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Abstract—This paper proposes a Network Intrusion Detection 

System (NIDS) embedded in an Smart Sensor inspired device, 
under a Service Oriented Architecture (SOA) approach, able to 
operate independently as an anomaly-based NIDS or integrated, 
transparently, in a Distributed Intrusion Detection System (DIDS). 
The proposal is innovative, because it combines the advantages of 
Smart Sensor approach and the subsequent offering of the NIDS 
functionality as a service with the SOA use in order to achieve 
their integration with other DIDS components. The main goal of 
the work is to reduce the huge volume of management tasks 
inherent to this type of network services, as well as facilitating the 
design of DIDS whose managing complexity could be restricted 
within well defined margins. The work also addresses the 
construction of a physical sensor prototype. This prototype was 
used to carry out the tests that has demonstrated the proposal’s 
validity, providing detection and performance ratios similar to 
those of existing IDS, but with the advantage of a zero-
maintenance approach. 
 

Index Terms—Intrusion Detection Systems (IDS), Embedded 
Systems, Smart Sensors, Service Oriented Architectures (SOA). 
 

I. INTRODUCTION 
NTRUSION Detection Systems (IDS) are a vital element in 
the communications infrastructure of organizations and 

represent one of the main security tools for computer 
networks. 

The role of the security administrator in intrusion detection 
is not easy; systems and services are becoming increasingly 
sophisticated and complex, as well as, consequently, their 
configurations, and new attacks and vulnerabilities are 
constantly arising. Moreover, and due to the undeniable 
success of networks as communications tool, the number of 
interconnected nodes and the volume of information to be 
managed are growing at an alarming rate. 

Traditional IDS are based on low level attacks and generate 
isolated alerts, although there is a logical connection between 
them. Furthermore, the huge number of generated alerts 
becomes unmanageable and security administrators are unable 
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to cope with them, making impossible to scrutinize and 
understand adequately the network's security status [1]. In 
order to solve this problem, the distributed intrusion detection 
systems (DIDS) combine all these scattered alerts and make 
use of their logic relationship, thus obtaining additional 
information. 

DIDS are currently as necessary as complex, due to the fact 
that they involve several technologies, devices and network 
resources, as well as sophisticated management tasks which 
are beyond the scope of many users or organizations which do 
not have a highly specialized team of administrators. 

There are still many open fronts in the field of intrusion 
detection, which are not solely concerned with improving 
detection ratios or with reducing the number of false positives 
that they generate. Some of them are: a) IT technological 
infrastructure which supports this type of system is 
increasingly sophisticated thus increasing both the complexity 
and number of associated management tasks; b) these systems 
are increasingly required to generate more information which 
overloads the network and the intrusion analysis systems 
themselves. 

Of all the problems, these are the ones which our proposal 
addresses in seeking architectures for the effective distribution 
of system logic, reducing as far as possible the impact of 
increased network traffic, keeping detection levels of the 
present systems and proposing scalable solutions, easy to 
implement and with a zero-maintenance philosophy. 

The huge range of small, low-cost embedded devices 
provided with one or more sensors, interconnected through 
wireless or cable networks integrated to the Internet, provide 
endless opportunities for monitoring and controlling 
organizations, homes, cities or the environment. Examples of 
this kind of devices are hardware probes RMON-based [2]. 
Furthermore, Smart Sensors technology gives support to 
specific requirements such as restrictions in the assignation of 
resources, compactness and flexibility to be adapted to various 
types of sensors, interfaces and computational 
communications and hardware [3]. These characteristics make 
the embedded devices in general and the smart sensors in 
particular an ideal framework for resolving many of the 
problems detected in the Network IDS (NIDS) [4], [5]. 

In view of the foregoing, this article proposes to apply the 
technology of Smart Sensors to design a physical device in 
which a NIDS capable of understanding the captured traffic 
and offering it on demand is embedded. 

Network Intrusion Detection System  
Embedded on a Smart Sensor 

Francisco Maciá-Pérez, Francisco J. Mora-Gimeno, Diego Marcos-Jorquera, 
Juan A. Gil-Martínez-Abarca, Héctor Ramos-Morillo, and Iren Lorenzo-Fonseca 

I 



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 

Although the proposal shall be developed more extensively 
in subsequent sections we may summarize it for the time being 
as follows: design of small network devices to act following 
the principles of intelligent network sensors, capable not only 
of monitoring network traffic but also of processing it online. 
They will search for anomalies caused by intrusion attempts 
and generate alerts in the event of such anomalies, as well as 
storing and communicating the aforementioned alerts as 
required. In practice, the network sensor behaves like a NIDS 
for detecting anomalies acting with a Smart Sensor 
philosophy. The main advantage of these tiny, self-managed 
devices is that they can be incorporated to DIDS without 
noticeably increasing the global complexity of the system. 

