
Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Abstract—This paper proposes a Network Intrusion Detection

System (NIDS) embedded in an Smart Sensor inspired device,
under a Service Oriented Architecture (SOA) approach, able to
operate independently as an anomaly-based NIDS or integrated,
transparently, in a Distributed Intrusion Detection System (DIDS).
The proposal is innovative, because it combines the advantages of
Smart Sensor approach and the subsequent offering of the NIDS
functionality as a service with the SOA use in order to achieve
their integration with other DIDS components. The main goal of
the work is to reduce the huge volume of management tasks
inherent to this type of network services, as well as facilitating the
design of DIDS whose managing complexity could be restricted
within well defined margins. The work also addresses the
construction of a physical sensor prototype. This prototype was
used to carry out the tests that has demonstrated the proposal’s
validity, providing detection and performance ratios similar to
those of existing IDS, but with the advantage of a zero-
maintenance approach.

Index Terms—Intrusion Detection Systems (IDS), Embedded
Systems, Smart Sensors, Service Oriented Architectures (SOA).

I. INTRODUCTION
NTRUSION Detection Systems (IDS) are a vital element in
the communications infrastructure of organizations and

represent one of the main security tools for computer
networks.

The role of the security administrator in intrusion detection
is not easy; systems and services are becoming increasingly
sophisticated and complex, as well as, consequently, their
configurations, and new attacks and vulnerabilities are
constantly arising. Moreover, and due to the undeniable
success of networks as communications tool, the number of
interconnected nodes and the volume of information to be
managed are growing at an alarming rate.

Traditional IDS are based on low level attacks and generate
isolated alerts, although there is a logical connection between
them. Furthermore, the huge number of generated alerts
becomes unmanageable and security administrators are unable

Manuscript received May 29, 2008. Accepted for publication May 18,

2010.
Copyright (c) 2009 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Department of Computer Science and
Technology, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
(email:pmacia@dtic.ua.es).

to cope with them, making impossible to scrutinize and
understand adequately the network's security status [1]. In
order to solve this problem, the distributed intrusion detection
systems (DIDS) combine all these scattered alerts and make
use of their logic relationship, thus obtaining additional
information.

DIDS are currently as necessary as complex, due to the fact
that they involve several technologies, devices and network
resources, as well as sophisticated management tasks which
are beyond the scope of many users or organizations which do
not have a highly specialized team of administrators.

There are still many open fronts in the field of intrusion
detection, which are not solely concerned with improving
detection ratios or with reducing the number of false positives
that they generate. Some of them are: a) IT technological
infrastructure which supports this type of system is
increasingly sophisticated thus increasing both the complexity
and number of associated management tasks; b) these systems
are increasingly required to generate more information which
overloads the network and the intrusion analysis systems
themselves.

Of all the problems, these are the ones which our proposal
addresses in seeking architectures for the effective distribution
of system logic, reducing as far as possible the impact of
increased network traffic, keeping detection levels of the
present systems and proposing scalable solutions, easy to
implement and with a zero-maintenance philosophy.

The huge range of small, low-cost embedded devices
provided with one or more sensors, interconnected through
wireless or cable networks integrated to the Internet, provide
endless opportunities for monitoring and controlling
organizations, homes, cities or the environment. Examples of
this kind of devices are hardware probes RMON-based [2].
Furthermore, Smart Sensors technology gives support to
specific requirements such as restrictions in the assignation of
resources, compactness and flexibility to be adapted to various
types of sensors, interfaces and computational
communications and hardware [3]. These characteristics make
the embedded devices in general and the smart sensors in
particular an ideal framework for resolving many of the
problems detected in the Network IDS (NIDS) [4], [5].

In view of the foregoing, this article proposes to apply the
technology of Smart Sensors to design a physical device in
which a NIDS capable of understanding the captured traffic
and offering it on demand is embedded.

Network Intrusion Detection System
Embedded on a Smart Sensor

Francisco Maciá-Pérez, Francisco J. Mora-Gimeno, Diego Marcos-Jorquera,
Juan A. Gil-Martínez-Abarca, Héctor Ramos-Morillo, and Iren Lorenzo-Fonseca

I

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Although the proposal shall be developed more extensively
in subsequent sections we may summarize it for the time being
as follows: design of small network devices to act following
the principles of intelligent network sensors, capable not only
of monitoring network traffic but also of processing it online.
They will search for anomalies caused by intrusion attempts
and generate alerts in the event of such anomalies, as well as
storing and communicating the aforementioned alerts as
required. In practice, the network sensor behaves like a NIDS
for detecting anomalies acting with a Smart Sensor
philosophy. The main advantage of these tiny, self-managed
devices is that they can be incorporated to DIDS without
noticeably increasing the global complexity of the system.

Taking this idea, in the upcoming section an overview of
previous works and results in this field is provided. Following
that, the proposal for a Smart Sensor is explained together
with the general development scenario in which it could act as
part of a DIDS; then, the design of the functional prototype is
revised in order to make the relevant tests and this has been
used to validate the proposal; finally the main conclusions are
presented based on the work carried out as well as research
prospects.

II. BACKGROUND
The main challenge for present day IDS is to be able to

detect new attacks based on other previously observed events.
IDS research, based on anomalies has led to the use of various
techniques for modeling normal behavior and carrying out the
process of analysis [6]. The most frequently used tool is
statistical analysis where the normal model comprises a group
of statistical variables. For example, a linear combination of
six parameters [7] or a measure based on distribution of
characters in order to detect anomalies in the content of the
network packets [8].

Nevertheless, there are many anomaly detection systems
which use machine-learning techniques to gain knowledge by
training the parameters that model the system’s normal
behavior. Neural networks are the most commonly used
learning tools in IDS. Thus, we find their application in the
detection of anomalies in programs based on system calls [9],
in network protocols based on different session variables [10],
[11], and on the key-words based application layer [12]. There
are also approaches which combine neural networks in a
hybrid IDS consisting on misused and anomalies.

