further investigate
the propagation of correlated (as opposed to uncorrelated)
sequences, it is also the fact that RLL decoding can proliferate
errors by misinterpreting faulty RLL-encoded fragments. Thus,
single transmission errors, which could easily be corrected by
uncomplicated forward-error correction (FEC) methods, may
well be turned into harder-to-correct burst errors by the RLL
decoder.

There is consequently a need for a combined RLL–FEC
preencoding, which provides sufficient space stuffing while

keeping possible transmission errors under control. In a recent
paper [8], such codes have been proposed. They are free
from induced burst errors, amenable to an efficient hardware
implementation, and can accommodate any external FEC code
(which consequently does not have to be burst-correcting). In
particular, the FEC code could be one of the low-density parity
check codes (see [5]–[7]), which are known for their high
performance [5] as well as the fact that they lend themselves
nicely to a parallel implementation.

Future work will focus on studying the propagation of corre-
lated sequences under RLL–FEC with the view to quantifying
the effects described here and providing further recommenda-
tions on the optimal encoding regime.
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