Taking this idea, in the upcoming section an overview of 
previous works and results in this field is provided. Following 
that, the proposal for a Smart Sensor is explained together 
with the general development scenario in which it could act as 
part of a DIDS; then, the design of the functional prototype is 
revised in order to make the relevant tests and this has been 
used to validate the proposal; finally the main conclusions are 
presented based on the work carried out as well as research 
prospects. 

II. BACKGROUND 
The main challenge for present day IDS is to be able to 

detect new attacks based on other previously observed events. 
IDS research, based on anomalies has led to the use of various 
techniques for modeling normal behavior and carrying out the 
process of analysis [6]. The most frequently used tool is 
statistical analysis where the normal model comprises a group 
of statistical variables. For example, a linear combination of 
six parameters [7] or a measure based on distribution of 
characters in order to detect anomalies in the content of the 
network packets [8]. 

Nevertheless, there are many anomaly detection systems 
which use machine-learning techniques to gain knowledge by 
training the parameters that model the system’s normal 
behavior. Neural networks are the most commonly used 
learning tools in IDS. Thus, we find their application in the 
detection of anomalies in programs based on system calls [9], 
in network protocols based on different session variables [10], 
[11], and on the key-words based application layer [12]. There 
are also approaches which combine neural networks in a 
hybrid IDS consisting on misused and anomalies. 

Most of the works on IDS based on neural networks have 
used Self Organizing Maps (SOM) [13], [10], [14], [15] as 
they are easy to implement and due to the fact that they have 
the advantage of a lower training time as the network is 
unsupervised. Also, one of the more important characteristics 
of neural networks is that they can be implemented in 
hardware, making the most of the advantages of their inherent 
parallelism capabilities. In this sense, we can find a lot of 
related works: a neural chip implanted in a scalable platform 
[16], neural networks in DSP for robot positioning [17] and 
even a neural network FPGA-based coprocessor [18], [19]. 

The expansion of networks has rendered conventional IDS 

insufficient. In order to mitigate these deficiencies, distributed 
intrusion detection systems have been developed as a set of 
disseminated sensors which collaborate in detection tasks. 
However, current DIDS, built under a generally hierarchic 
architecture, display a lack of scalability that makes the use of 
decentralized techniques mandatory [20]. Decentralized 
approaches are currently considered the most suitable [21], to 
the point that in the detection process should only be involved 
the nodes where the intrusion occurs, acting in close 
cooperation with its nearby peers [22]. Furthermore, the use of 
a substantial number of sensors collaborating, together with 
the volume of information they generate and the growing 
speed of networks, hinders analysis and increases costs, 
making the use of light, autonomous detection-capable 
hardware mechanisms more and more appropriate [23]. 

Considerable breakthroughs have been made during the last 
decade in the field of technologies for the development of 
small network devices endowed with a more than acceptable 
computational capacity, autonomous function [24] and the 
possibility of embedding intelligence in them. Although until 
recently the cost of these devices did not justify their large 
scale incorporation to certain tasks and services management, 
this scenario has changed: the present trend toward the 
miniaturization of lucrative devices with astonishing 
computation and communication capabilities lays the 
foundations for proposals providing specific network services 
with minimal attention and administration requirements. These 
proposals are based on self configuration and management 
models compatible with service oriented architectures (SOA) 
and standardized protocols (UDDI, SOAP, uPnP), all 
embedded in a very small network device and at extremely 
reduced cost [25]. 

The huge range of small, low cost embedded devices 
provided with one or more sensors [2], [26], [27], 
interconnected through wired or wireless networks integrated 
into the Internet, opens a field of endless opportunities for 
monitoring and controlling our homes, cities or even the 
environment. 

With the present technology, sensors are able to measure a 
wide range of magnitudes covering a broad spectrum of 
domains [28]. Furthermore, Smart Sensors usually integrate 
knowledge and constitute one of the key technologies for the 
future [3], [29]. 

Due to current restrictions on energy supply systems, 
reduced energy consumption levels has become a basic 
requirement for Smart Sensors. In order to improve the energy 
availability of the Smart Sensors it is possible to use protocols 
which provide the devices with energy through their 
communications network, such as the standard Power over 
Ethernet for wired networks [30] and WISA for wireless 
networks [31]. In general, Smart Sensors should make 
possible a configurable adjustment of the compromise 
between useful life (from an energy perspective) and the 
system’s latency and effectiveness [29]. 