Most of the works on IDS based on neural networks have
used Self Organizing Maps (SOM) [13], [10], [14], [15] as
they are easy to implement and due to the fact that they have
the advantage of a lower training time as the network is
unsupervised. Also, one of the more important characteristics
of neural networks is that they can be implemented in
hardware, making the most of the advantages of their inherent
parallelism capabilities. In this sense, we can find a lot of
related works: a neural chip implanted in a scalable platform
[16], neural networks in DSP for robot positioning [17] and
even a neural network FPGA-based coprocessor [18], [19].

The expansion of networks has rendered conventional IDS

insufficient. In order to mitigate these deficiencies, distributed
intrusion detection systems have been developed as a set of
disseminated sensors which collaborate in detection tasks.
However, current DIDS, built under a generally hierarchic
architecture, display a lack of scalability that makes the use of
decentralized techniques mandatory [20]. Decentralized
approaches are currently considered the most suitable [21], to
the point that in the detection process should only be involved
the nodes where the intrusion occurs, acting in close
cooperation with its nearby peers [22]. Furthermore, the use of
a substantial number of sensors collaborating, together with
the volume of information they generate and the growing
speed of networks, hinders analysis and increases costs,
making the use of light, autonomous detection-capable
hardware mechanisms more and more appropriate [23].

Considerable breakthroughs have been made during the last
decade in the field of technologies for the development of
small network devices endowed with a more than acceptable
computational capacity, autonomous function [24] and the
possibility of embedding intelligence in them. Although until
recently the cost of these devices did not justify their large
scale incorporation to certain tasks and services management,
this scenario has changed: the present trend toward the
miniaturization of lucrative devices with astonishing
computation and communication capabilities lays the
foundations for proposals providing specific network services
with minimal attention and administration requirements. These
proposals are based on self configuration and management
models compatible with service oriented architectures (SOA)
and standardized protocols (UDDI, SOAP, uPnP), all
embedded in a very small network device and at extremely
reduced cost [25].

The huge range of small, low cost embedded devices
provided with one or more sensors [2], [26], [27],
interconnected through wired or wireless networks integrated
into the Internet, opens a field of endless opportunities for
monitoring and controlling our homes, cities or even the
environment.

With the present technology, sensors are able to measure a
wide range of magnitudes covering a broad spectrum of
domains [28]. Furthermore, Smart Sensors usually integrate
knowledge and constitute one of the key technologies for the
future [3], [29].

Due to current restrictions on energy supply systems,
reduced energy consumption levels has become a basic
requirement for Smart Sensors. In order to improve the energy
availability of the Smart Sensors it is possible to use protocols
which provide the devices with energy through their
communications network, such as the standard Power over
Ethernet for wired networks [30] and WISA for wireless
networks [31]. In general, Smart Sensors should make
possible a configurable adjustment of the compromise
between useful life (from an energy perspective) and the
system’s latency and effectiveness [29].

In addition, Smart Sensors and their applications have
special requirements such as the need to save energy,

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

restrictions in the assignation of resources (CPU, memory,
storage and bandwidth), compactness and flexibility to be
adapted to various types of sensors, interfaces and
computational communications and hardware [3].

The inability of traditional models of operating systems
(OS) to match such requirements has led to the development
of specific OS for Smart Sensors [3]. This is the case of
TinyOS, an OS based on free software and open source for
Smart Sensors, developed by the University of Berkeley which
set the ground for numerous projects involving Smart Sensor
networks. Other approaches more embedded device-oriented
that may be useful are, for instance: ThreadX, a real-time OS
for embedded development; and µCLinux, a Linux-based OS
for embedded devices without memory handling units.

In order to achieve full integration, each Smart Sensor
should go beyond ad hoc communication protocols,
incorporating models, architectures and technologies able to
offer their functionality in an open and standardized manner to
facilitate interoperability between the sensors and the
applications which make use of them. In this respect, service
oriented architectures provide a model in which each network
node offers its functionality through independent services
accessible in a standardized manner [32]. SOA implies that all
the different elements that form the system are related with
each other as services. This service orientation is the next
evolutionary step from the traditional client-server model with
Service Providers instead of servers and Service Consumers
instead of clients, but decentralizing the whole process by
introducing the Service Broker as a new element, whose
function is to keep the record of all services offered
throughout the system and describe its use.

There are currently a set of standard technologies which
make SOA based applications possible: XML language and
WSDL languages to describe services, SOAP to provide
services and UDDI services to register them [32]. The
conjunction of these technologies constitutes the basis of Web
Services (WS). Although other SOA implementation
technologies like WS-* and DPWS are in the market, we
opted for WS-I Basic Profile 1.0 version since its simplicity is
a perfect match for our purposes requirements.

On the basis of this brief overview, it may be concluded that
there are still issues remaining in terms of scalability,
integrity, consumption and management of data volumes
within the scope of IDS. It is also clear that IDS of anomalies
based on SOM networks may serve as a reference for
validating our proposal, due to its simplicity and to the fact
that we are not interested in validating aspects of effective
detection but rather efficiency in terms of resource
management. Therefore it is clear that embedded systems and
more specifically Smart Sensors may constitute a physical
support, ideal for embedding functionalities of this type of
IDS, mitigating to a large extent many of the problems
detected.

III. GLOBAL SCENARIO
Although the design of smart sensors via the implantation

of IDS in a device to make it behave as an intelligent sensor is
the core idea of this paper, it is also true that most of this
proposal advantages make sense only when one or more of
these sensors act forming a DIDS (under a SOA approach) as
part of a much more sophisticated system. That’s why we
begin our proposal description by defining the general
framework within smart sensors are integrated.

In Fig. 1 a typical scenario containing a DIDS whose
components are structured under a SOA model is shown. In
this scenario our embedded NIDS are seen as Smart Sensors
and play the role of Service Providers offering Web Services.
For this same reason the scenario has been divided into the
three classical SOA scenario areas: Service Provider Area,
Service Broker Area and Service Consumer Area.