In addition, Smart Sensors and their applications have 
special requirements such as the need to save energy, 
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restrictions in the assignation of resources (CPU, memory, 
storage and bandwidth), compactness and flexibility to be 
adapted to various types of sensors, interfaces and 
computational communications and hardware [3]. 

The inability of traditional models of operating systems 
(OS) to match such requirements has led to the development 
of specific OS for Smart Sensors [3]. This is the case of 
TinyOS, an OS based on free software and open source for 
Smart Sensors, developed by the University of Berkeley which 
set the ground for numerous projects involving Smart Sensor 
networks. Other approaches more embedded device-oriented 
that may be useful are, for instance: ThreadX, a real-time OS 
for embedded development; and µCLinux, a Linux-based OS 
for embedded devices without memory handling units. 

In order to achieve full integration, each Smart Sensor 
should go beyond ad hoc communication protocols, 
incorporating models, architectures and technologies able to 
offer their functionality in an open and standardized manner to 
facilitate interoperability between the sensors and the 
applications which make use of them. In this respect, service 
oriented architectures provide a model in which each network 
node offers its functionality through independent services 
accessible in a standardized manner [32]. SOA implies that all 
the different elements that form the system are related with 
each other as services. This service orientation is the next 
evolutionary step from the traditional client-server model with 
Service Providers instead of servers and Service Consumers 
instead of clients, but decentralizing the whole process by 
introducing the Service Broker as a new element, whose 
function is to keep the record of all services offered 
throughout the system and describe its use. 

There are currently a set of standard technologies which 
make SOA based applications possible: XML language and 
WSDL languages to describe services, SOAP to provide 
services and UDDI services to register them [32]. The 
conjunction of these technologies constitutes the basis of Web 
Services (WS). Although other SOA implementation 
technologies like WS-* and DPWS are in the market, we 
opted for WS-I Basic Profile 1.0 version since its simplicity is 
a perfect match for our purposes requirements. 

On the basis of this brief overview, it may be concluded that 
there are still issues remaining in terms of scalability, 
integrity, consumption and management of data volumes 
within the scope of IDS. It is also clear that IDS of anomalies 
based on SOM networks may serve as a reference for 
validating our proposal, due to its simplicity and to the fact 
that we are not interested in validating aspects of effective 
detection but rather efficiency in terms of resource 
management. Therefore it is clear that embedded systems and 
more specifically Smart Sensors may constitute a physical 
support, ideal for embedding functionalities of this type of 
IDS, mitigating to a large extent many of the problems 
detected. 

III. GLOBAL SCENARIO 
Although the design of smart sensors via the implantation 

of IDS in a device to make it behave as an intelligent sensor is 
the core idea of this paper, it is also true that most of this 
proposal advantages make sense only when one or more of 
these sensors act forming a DIDS (under a SOA approach) as 
part of a much more sophisticated system. That’s why we 
begin our proposal description by defining the general 
framework within smart sensors are integrated. 

In Fig. 1 a typical scenario containing a DIDS whose 
components are structured under a SOA model is shown. In 
this scenario our embedded NIDS are seen as Smart Sensors 
and play the role of Service Providers offering Web Services. 
For this same reason the scenario has been divided into the 
three classical SOA scenario areas: Service Provider Area, 
Service Broker Area and Service Consumer Area. 

The Service Provider Area may find different intelligent 
network sensors which act as NIDS and which have been 
connected to the networks to be investigated. The Service 
Broker Area contains the register servers responsible for 
maintaining information on the various services available 
throughout the system. The Service Consumer Area is the 
most heterogeneous and could be divided into three client’s 
categories: (a) Management systems and remote terminals 
used by network or security administrators to access 
management tasks, or simply to compile information directly 
on analyzed traffic or alerts generated by a specific NIDS. 
These could range from simple Web navigators to complex 
management systems. (b) The second type of client comprise 
gateways which act as adaptors between our sensors, working 
under the SOA approach and other components or systems 
inherited from a traditional DIDS which do not support this 
approach. (c) Finally, there is a third type of client comprising 
components of a DIDS which incorporate WS technology in a 
native manner and, therefore, able to locate and contact Smart 
Sensors directly. 

From a functional perspective, the scenario may also be 
described on the basis of different phases of the SOA model: 
publication, discovery and consumption. 
1) Publication phase correspond with the first sensors state 

(when they are connected to the network). In this phase 
the sensor should locate a publication server using the 
UDDI protocol to send all the documentation describing 
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the service in the form of WSDL pages. 
2) During the discovery phase any WS client wishing to 

consume an intrusion detection service offered by a Smart 
Sensor should know it previously. For this purpose firstly 
they will locate a registered service and will request 
sensor documentation in order to ascertain all its address 
details, how it should be approached and the manner in 
which the requested service will be returned to them. 
Once again the UDDI protocol will be used and the 
information will be based on WSDL pages. 

3) Consumption is the most important phase of all as this is 
what grants real significance to the whole system. Clients 
in this phase, having discovered the available services, are 
in a position to consume them or to approach the Smart 
Sensors and request the services they offer directly. 
Communication between services and consumers in this 
phase shall be made through SOAP requests and 
responses. 

IV. EMBEDDED IDS PROPOSAL 
Once established the general scenario, this section will 

focus on the design of the IDS embedded into a device 
inspired in Smart Sensors. Before starting up, it is important to 
clarify the existing relationship between our proposal and the 
traditional approach based on smart sensors networks (SSN). 

In the field of SSN each sensor’s autonomy is taken for 
granted. To achieve that, it is been considered, generally 
speaking, that smart sensors cannot be wired. Due to that, 
sensors should be efficient and collaborate in order to transmit 
the information to its final destination in the most sensible 
way consumption-wise. 

In our proposal, the smart sensors-based device employed 
are twisted pair network sensors, so any limitation to their 
power autonomy becomes meaningless by the fact that they 
could be energized by an array of different techniques like 
Power over Ethernet and external power supplies, to mention a 
couple. By similar reasons there is no point in addressing the 
typical problems related to signal-retransmission collaboration 
and the like. 

These are just a few SSN’s characteristics, but there are 
others of similar importance. Among them, the way they were 
conceived, in which traditional sensors acting as mere 
transducers are bestowed with processor, memory and a 

communications module that allow the inclusion of know-
how, information storage, and the supply-on-demand of the 
often processed-into-knowledge information. 

These are the features that have guided our IDS design, 
embedding it into a smart sensor. In compliance to that, our 
network sensor is not only capable now of capturing the 
network traffic (taking the chance to solve its energy 
problems), but also of filtering and processing it in search, 
although primitively, of intrusion attempts and of offering its 
detection services (on-demand in this case) as well. 

That is not to say that the sensor should be continuously 
consulted via pooling techniques, but, on the contrary, that it 
will just notify any intrusion attempt asynchronously, on 
demand and under the conditions and restrictions (detection 
thresholds, bandwidth, etc.) indicated. 

Therefore, we can say that the fundamental basis of our 
proposal is the design of an intrusion detection system 
embedded in a miniaturized network device which will offer 
functionality as a Web Service. It will be provided with 
Service Oriented Architectures that in addition to act as a 
network sensor incorporated to a DIDS or to the system’s 
administrators, will make possible that the IP traffic captured 
by them could be filtered and processed in the form of alerts. 

For the alerts an intrusion detection message exchange 
format (IDMEF) will be used, defined by the IETF [33] in the 
RFC4765. This standard defines the data formats and the 
exchange procedures for sharing data of interest between IDS 
response systems and management systems which are required 
to interact together. 

IDMEF alerts may be transmitted both continuously and on 
demand, when actually required, or whenever network 
resources are able to support the transfer without any 
significant hindrance to their performance assisting the design 
of scalable DIDS. 

From a physical perspective the system has been designed 
as a Smart Sensor. Fig. 2 shows the physical structure of the 
sensor indicating its main elements: (a) the sensor itself which 
is formed by a network adapter for connection to the local area 
network (LAN) whose traffic is being analyzed. This adaptor 
should support promiscuous mode in order to capture all the 
network traffic. This element provides the system with 
sensitivity; (b) a microprocessor with embedded additional 
functionality in order to analyze the captured traffic online, 
looking for behavior patterns which could be considered 
anomalous, such as intrusion attempts, which are to be 
converted into alerts; (c) in addition to computing power, the 
sensor has been provided with a non-volatile internal memory 
to store the alerts generated by the IDS, together with the 
involved traffic; (d) finally, the device has an additional 
communications model for its connection to the management 
network (generally the Internet) by means of which it will 
receive analysis requests on possible intrusion attempts from 
other IDS subsystems, or administrative requests from the 
administration systems. The fact of having two independent 
network interfaces for monitoring and for communication, in 

Fig. 2. Physical structure of the smart sensor which acts as an embedded
device which serves as support for the sensor and the NIDS. 
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addition to generalizing the proposal, makes it more viable in 
terms of a hostile, resources-starving environment like the 
world of computer network management. 

Although from a physical perspective the IDS network 
system could be considered a Smart Sensor, from a functional 
viewpoint it could be labeled as a service for network 
intrusion detection organized into different layers: physical, 
middleware and application layer (see Fig. 3). 