The Service Provider Area may find different intelligent
network sensors which act as NIDS and which have been
connected to the networks to be investigated. The Service
Broker Area contains the register servers responsible for
maintaining information on the various services available
throughout the system. The Service Consumer Area is the
most heterogeneous and could be divided into three client’s
categories: (a) Management systems and remote terminals
used by network or security administrators to access
management tasks, or simply to compile information directly
on analyzed traffic or alerts generated by a specific NIDS.
These could range from simple Web navigators to complex
management systems. (b) The second type of client comprise
gateways which act as adaptors between our sensors, working
under the SOA approach and other components or systems
inherited from a traditional DIDS which do not support this
approach. (c) Finally, there is a third type of client comprising
components of a DIDS which incorporate WS technology in a
native manner and, therefore, able to locate and contact Smart
Sensors directly.

From a functional perspective, the scenario may also be
described on the basis of different phases of the SOA model:
publication, discovery and consumption.
1) Publication phase correspond with the first sensors state

(when they are connected to the network). In this phase
the sensor should locate a publication server using the
UDDI protocol to send all the documentation describing

Internet
(TCP/IP)
Internet
(TCP/IP)

Manager
Systems

(WS)

Manager
Systems

(WS)

Legacy
IDS

Legacy
IDS

SOAP (IDMEF)SOAP (IDMEF)

Discovery
Service

WSDL
Description

Discovery
Service

Discovery
Service

WSDL
Description

TC
P

/IP
 N

et
w

or
k

Smart
Sensor

(WS)

Smart
Sensor

(WS)

Smart
Sensor

(WS)
SOAP (IDMEF)

SOAP (IDMEF)

SOAP (IDMEF)

SOAP (IDMEF)

IDS bridge
(WS)

IDS bridge
(WS)

IDS
(WS)
IDS

(WS)

Legacy
IDS

Legacy
IDS

SO
AP

 (W
SD

L)
SO

AP
 (W

SD
L)

SOAP (IDMEF)

SOAP (IDMEF)

SOAP (IDMEF)

SOAP (IDMEF)
Smart

Sensor
(WS)

Smart
Sensor

(WS)

Smart
Sensor

(WS)

SERVICE BROKER AREA

SERVICE
CONSUMER AREA

SERVICE
PROVIDER AREA

Smart
Sensor

(WS)

Smart
Sensor

(WS)

Smart
Sensor

(WS)

1
Publication

Phase 2 Discovery
Phase

3
Consumption

Phase

TC
P/

IP
 N

et
w

or
k

TC
P

/IP
 N

et
w

or
k

IDS
(WS)
IDS

(WS)

IDMEFIDMEF
IDMEF

Alerts DB

SOAP (IDMEF)SOAP (IDMEF)

10011011
00011110

System
Administrators

10011011
00011110

10011011
00011110

a Management
systems

b Legacys IDS’s

c Web Service
IDS

Fig. 1. Global scenario of the distributed IDS SOA-based proposal.

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

the service in the form of WSDL pages.
2) During the discovery phase any WS client wishing to

consume an intrusion detection service offered by a Smart
Sensor should know it previously. For this purpose firstly
they will locate a registered service and will request
sensor documentation in order to ascertain all its address
details, how it should be approached and the manner in
which the requested service will be returned to them.
Once again the UDDI protocol will be used and the
information will be based on WSDL pages.

3) Consumption is the most important phase of all as this is
what grants real significance to the whole system. Clients
in this phase, having discovered the available services, are
in a position to consume them or to approach the Smart
Sensors and request the services they offer directly.
Communication between services and consumers in this
phase shall be made through SOAP requests and
responses.

IV. EMBEDDED IDS PROPOSAL
Once established the general scenario, this section will

focus on the design of the IDS embedded into a device
inspired in Smart Sensors. Before starting up, it is important to
clarify the existing relationship between our proposal and the
traditional approach based on smart sensors networks (SSN).

In the field of SSN each sensor’s autonomy is taken for
granted. To achieve that, it is been considered, generally
speaking, that smart sensors cannot be wired. Due to that,
sensors should be efficient and collaborate in order to transmit
the information to its final destination in the most sensible
way consumption-wise.

In our proposal, the smart sensors-based device employed
are twisted pair network sensors, so any limitation to their
power autonomy becomes meaningless by the fact that they
could be energized by an array of different techniques like
Power over Ethernet and external power supplies, to mention a
couple. By similar reasons there is no point in addressing the
typical problems related to signal-retransmission collaboration
and the like.

These are just a few SSN’s characteristics, but there are
others of similar importance. Among them, the way they were
conceived, in which traditional sensors acting as mere
transducers are bestowed with processor, memory and a

communications module that allow the inclusion of know-
how, information storage, and the supply-on-demand of the
often processed-into-knowledge information.

These are the features that have guided our IDS design,
embedding it into a smart sensor. In compliance to that, our
network sensor is not only capable now of capturing the
network traffic (taking the chance to solve its energy
problems), but also of filtering and processing it in search,
although primitively, of intrusion attempts and of offering its
detection services (on-demand in this case) as well.

That is not to say that the sensor should be continuously
consulted via pooling techniques, but, on the contrary, that it
will just notify any intrusion attempt asynchronously, on
demand and under the conditions and restrictions (detection
thresholds, bandwidth, etc.) indicated.

Therefore, we can say that the fundamental basis of our
proposal is the design of an intrusion detection system
embedded in a miniaturized network device which will offer
functionality as a Web Service. It will be provided with
Service Oriented Architectures that in addition to act as a
network sensor incorporated to a DIDS or to the system’s
administrators, will make possible that the IP traffic captured
by them could be filtered and processed in the form of alerts.

For the alerts an intrusion detection message exchange
format (IDMEF) will be used, defined by the IETF [33] in the
RFC4765. This standard defines the data formats and the
exchange procedures for sharing data of interest between IDS
response systems and management systems which are required
to interact together.

IDMEF alerts may be transmitted both continuously and on
demand, when actually required, or whenever network
resources are able to support the transfer without any
significant hindrance to their performance assisting the design
of scalable DIDS.