The physical layer considers the physical resources of the 
device from a functional point of view, in order to achieve its 
objectives the following elements should be connected, i.e. the 
local area network from which information is to be obtained, 
the internal memory of the device in which the processed 
information will be stored (i.e. IDMEF alerts generated) and 
the management network. 

The middleware layer houses the modules which provide 
access to the basic resources of the physical layer (network 
adaptors, memories) encapsulating them and providing the 
upper layer with a standardized vision, free from physical 
details. According to the foregoing, the main blocks proposed 
are those of network and disk I/O management, together with 
a simple file system to facilitate non-volatile memory 
management and an implementation of a TCP/IP stack 
essential for all the processes of the application layer. 

The application layer is the most important layer from a 
functional perspective. It contains the main functional 
components of the device. These components have been 
grouped into two large modules: a processing module and a 
communications module. These are analyzed in further detail 
below. 

The processing module (see Fig. 4) represents the system 
core and is responsible for monitoring network traffic, its 
subsequent analysis and the storage of alerts detected along 
with the traffic and context data from which they originated. 
The processing module has in turn a pre-processing filter 
which adapts the traffic from the network, normalizing and 

converting it into an information pattern. This pattern is the 
input source of the analysis module which detects intrusions 
and generates alerts in IDMEF format. This module compares 
the input patterns with a map of patterns, previously stored in 
the non volatile memory of the device and, in the event of 
detecting an anomalous behavior it will catalogue it as an 
intrusion attempt and will store an alert indicating this fact, 
together with the traffic from which it originated and other 
appropriate information (such as the date and time it occurred 
or the type of traffic affected). The analysis module is a key 
element of the system since it implements the intrusion 
detection system and constitutes an anomaly-based network 
IDS. 

The communication module (see Fig. 5) comprises the 
interfaces used by the device for external communications. 
The sensor provides three clearly differentiated interfaces: 
publication interface, notification interface and service 
interface. 

The publication interface permits a registered server to be 
located and publish the services offered expressed on WSDL 
pages. To do so it will use, following a SOA pattern, the 
UDDI publication protocol on the SOAP application protocol. 

The service interface is responsible for offering 
synchronically the device functionalities as Web Services, 
meaning: (a) to provide information about the alerts as well as 
about the analyzed network traffic and (b) to activate the 
sending of alert notifications asynchronously. 

 The notification interface is responsible for the 
asynchronous notification of the alerts occurrence as a 
function of the parameters (detection thresholds, bandwidths, 
response times, etc) defined via service interface. 

V. PROTOTYPE IMPLEMENTATION 
The construction of the prototype of Smart Sensor that acts 

as an embedded IDS device has been divided in three well 
differentiated sections: the physical hardware support, the 
software applications and the intrusion detection system. 

A. Physical support 
For the physical device a MOXA UC-7110-LX model 

network industrial device was used due to its distinctive 
features: small size, low consumption level and two network Fig. 4. Processing module main components. 
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Fig. 3. Software architecture of the embedded IDS device. 
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interfaces (Fig. 6). 

B. Software applications 
These devices incorporate the operating system µClinux 

v2.4.22. This has eased the development of the different 
applications by means of the usage of languages and well-
known environments as the GCC compiler. At the same time, 
many open code developments were employed in order to 
implement the support libraries of the middleware layers; for 
instance: gSOAP v2.7 as application server. Fig. 7 shows the 
software architecture with the different modules that were 
implemented or used. 

The MTOM protocol, supported by gSOAP, was used to 
transmit the network traffic associated with the generated 
alerts. 

Since we are talking about an IDS security application, it is 
paramount to consider the security aspects of the system itself. 
In this sense the choice of gSOAP as applications server 
contributes with three important features: it allows us to use 
Message Transmission Optimization Mechanism (MTOM) to 
transfer the alerts and its associated traffic as opposed to other 
systems like FTP which introduce additional security holes, 
and it incorporates encrypted communications via SSL and 
expedites the use of protocols like HTTPS. 

C. IDS 
The analysis module is the most important one in the 

application layer. For it an anomaly-based NIDS has been 
designed. Since a more efficient artificial neural network 
(ANN) for the intrusion detection is not intended to be tested 
in this work, a SOM has been chosen as detection engine due 
to its simplicity and widespread use in works of this kind. The 
proposed NIDS detects attacks at TCP connection level; to do 
so the parameters that will characterize each connection 
should be defined. These parameters represent the inputs to 
the ANN. For this purpose, a similar approach to the one 
exposed in [9] and [10] has been followed, selecting the five 
next characteristics: duration of the connection (DOC), 
number of bytes sent from the client to the server (SRC), 
number of bytes sent from the server to the client (DST), 
average of packets per second sent from the client (SPA) and 
average of packets per second sent from the server (DPA). 

In order to obtain these data it is necessary to pre-process 

the incoming packets read from the system network interface. 
A RAW socket with a network interface in promiscuous mode 
has been used to obtain these packages. Firstly, since an ANN 
is to be built for each service in our system, data will be 
filtered to obtain just those packets that are addressed to the 
corresponding service. Secondly, the parameters that 
characterize each connection are obtained. For that, a module 
that constantly reads all the packets that form part of the 
different connections has been implemented to reconstruct the 
whole connection and, subsequently, to calculate the statistical 
variables of the incoming packets. Finally, in order to ensure 
that none of the five parameters predominates over the others 
due to the its values different dimensions, the incoming 
parameters must be normalized. Variance normalization has 
been chosen, so that each dimension of the input vectors has a 
variance of one. This normalization process is carried out 
keeping in mind the mean and the standard deviation of each 
previously calculated dimension. An IDS method description, 
in which our work has been based on, has been discussed in 
further detail in [11]. 

The SOM neural network uses the five components vectors 
obtained in the pre-processing filter. The ANN will classify 
each connection as either normal or anomalous, storing the 
IDMEF formatted result [33] in the internal memory of the 
device, for its later analysis and generating an alarm in case of 
anomalous connections. 

VI. TESTING AND VALIDATION 
To validate this proposal it has been developed a whole 

DIDS scenario based on SOA, as well as an IDS prototype 
embedded into a network device acting as a smart sensor. 

A. Test scenario 
Following the scenario proposed in Fig. 1, to carry out the 

tests we have deployed two real computer networks: a 
management network and a working network. 

The management network follows a SOA pattern, so we 
have grouped the interconnected network devices required to 
deploy all its functionality, into three distinct areas: Service 

Fig. 6. MOXA Device used as physical support to the prototype
implementation. 

Fig. 7. Software architecture of the prototype depicting the various modules 
implemented or used. 
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Broker, Service Consumer and Service Provider areas. 
• In the Service Broker Area, for the Discovery Service, we 

have used a computer with the Linux operating platform 
Ubuntu v8.04 server version with the Java-based UDDI server 
jUDDI v0.9rc4. For its deployment we have also installed the 
Tomcat Web container v5.5.23 and MySQL database v5. 

• In the Service Consumer Area, to implement managers 
and clients compatible with WS, a computer based on Linux 
Ubuntu has been used and we have implemented a Java-based 
client application that allows us to discover and consume the 
services offered by Smart Sensors. The version of the JDK 
used is 1.6.0_02. To implement the Web services we have 
used Apache Axis v1.4. platform with the Tomcat Web 
container. The development was performed using the Eclipse 
Europe Release v3.3 environment along with the Web Tools 
module installed. To store alerts and other configuration data 
has also been used a MySQL database v5. 

• In the Service Provider Area we have placed our 
previously described Smart Sensor prototype. 

The working network refers to the network which we wish 
to monitor for possible intrusion attempts. In this network we 
have joined our network sensors along with the necessary 
equipment to re-create the different conditions of traffic and 
load under which we wanted to test the proposal’s validity. 
Likewise, it has been incorporated into this working network a 
sample of the malicious traffic extracted from the DARPA 
data set to take a battery of real and objective data against 
which the results will be judged. This network consists of the 
following elements: 

• A set of ten hosts with different hardware and operating 

platforms. These hosts will use the network with different load 
levels through the scheduled use of standards network services 
(Web, FTP, SMTP, etc.) aiming to assess the performance of 
the detection system based on network load. 

• The embedded IDS prototypical device that acts as Smart 
Sensor, establishing its NIC in promiscuous mode to analyze 
all network traffic. To perform this task, the switch used to 
interconnect the network has been configured so that all 
network traffic is forwarded to the port to which the Smart 
Sensor is connected. Besides, in addition to the alerts 
generated and for validation purposes, we also monitored 
other performance variables such as: processed packets and 
memory and CPU usage. 

• Finally, we have connected a network traffic injector that 
supplies DARPA network traffic used in the tests and which 
contains both malicious traffic as well as normal one. The 
application used is tcpreplay v3.3.1 that allows us to forward 
network traffic stored in files with the pcap format used in 
DARPA files. 

It is important to remember that this work is not aiming to 
an improvement of the intrusion detection results that may 
have been presented in other investigations. Our goal is 
merely to prove that a compact, low-consumption and zero-
maintenance solution can behave in a solvent manner under 
different system load conditions. For this reason, in the 
following paragraphs we discuss the tests conducted in this 
regard: self-management capabilities (publication, discovery, 
etc.) and analyzer performance under different load 
conditions. 