From a physical perspective the system has been designed
as a Smart Sensor. Fig. 2 shows the physical structure of the
sensor indicating its main elements: (a) the sensor itself which
is formed by a network adapter for connection to the local area
network (LAN) whose traffic is being analyzed. This adaptor
should support promiscuous mode in order to capture all the
network traffic. This element provides the system with
sensitivity; (b) a microprocessor with embedded additional
functionality in order to analyze the captured traffic online,
looking for behavior patterns which could be considered
anomalous, such as intrusion attempts, which are to be
converted into alerts; (c) in addition to computing power, the
sensor has been provided with a non-volatile internal memory
to store the alerts generated by the IDS, together with the
involved traffic; (d) finally, the device has an additional
communications model for its connection to the management
network (generally the Internet) by means of which it will
receive analysis requests on possible intrusion attempts from
other IDS subsystems, or administrative requests from the
administration systems. The fact of having two independent
network interfaces for monitoring and for communication, in

Fig. 2. Physical structure of the smart sensor which acts as an embedded
device which serves as support for the sensor and the NIDS.

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

addition to generalizing the proposal, makes it more viable in
terms of a hostile, resources-starving environment like the
world of computer network management.

Although from a physical perspective the IDS network
system could be considered a Smart Sensor, from a functional
viewpoint it could be labeled as a service for network
intrusion detection organized into different layers: physical,
middleware and application layer (see Fig. 3).

The physical layer considers the physical resources of the
device from a functional point of view, in order to achieve its
objectives the following elements should be connected, i.e. the
local area network from which information is to be obtained,
the internal memory of the device in which the processed
information will be stored (i.e. IDMEF alerts generated) and
the management network.

The middleware layer houses the modules which provide
access to the basic resources of the physical layer (network
adaptors, memories) encapsulating them and providing the
upper layer with a standardized vision, free from physical
details. According to the foregoing, the main blocks proposed
are those of network and disk I/O management, together with
a simple file system to facilitate non-volatile memory
management and an implementation of a TCP/IP stack
essential for all the processes of the application layer.

The application layer is the most important layer from a
functional perspective. It contains the main functional
components of the device. These components have been
grouped into two large modules: a processing module and a
communications module. These are analyzed in further detail
below.

The processing module (see Fig. 4) represents the system
core and is responsible for monitoring network traffic, its
subsequent analysis and the storage of alerts detected along
with the traffic and context data from which they originated.
The processing module has in turn a pre-processing filter
which adapts the traffic from the network, normalizing and

converting it into an information pattern. This pattern is the
input source of the analysis module which detects intrusions
and generates alerts in IDMEF format. This module compares
the input patterns with a map of patterns, previously stored in
the non volatile memory of the device and, in the event of
detecting an anomalous behavior it will catalogue it as an
intrusion attempt and will store an alert indicating this fact,
together with the traffic from which it originated and other
appropriate information (such as the date and time it occurred
or the type of traffic affected). The analysis module is a key
element of the system since it implements the intrusion
detection system and constitutes an anomaly-based network
IDS.

The communication module (see Fig. 5) comprises the
interfaces used by the device for external communications.
The sensor provides three clearly differentiated interfaces:
publication interface, notification interface and service
interface.

The publication interface permits a registered server to be
located and publish the services offered expressed on WSDL
pages. To do so it will use, following a SOA pattern, the
UDDI publication protocol on the SOAP application protocol.

The service interface is responsible for offering
synchronically the device functionalities as Web Services,
meaning: (a) to provide information about the alerts as well as
about the analyzed network traffic and (b) to activate the
sending of alert notifications asynchronously.

 The notification interface is responsible for the
asynchronous notification of the alerts occurrence as a
function of the parameters (detection thresholds, bandwidths,
response times, etc) defined via service interface.

V. PROTOTYPE IMPLEMENTATION
The construction of the prototype of Smart Sensor that acts

as an embedded IDS device has been divided in three well
differentiated sections: the physical hardware support, the
software applications and the intrusion detection system.

A. Physical support
For the physical device a MOXA UC-7110-LX model

network industrial device was used due to its distinctive
features: small size, low consumption level and two network Fig. 4. Processing module main components.

Communication Module

Publication
Interface
(UDDI)

IDMEF
Alerts

Traffic Network

Service
Interface

(WS/MTOM)

Notification
Interface

(WS Client)

WSDL
page

SOAP(Request)

SOAP(MTOM(
IDMEF | Traffic))

SOAP(Notification)

SOAP (WSDL)

File
System TCP/IP

Stack

Processing
Module Notification

Fig. 5. Communication module main components.

Fig. 3. Software architecture of the embedded IDS device.

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

interfaces (Fig. 6).

B. Software applications
These devices incorporate the operating system µClinux

v2.4.22. This has eased the development of the different
applications by means of the usage of languages and well-
known environments as the GCC compiler. At the same time,
many open code developments were employed in order to
implement the support libraries of the middleware layers; for
instance: gSOAP v2.7 as application server. Fig. 7 shows the
software architecture with the different modules that were
implemented or used.

The MTOM protocol, supported by gSOAP, was used to
transmit the network traffic associated with the generated
alerts.

Since we are talking about an IDS security application, it is
paramount to consider the security aspects of the system itself.
In this sense the choice of gSOAP as applications server
contributes with three important features: it allows us to use
Message Transmission Optimization Mechanism (MTOM) to
transfer the alerts and its associated traffic as opposed to other
systems like FTP which introduce additional security holes,
and it incorporates encrypted communications via SSL and
expedites the use of protocols like HTTPS.

C. IDS
The analysis module is the most important one in the

application layer. For it an anomaly-based NIDS has been
designed. Since a more efficient artificial neural network
(ANN) for the intrusion detection is not intended to be tested
in this work, a SOM has been chosen as detection engine due
to its simplicity and widespread use in works of this kind. The
proposed NIDS detects attacks at TCP connection level; to do
so the parameters that will characterize each connection
should be defined. These parameters represent the inputs to
the ANN. For this purpose, a similar approach to the one
exposed in [9] and [10] has been followed, selecting the five
next characteristics: duration of the connection (DOC),
number of bytes sent from the client to the server (SRC),
number of bytes sent from the server to the client (DST),
average of packets per second sent from the client (SPA) and
average of packets per second sent from the server (DPA).

In order to obtain these data it is necessary to pre-process

the incoming packets read from the system network interface.
A RAW socket with a network interface in promiscuous mode
has been used to obtain these packages. Firstly, since an ANN
is to be built for each service in our system, data will be
filtered to obtain just those packets that are addressed to the
corresponding service. Secondly, the parameters that
characterize each connection are obtained. For that, a module
that constantly reads all the packets that form part of the
different connections has been implemented to reconstruct the
whole connection and, subsequently, to calculate the statistical
variables of the incoming packets. Finally, in order to ensure
that none of the five parameters predominates over the others
due to the its values different dimensions, the incoming
parameters must be normalized. Variance normalization has
been chosen, so that each dimension of the input vectors has a
variance of one. This normalization process is carried out
keeping in mind the mean and the standard deviation of each
previously calculated dimension. An IDS method description,
in which our work has been based on, has been discussed in
further detail in [11].

The SOM neural network uses the five components vectors
obtained in the pre-processing filter. The ANN will classify
each connection as either normal or anomalous, storing the
IDMEF formatted result [33] in the internal memory of the
device, for its later analysis and generating an alarm in case of
anomalous connections.

VI. TESTING AND VALIDATION
To validate this proposal it has been developed a whole

DIDS scenario based on SOA, as well as an IDS prototype
embedded into a network device acting as a smart sensor.

A. Test scenario
Following the scenario proposed in Fig. 1, to carry out the

tests we have deployed two real computer networks: a
management network and a working network.

The management network follows a SOA pattern, so we
have grouped the interconnected network devices required to
deploy all its functionality, into three distinct areas: Service

Fig. 6. MOXA Device used as physical support to the prototype
implementation.

Fig. 7. Software architecture of the prototype depicting the various modules
implemented or used.

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Broker, Service Consumer and Service Provider areas.
• In the Service Broker Area, for the Discovery Service, we

have used a computer with the Linux operating platform
Ubuntu v8.04 server version with the Java-based UDDI server
jUDDI v0.9rc4. For its deployment we have also installed the
Tomcat Web container v5.5.23 and MySQL database v5.

• In the Service Consumer Area, to implement managers
and clients compatible with WS, a computer based on Linux
Ubuntu has been used and we have implemented a Java-based
client application that allows us to discover and consume the
services offered by Smart Sensors. The version of the JDK
used is 1.6.0_02. To implement the Web services we have
used Apache Axis v1.4. platform with the Tomcat Web
container. The development was performed using the Eclipse
Europe Release v3.3 environment along with the Web Tools
module installed. To store alerts and other configuration data
has also been used a MySQL database v5.

• In the Service Provider Area we have placed our
previously described Smart Sensor prototype.

The working network refers to the network which we wish
to monitor for possible intrusion attempts. In this network we
have joined our network sensors along with the necessary
equipment to re-create the different conditions of traffic and
load under which we wanted to test the proposal’s validity.
Likewise, it has been incorporated into this working network a
sample of the malicious traffic extracted from the DARPA
data set to take a battery of real and objective data against
which the results will be judged. This network consists of the
following elements:

• A set of ten hosts with different hardware and operating

platforms. These hosts will use the network with different load
levels through the scheduled use of standards network services
(Web, FTP, SMTP, etc.) aiming to assess the performance of
the detection system based on network load.

• The embedded IDS prototypical device that acts as Smart
Sensor, establishing its NIC in promiscuous mode to analyze
all network traffic. To perform this task, the switch used to
interconnect the network has been configured so that all
network traffic is forwarded to the port to which the Smart
Sensor is connected. Besides, in addition to the alerts
generated and for validation purposes, we also monitored
other performance variables such as: processed packets and
memory and CPU usage.

• Finally, we have connected a network traffic injector that
supplies DARPA network traffic used in the tests and which
contains both malicious traffic as well as normal one. The
application used is tcpreplay v3.3.1 that allows us to forward
network traffic stored in files with the pcap format used in
DARPA files.

It is important to remember that this work is not aiming to
an improvement of the intrusion detection results that may
have been presented in other investigations. Our goal is
merely to prove that a compact, low-consumption and zero-
maintenance solution can behave in a solvent manner under
different system load conditions. For this reason, in the
following paragraphs we discuss the tests conducted in this
regard: self-management capabilities (publication, discovery,
etc.) and analyzer performance under different load
conditions.

Fig. 8. Sequence diagram with the main transactions carried out during the performance test for the validation of the proposal.

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

B. Discovering and publication testing
A jUDDI server has been used to check the auto-registration

module. It registers the service in a standard way. Connecting
the prototype to a network, it is possible to prove, by means of
traffic sniffing, that it seeks the IDS service in the jUDDI
server. If the service is not found then it is published, by doing
the authentication to deal with jUDDI server private functions.

The service has been successfully tested using, on the one
hand, a PHP client using a NuSOAP library and, on the other,
a command line standard client developed by Apache group
called WSIF. This standard client is able to use services
through an invoker that only writes the function, the
parameters and the address where WSDL sheet is stored,
builds a correct call to the prototype service and shows the
obtained response.

In the sequence diagram of Fig. 8, within the configuration
block, we can see the major transactions involved in the test of
publication, discovery and consumption:
1) Initially the Smart Sensor is published in the Discovery

service using the UDDI protocol by Publication interface
(Publication Phase).

2) Then both the Manager and an external IDS based on WS
can discover the location and functionality of the Smart
Sensor conducting an UDDI discovery process with the
Discovery Service (Discovery Phase).

3) Once the sensor is discovered, it is possible to perform
sensor´s management tasks from the Manager. The
diagram shows the analysis map updating which will be
used by the sensor Analyzer. With this aim the Manager
interacts with the Service interface which stores the map
in the File System, where it can be retrieved by the
Analysis module (IDS).

C. Bulk transfer and analysis engine testing
In the sequence diagram of Fig. 8, within the analysis block,

we have collected the main actions involved in the analysis
and consumption test:
1) In the analysis block, the Pre-process filter module gets

packets that travel over the network and pre-process them.
At this stage, we initially reconstruct the TCP/IP sessions
analyzing the IP packets that conform it to calculate the
input data of the neural network. Once obtained, and after
being normalized, the data are passed to the Analysis
module. In the event of an attack being detected in the
analysis module, we store the relevant alert in the File
System. Alternatively, if the network sensor was set to do
so, the traffic associated with the alert also is stored in the
File System. Along the same line, if the asynchronous
notification service was asked for, it would be carried out
under the previously established parameters. .