Fig. 8. Sequence diagram with the main transactions carried out during the performance test for the validation of the proposal. 
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B. Discovering and publication testing 
A jUDDI server has been used to check the auto-registration 

module. It registers the service in a standard way. Connecting 
the prototype to a network, it is possible to prove, by means of 
traffic sniffing, that it seeks the IDS service in the jUDDI 
server. If the service is not found then it is published, by doing 
the authentication to deal with jUDDI server private functions. 

The service has been successfully tested using, on the one 
hand, a PHP client using a NuSOAP library and, on the other, 
a command line standard client developed by Apache group 
called WSIF. This standard client is able to use services 
through an invoker that only writes the function, the 
parameters and the address where WSDL sheet is stored, 
builds a correct call to the prototype service and shows the 
obtained response. 

In the sequence diagram of Fig. 8, within the configuration 
block, we can see the major transactions involved in the test of 
publication, discovery and consumption: 
1) Initially the Smart Sensor is published in the Discovery 

service using the UDDI protocol by Publication interface 
(Publication Phase). 

2) Then both the Manager and an external IDS based on WS 
can discover the location and functionality of the Smart 
Sensor conducting an UDDI discovery process with the 
Discovery Service (Discovery Phase). 

3) Once the sensor is discovered, it is possible to perform 
sensor´s management tasks from the Manager. The 
diagram shows the analysis map updating which will be 
used by the sensor Analyzer. With this aim the Manager 
interacts with the Service interface which stores the map 
in the File System, where it can be retrieved by the 
Analysis module (IDS). 

C. Bulk transfer and analysis engine testing 
In the sequence diagram of Fig. 8, within the analysis block, 

we have collected the main actions involved in the analysis 
and consumption test: 
1) In the analysis block, the Pre-process filter module gets 

packets that travel over the network and pre-process them. 
At this stage, we initially reconstruct the TCP/IP sessions 
analyzing the IP packets that conform it to calculate the 
input data of the neural network. Once obtained, and after 
being normalized, the data are passed to the Analysis 
module. In the event of an attack being detected in the 
analysis module, we store the relevant alert in the File 
System. Alternatively, if the network sensor was set to do 
so, the traffic associated with the alert also is stored in the 
File System. Along the same line, if the asynchronous 
notification service was asked for, it would be carried out 
under the previously established parameters. . 

2) In the alerts block, both the Manager and the external IDS 
may demand to obtain the produced alerts. With this aim, 
the external elements get in touch with the sensor through 
the Service Interface responsible for recovering the alerts 
from the File System in order to deliver them to the client. 

D. IDS Performance testing 
With the goal of evaluating our proposal, the experimental 

results of the application of the SOM network to the Web 
traffic attack detection are shown in this section. An anomaly-
based service-oriented NIDS has been developed. The neural 
network has been trained with HTTP traffic and is able to 
recognize attacks against this service. 
In order to obtain results that can be judged against other IDS 
proposals, we need to use a standardized set of proving data. 
To date, DARPA intrusion detection evaluation data is the 
most comprehensive set known to be generated for IDS 
assessment purposes [34]. It has been regarded within the 
scientific community as a significant breakthrough for the 
independent and scientific appraisal of any given IDS 
performance. Therefore, the data used for the training and 
testing of the implemented neural networks have been taken 
from the DARPA dataset. 

The election of the SOM neural network topology has been 
carried out by calculating the two eigenvectors of the 
autocorrelation matrix of the training data that have the 
greatest eigenvalues; the relationship between the dimensions 
of the network is obtained considering the relationship 
between these two eigenvalues and the number of patterns in 
the training data [15]. Following these criteria, a SOM of 18 x 
28 dimensions have been selected, with linear initialization 
within the rank of the training patterns and with a Gaussian 
neighborhood function. 

For the networks validation after the training phase, we 
have used the same data again, and we compute the distance to 
the winning neuron for each pattern. The networks are 
validated if at least 95% of the input patterns vectors have a 
distance smaller than two standard deviations with respect to 
the vectors of the winning neurons [15]; this heuristic assumes 
a Gaussian distribution. 

In order to make the results directly comparable, we have 
followed the author’s recommendations for the networks 
parameters values [35]. The chosen basic parameters were: an 
initial learning rate of 0.9, a high initial neighborhood for 
better sorting and a number of learning iterations no less than 
500 times the number of neurons. 

Likewise, to carry out the performance comparisons, we 
have selected three tests corresponding to three network’s load 
levels: low load, with only traffic injected by tcpreplay, which 
injects normal and anomalous traffic; medium load, with the 
previous traffic and the traffic sent by the other network nodes 
(1MB/s of network traffic); and high load, with injected and 
generated traffic by the other network nodes trying to 
maximize network traffic (in a network of 100 Mb/s, say 12 
MB/s). 

Fig. 9 shows the use of the ARM CPU. For clarity purposes, 
the chart reflects only 100 representative seconds from the 
three weeks total tests duration time. According to these tests, 
the average CPU usage in low load mode was about 3.9%, in 
medium load there was an average CPU usage of 20.5%, but 
in the case of high network load, the processor was saturated 
and the average reached a 79.9%. The graphics also show 
processing peaks due to specific network traffic increases. We 
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can conclude that this behavior is quite stable and proportional 
to the network load. 

Fig. 10 shows the network traffic processed by the network 
interface of the network sensor. We have also taken 100 
representative seconds from the total duration time of the tests. 
The average network interface load is 0.1% for low network 
load, 9.9% for medium network load and 68.7% for high 
network load. There is a clear relationship between this and 
the previous graphic, since the peaks in the transmission of 
information mirror the saturation points of CPU usage. As a 
wrap up it is safe to say that the network interface behavior is 
in direct proportion to the network load. 

The graphic chart of Fig. 11 shows the system performance 
and detection capabilities as a function of the network load. In 
this case, conversely to figures 9 and 10, twelve different tests 
corresponding to twelve different load levels evenly allocated 
in a range from 1 to 12 MBps has been conducted. The CPU 
usage rises steadily until reaching a saturation point at which, 
while most of the time the average fluctuates around 80%, 
except for the occasional falls caused by network interface 
saturation, the rest of the time the processor is close to 100%. 
The processed frames curve indicates the percentage of 
packets processed by the application and the packets received 
by the network interface. The curve moves downwards as the 
load is increased because the network interface buffer 

saturation outgrows the application ability to process the 
information, leading to discard packets. The analyzed packets 
curve indicates the percentage of packages analyzed by the 
IDS regarding the injector tcpreplay sent packets. This curve 
also decreases as the application load goes up. 

Finally, the performance and capacities of IDS are judged 
against two different ratios: false positives and detected 
attacks. Detected attacks curve indicates the percentage of 
attacks detected by the IDS. As can be seen, if we consider 
tolerable a detection rate up to 80% for an IDS [11], as shown 
in Fig. 11, the device is effective until 6MBps of network load 
(50%) is reached. In the field of network services is customary 
to consider that only below 30% of network load a networking 
device can guarantee its services. In addition to these results, 
we would like to point out that the tested IDS has generated no 
false positives whatsoever. In conclusion, the prototype 
designed in this paper outperforms by far the commonly 
accepted standard values for this kind of services. 

As an additional note, we would like to add that the use of 
volatile memory has remained constant during the whole 
process, at a level of occupation of about 57%. 

Regarding the repercussion of the use of web services in the 
system, as well as network traffic transmission via MTOM, 
different tests have been made resulting on a mean IDS traffic 
overload of 1300 bytes for each coded alarm notification in 
SOAP and a CPU pinpointed increase (1 sec. sample rate) of 
2.5% per alarm. In relationship with the traffic download 
associated to the alarm, it is safe to say that it results highly 
dependent on the volume of traffic associated to each attack. 
Our test results have shown a mean transfer of 38.9 KB per 
alarm, as well as a mean of 19 alarms per hour. It should be 
noticed that this traffic is transferred via a second network 
interface available in the prototype. 

VII. CONCLUSION 
This work core proposal is the design of an IDS embedded 

in a small network device that acts as a smart network sensor. 
The sensor is considered intelligent not only because of its 
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Fig. 10. Graphical representation of the device network interface load. 

Fig. 11. Graphical representation of the prototype performance as a function
of the network load. 
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ability to transfer the network traffic analyzed to other DIDIS 
components, but also for its capacity of doing that at any 
moment on demand as well. 

From the functional point of view, the device functionality 
can be considered a NIDS, generating alerts in IDMEF format 
and offering its functionality as Web Service. So, the proposal 
is in perfect harmony with the SOA model and the device is 
able to register itself in an external registry. 

A full functional prototype has also been developed. This 
prototype has been used to validate the proposal. The results 
show that the device exhibits a very stable behavior and is 
capable to provide a service, as critical as the intrusion 
detection service is, under really adverse conditions of 
network traffic load. 

We are currently working in a management model based on 
the incorporation of semantic to the definition of the services, 
so that high levels of automation can be reached throughout 
the whole configuration and management tasks process, not 
only for an isolated device, but also for a DIDS as well, even 
though the conditions, resources or necessities vary over time. 
In this case the basic WS specification has more limitations, so 
we are working on a WS-* specification which incorporates 
more sophisticated functionalities. 
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