2) In the alerts block, both the Manager and the external IDS
may demand to obtain the produced alerts. With this aim,
the external elements get in touch with the sensor through
the Service Interface responsible for recovering the alerts
from the File System in order to deliver them to the client.

D. IDS Performance testing
With the goal of evaluating our proposal, the experimental

results of the application of the SOM network to the Web
traffic attack detection are shown in this section. An anomaly-
based service-oriented NIDS has been developed. The neural
network has been trained with HTTP traffic and is able to
recognize attacks against this service.
In order to obtain results that can be judged against other IDS
proposals, we need to use a standardized set of proving data.
To date, DARPA intrusion detection evaluation data is the
most comprehensive set known to be generated for IDS
assessment purposes [34]. It has been regarded within the
scientific community as a significant breakthrough for the
independent and scientific appraisal of any given IDS
performance. Therefore, the data used for the training and
testing of the implemented neural networks have been taken
from the DARPA dataset.

The election of the SOM neural network topology has been
carried out by calculating the two eigenvectors of the
autocorrelation matrix of the training data that have the
greatest eigenvalues; the relationship between the dimensions
of the network is obtained considering the relationship
between these two eigenvalues and the number of patterns in
the training data [15]. Following these criteria, a SOM of 18 x
28 dimensions have been selected, with linear initialization
within the rank of the training patterns and with a Gaussian
neighborhood function.

For the networks validation after the training phase, we
have used the same data again, and we compute the distance to
the winning neuron for each pattern. The networks are
validated if at least 95% of the input patterns vectors have a
distance smaller than two standard deviations with respect to
the vectors of the winning neurons [15]; this heuristic assumes
a Gaussian distribution.

In order to make the results directly comparable, we have
followed the author’s recommendations for the networks
parameters values [35]. The chosen basic parameters were: an
initial learning rate of 0.9, a high initial neighborhood for
better sorting and a number of learning iterations no less than
500 times the number of neurons.

Likewise, to carry out the performance comparisons, we
have selected three tests corresponding to three network’s load
levels: low load, with only traffic injected by tcpreplay, which
injects normal and anomalous traffic; medium load, with the
previous traffic and the traffic sent by the other network nodes
(1MB/s of network traffic); and high load, with injected and
generated traffic by the other network nodes trying to
maximize network traffic (in a network of 100 Mb/s, say 12
MB/s).

Fig. 9 shows the use of the ARM CPU. For clarity purposes,
the chart reflects only 100 representative seconds from the
three weeks total tests duration time. According to these tests,
the average CPU usage in low load mode was about 3.9%, in
medium load there was an average CPU usage of 20.5%, but
in the case of high network load, the processor was saturated
and the average reached a 79.9%. The graphics also show
processing peaks due to specific network traffic increases. We

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

can conclude that this behavior is quite stable and proportional
to the network load.

Fig. 10 shows the network traffic processed by the network
interface of the network sensor. We have also taken 100
representative seconds from the total duration time of the tests.
The average network interface load is 0.1% for low network
load, 9.9% for medium network load and 68.7% for high
network load. There is a clear relationship between this and
the previous graphic, since the peaks in the transmission of
information mirror the saturation points of CPU usage. As a
wrap up it is safe to say that the network interface behavior is
in direct proportion to the network load.

The graphic chart of Fig. 11 shows the system performance
and detection capabilities as a function of the network load. In
this case, conversely to figures 9 and 10, twelve different tests
corresponding to twelve different load levels evenly allocated
in a range from 1 to 12 MBps has been conducted. The CPU
usage rises steadily until reaching a saturation point at which,
while most of the time the average fluctuates around 80%,
except for the occasional falls caused by network interface
saturation, the rest of the time the processor is close to 100%.
The processed frames curve indicates the percentage of
packets processed by the application and the packets received
by the network interface. The curve moves downwards as the
load is increased because the network interface buffer

saturation outgrows the application ability to process the
information, leading to discard packets. The analyzed packets
curve indicates the percentage of packages analyzed by the
IDS regarding the injector tcpreplay sent packets. This curve
also decreases as the application load goes up.

Finally, the performance and capacities of IDS are judged
against two different ratios: false positives and detected
attacks. Detected attacks curve indicates the percentage of
attacks detected by the IDS. As can be seen, if we consider
tolerable a detection rate up to 80% for an IDS [11], as shown
in Fig. 11, the device is effective until 6MBps of network load
(50%) is reached. In the field of network services is customary
to consider that only below 30% of network load a networking
device can guarantee its services. In addition to these results,
we would like to point out that the tested IDS has generated no
false positives whatsoever. In conclusion, the prototype
designed in this paper outperforms by far the commonly
accepted standard values for this kind of services.

As an additional note, we would like to add that the use of
volatile memory has remained constant during the whole
process, at a level of occupation of about 57%.

Regarding the repercussion of the use of web services in the
system, as well as network traffic transmission via MTOM,
different tests have been made resulting on a mean IDS traffic
overload of 1300 bytes for each coded alarm notification in
SOAP and a CPU pinpointed increase (1 sec. sample rate) of
2.5% per alarm. In relationship with the traffic download
associated to the alarm, it is safe to say that it results highly
dependent on the volume of traffic associated to each attack.
Our test results have shown a mean transfer of 38.9 KB per
alarm, as well as a mean of 19 alarms per hour. It should be
noticed that this traffic is transferred via a second network
interface available in the prototype.

VII. CONCLUSION
This work core proposal is the design of an IDS embedded

in a small network device that acts as a smart network sensor.
The sensor is considered intelligent not only because of its

Network load history

0

20

40

60

80

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

time (seconds)

D
ev

ic
e

ne
tw

or
k

in
te

rf
ac

e
lo

ad
 (%

)

% Low load traffic % Medium load traffic % High load traffic

Fig. 10. Graphical representation of the device network interface load.

Fig. 11. Graphical representation of the prototype performance as a function
of the network load.

CPU usage history

0

20

40

60

80

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

time (seconds)

C
P

U
 L

oa
d

(%
)

% Low load traffic % Medium load traffic % High load traffic

Fig. 9. Graphical representation of the CPU usage.

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

ability to transfer the network traffic analyzed to other DIDIS
components, but also for its capacity of doing that at any
moment on demand as well.

From the functional point of view, the device functionality
can be considered a NIDS, generating alerts in IDMEF format
and offering its functionality as Web Service. So, the proposal
is in perfect harmony with the SOA model and the device is
able to register itself in an external registry.

A full functional prototype has also been developed. This
prototype has been used to validate the proposal. The results
show that the device exhibits a very stable behavior and is
capable to provide a service, as critical as the intrusion
detection service is, under really adverse conditions of
network traffic load.

We are currently working in a management model based on
the incorporation of semantic to the definition of the services,
so that high levels of automation can be reached throughout
the whole configuration and management tasks process, not
only for an isolated device, but also for a DIDS as well, even
though the conditions, resources or necessities vary over time.
In this case the basic WS specification has more limitations, so
we are working on a WS-* specification which incorporates
more sophisticated functionalities.

REFERENCES
[1] X. Qin and W. Lee, “Statistical causality analysis of infosec alert data,”

in Proc. Int. Sym. Recent Advances in Intrusion Detection, Pittsburgh,
PA, USA, 2003, pp. 73–93.

[2] E. E. Stelzer and T. A. Gonsalves, “Embedding RMON in large LAN
switches,” IEEE Network, vol. 13, no. 1, pp. 63–72, Jan. 1999.

[3] J. Hill, R. Szewcyzk, A. Woo, S. Hollar, D. Culler and K. Pister,
“System architecture directions for networked sensors,” Operating
Systems Review, vol. 35, no. 11, pp. 93–104, Nov. 2000.

[4] J. Belenguer and C. T. Calafate, "A low-cost embedded IDS to monitor
and prevent Man-in-the-Middle attacks on wired LAN environments," in
Proc. Int. Conf. on Emerging Security Information, Systems, and
Technologies, Valencia, Spain, 2007, pp. 122–127.

[5] T. Sato and M. Fukase, “Reconfigurable Hardware Implementation of
Host-Based IDS,” in Proc AsiaPacific Conference on Communications,
Penang, Malaysia, 2003, pp. 849–853.

[6] K. M. Tan and R. A. Maxion, “Why 6? Defining the operational limits
of stide, an anomaly-based intrusion detector,” in Proc. IEEE Sym.
Security and Privacy, Oakland, CA, USA, 2002, pp. 188–201.

[7] C. Kruegel and G. Vigna, “Anomaly detection of Web-based attacks,” in
Proc ACM Conf. on Computer and Communications Security,
Washington, USA, 2003, pp. 251–261.

[8] K. Wang and S. Stolfo, “Anomalous payload-based network intrusion
detection,” in Proc. Int. Sym. Recent Advances in Intrusion Detection,
French Riviera, France, 2004, pp. 203–222.

[9] S. J. Han, K. J. Kim and S. B. Cho, “Evolutionary learning program’s
behavior in neural networks for anomaly detection,” in Proc. Int. Conf.
on Neural Information Processing, Calcutta, India, 2004, pp. 236–241.

[10] S. Zanero and S. Savaresi, “Unsupervised learning techniques for an
intrusion detection system,” in Proc. ACM Sym. Applied Computing,
Nicosia, Cyprus, 2004, pp. 412–419.

[11] F. J. Mora, F. Maciá, J. M. García and H. Ramos, “Intrusion detection
system based on growing grid neural network,” in Proc. IEEE
Mediterranean Electrotechnical Conference, Malaga, Spain, 2006, pp.
839–842.

[12] R. Lippmann and R. Cunningham, “Improving intrusion detection
performance using keyword selection and neural networks,” Computer
Networks, vol. 34, no. 4, pp. 597–603, Oct. 2000.

[13] J. Cannady and J. Mahaffey, “The application of artificial intelligence to
misuse detection,” in Proc. Int. Sym. Recent Advances in Intrusion
Detection, Louvain-la-Neuve, Belgium, 1998, pp. 75–94.

[14] P. Lichodzijewski, A. Zincir-Heywood and M. Heywood, “Dynamic
intrusion detection using self-organizing maps,” in Proc. annu.
Canadian Information Technology Security Symposium, Ottawa,
Canada, 2002, pp. 93–97.

[15] M. Ramadas, S. Ostermann and B. Tjaden, “Detecting anomalous
network traffic with self-organizing maps,” in Proc. Int. Sym. Recent
Advances in Intrusion Detection, Pittsburgh, PA, USA, 2003, pp. 36–54.

[16] L. Ying-Dar, T. Kuo-Kun, L. Tsern-Huei, L. Yi.Neng, H. Chen-Chou
and L. Yun-Cheng, “A plataform-based SoC design and implementation
of scalable automaton matching for deep packet-inspection,” Journal of
Systems Architecture, vol. 53, no. 12, pp. 937–950, Dec. 2007.

[17] C.A. Hudson, N.S. Lobo, R. Krishnan, “Sensorless Control of single
switch-based switched reluctance motor drive using neural network,”
IEEE Trans. on Industrial Electronics, vol. 55, no 1, pp. 321–329, Feb.
2008.

[18] S. Jung and S. Su kim, “Hardware Implementation of a real-time nueral
network controller with a DSP and a FPGA for Nonlinear Systems,”
IEEE Trans. on Industrial Electronics, vol. 54, no 1, pp.265–271, Feb.
2007.

[19] D. Zhang and L. Hui, “A stochastic-Based FPGA Controller for an
Induction Motor Drive With Integrated Neural Network Algorithms,”
IEEE Trans. on Industrial Electronics, vol. 55, no. 2, pp. 551–561, Feb.
2008.

[20] C. Kruegel, F. Valeur and G. Vigna, Intrusion Detection and
Correlation: Challenges and solutions. New York: Springer, 2005.

[21] M. E. Locasto, J. Parekh, A. Keromytis and S. Stolfo, “Towards
collaborative security and P2P intrusion detection,” in Proc. IEEE
Information Assurance Workshop, West Point, NY, USA, 2005, pp.
333–339.

[22] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V.
Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S.
Kulkarni, U. Arumugam, M. Nesterenko, A. Vora and M. Miyashita, “A
line in the sand: a wireless sensor network for target detection,
classification and tracking,” Computer Networks, vol. 46, no. 5, pp. 605–
634, Dec. 2004.

[23] J. M. Gonzalez, V. Paxson and N. Weaver, “Shunting: a
hardware/software architecture for flexible, high-performance network
intrusion prevention,” in Proc. ACM Computer and Communications
Security, Alexandria, USA, 2007, pp. 139–149.

[24] V. C. Gungor and G. P. Hancke, “Industrial Wireless Sensor Networks:
Challenges, Design Principles, and Technical Approaches,” IEEE Trans.
on Industrial Electronics, vol. 56, no. 10, pp 4258–4265, Oct. 2009.

[25] U. Toop, P. Muller, J. Konnertz and A. Pick, "Web based Service for
Embedded Devices," in Proc. Workshop on Web, Web-Services and
Database Systems, Erfurt, Germany, 2002, pp. 141–153.

[26] B. Akin, U. Orguner, H.A. Toliyat and M. Rainer, “Phase-Sensitive
detection of Motor Fault Signatures in the Presence of Noise,” IEEE
Trans. on Industrial Electronics, vol. 55, no 6, pp. 2539–2550, Jun.
2008.

[27] B. Singh, V. Verma and J. Solanki, “Neural Network-Based Selective
Compensation of Current Quality Problems in Distribution System,”
IEEE Trans. on Industrial Electronics, vol. 54, no 1, pp. 53–60, Feb.
2007.

[28] S. Won, F. Golnaraghi and W. Melek, “A Fastering Tool Tracking
System Using an IMU and a Position Sensor With Kalman Filters and a
Fuzzy Expert System,” IEEE Trans. on Industrial Electronics, vol. 56,
no 5, pp. 1782–1792, May. 2009.

[29] K. P. Birman, S. Guha and R. Murty, “Scalable, self-organizing
technology for sensor networks,” in Advances in Pervasive Computing
and Networking, B. Szymanski, B. Yener, Ed. New York: Springer,
2005, pp. 1–16.

[30] IEEE 802.3af, “(CSMA/CD) Access Method and Physical Layer
Specifications Amendment: Data Terminal Equipment (DTE) Power via
Media Dependent Interface (MDI),” IEEE Computer Society, 2003.
[Online]. Available: http://www.ieee802.org. [Accessed: March 20,
2009].

[31] G. Scheible, D. Dzung, J. Endresen and J. E. Frey, “Unplugged But
Connected, Design and Implementation of a Truly Wireless Real-Time
Sensor/Actuator Interface,” IEEE Industrial Electronics Magazine, vol.
1, no 2, pp. 25–34, Jul. 2007.

[32] B.K. Douglas, Web Services and Service-Oriented Architectures: The
savvy manager's guide. San Francisco: Morgan Kaufmann, 2003.

[33] H. Debar, D. Curry and B. Feinstein, “The Intrusion Detection Message
Exchange Format (IDMEF),” Internet Engineering Task Force, 2007.
[Online]. Available: http://www.ietf.org. [Accessed: March 20, 2009].

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[34] DARPA Intrusion Detection Evaluation. [Online]. Available:
http://www.ll.mit.edu/IST/ideval/index.html. [Accessed: July 25, 2009].

[35] T. Kohonen, Self-Organizing Maps. Berlin: Springer, 2001.

Francisco Maciá-Pérez (M’08) was born in
Spain in 1968. He received his engineering
degree and the Ph.D. degree in Computer
Science from the University of Alicante in 1994
and 2001 respectively.

He worked as System’s Administrator at the
University of Alicante form 1996 to 2001. He
was an Associate Professor from 1997 to 2001.
Since 2001, he is an Assistant Professor and
currently he is the Director of the Department of
Computer Science and Technology at the
University of Alicante. His research interests are

in the area of network management, computer networks, smart sensor
networks and distributed systems, which are applied to industrial problems.

Francisco J. Mora-Gimeno (M’08) was born in
Spain in 1967. He received the M.Sc. degree in
Computer Science from the Polytechnic
University of Valencia, Valencia, Spain, in
1995. He received the Ph.D. degree in Computer
Science from the University of Alicante in 2010.

Since 2002, he has been an Assistant
Professor with the Department of Computer
Science and Technology, University of Alicante.
His main topics of interest include intrusion
detection systems, network security, computer
networks and distributed systems.

Diego Marcos-Jorquera (M’08) was born in
Spain in 1974. He received his engineering
degree and the Ph. D. degree in Computer
Science from the University of Alicante in 1999
and 2010 respectively.

He is currently an Assistant Professor with
the University of Alicante. His research interests
are in the area of network management,
computer networks, and distributed systems.

Juan Antonio Gil-Martínez-Abarca was born in
Spain in 1970. He received his engineering degree
in Computer Science from the University of
Alicante in 1994.

Since 1998, he is System’s Administrator at the
University of Alicante and, since 1999, he has
been an Associate Professor at the Department of
Computer Science and Technology at the
University of Alicante. His research interests are
in the area of network management, computer
networks and distributed systems.

Héctor Ramos-Morillo was born in Alicante,
Spain, in 1978. He received the engineering
degree in Computer Science from the University
of Alicante in 2004, where he has been working
toward the Ph.D. degree in the Department of
Computer Science and Technology since 2005.

He is currently a System’s Administrator at the
Department of Computer Science and
Technology, University of Alicante. His research
interests are in the area of network management,
computer networks, embedded systems and smart
sensor networks.

Iren Lorenzo-Fonseca was born in Cuba in 1982.
She received her Engineering and Master degree in
Computer Science from the José Antonio
Echevarría Institute of Technology (CUJAE) in
2005 and 2007 respectively and her Ph. D. degree
in the Department of Computer Science and
Technology of the University of Alicante 2010.
She is currently Professor at the Computer Science
Faculty of the José Antonio Echevarría Institute of
Technology. Her research interests lay in the area
of artificial intelligent, computer networks and
distributed systems.

