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Abstract

The Finite-Difference Time-Domain (FDTD) method has proven to be a useful tool to analyze electromagnetic scattering phe-
nomena. In this work, the FDTD method is applied at optical wavelengths. More precisely, we present the results obtained using
the FDTD algorithm to simulate the performance of optical devices such as volume diffraction gratings. The Perfectly Matched
Layers (PML), Total-Field Scattered-Field formulation (TF/SF) and Near-Field to Far-Field transformation (NF/FF) are some add-
ons included in order to correctly calculate the far field distribution obtained from the numerical near-field values computed in
the simulation region. These values in the near-field region are computed by illuminating the grating with of a plane wave at the
Bragg angle of incidence. In addition, we compare the results obtained by the FDTD method to those obtained using the Rigorous
Coupled Wave Theory (RCWT) applied to diffraction gratings. As will be seen in this paper there is good agreement between the
two approaches, thus validating our FDTD implementation.

Keywords: Finite-Difference Time-Domain, Holography, diffraction grating, Rigorous Coupled Wave Theory, diffraction
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1. Introduction

In recent decades diffractive optical elements have been used
in many applications such as the manufacture of lenses and mir-
rors [1, 2], broadband communications [3], optical computa-
tion [4] or information storage [5]. Because of the small sizes
of these optical elements, rigorous electromagnetic computa-
tional methods are needed to obtain their diffraction efficiency.
There are several numerical methods applied to solve electro-
magnetic problems such as the finite-element method [6], the
boundary-element method [7, 8, 9] and the boundary-integral
method [10] which require solving of a large system of equa-
tions. The Finite-Difference Time-Domain method (FDTD)
[11, 12] is based on a time-marching algorithm that has proven
accurate in predicting microwave scattering from complicated
objects, for instance. The FDTD method solves the differential
Maxwell equations, substituting the time and spatial derivatives
with central-difference approximation providing the transient
electromagnetic field and wide band frequency analysis via a
single simulation.

In this paper the FDTD method is applied to rigorously ana-
lyze holographic volume gratings for the near-field distribution.
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Furthermore, far-field distributions can be obtained from the
FDTD-calculated near-field distributions using of the rigorous
near to far-field transformations in two and three dimensions
[13, 14, 15]. It is well known that diffraction gratings with fea-
ture sizes comparable to the wavelength of light must be treated
electromagnetically because the scalar diffraction theories, in-
cluding Fourier and Fresnel approximations, no longer apply
[16]. Although some work has been done on the FDTD method
for periodic structures [17, 18, 19] and thin-film gratings [20],
in this paper a specific application of the FDTD method is de-
veloped to study the diffraction and transmission efficiencies of
volume holographic gratings.

In Section 2 the elemental theory related to the FDTD
method is introduced. In this section special considerations pre-
dicting the performance of gratings and other optical devices,
including boundary conditions and far field transformation are
described. For simplicity TM polarization was considered in
all of the experiments (electric field parallel to the z-axis, and
magnetic field in the xy plane). In many applications an in-
finitely large one-dimensional structure in the z direction can
be assumed, and this is illuminated by a TM plane wave. In
such a case, the solutions of Maxwell’s curl equations can be
reduced to a two-dimensional problem. All gratings simulated
in Section 4 are studied in two dimensions.
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All the values obtained via the FDTD algorithm are com-
pared with those obtained by means of a standard method based
on the RCW theory, which has proven to be accurate when ap-
plied to diffraction gratings [21]. This method predicts the ef-
ficiency of the different orders that propagate inside a grating.
For decades researchers in the field of Holography have used
the analytical expressions deduced by Kogelnik [22] to estimate
the theoretical predictions of phase and amplitude, transmis-
sion and reflection volume holograms. This theory assumes that
only two orders propagate inside the hologram. In this paper we
make use of our implementation of the RCW method to study
the influence of the various Fourier component of the electri-
cal permittivity on the efficiency of the grating. This method is
detailed in section 3.

2. Basic numerical formulation

Light propagation is described by Maxwell’s time-dependent
curl equations in Gaussian units[13, 23]:

∂D̃
∂t

=
1√
ε0µ0

(
∇ ×H − σẼ

)
, (1)

D̃(ω) = ε∗r (ω) · Ẽ, (2)
∂H
∂t

= − 1√
ε0µ0
∇ × Ẽ − σm

µ0
H, (3)

where ε0 is the electrical permittivity in farads per meter, ε∗r is
the medium’s relative complex permittivity constant, µ0 is the
magnetic permeability in henrys per meter, σm is an equivalent
magnetic resistivity in ohms per meter and σ is the electric con-
ductivity in siemens per meter. The flux density is denoted by
D and both D and E are normalized with respect to the vacuum
impedance η0, using

Ẽ =
√

ε0
µ0

E, (4)

D̃ =
√

1
ε0µ0

D. (5)

The FDTD algorithm used here is based on the Yee[24] lat-
tice as depicted in Fig. 1.a). The electric field components E
and the magnetic field components H are centered in a three-
dimensional cell so that every E component is surrounded by
four circulating H components, and every H component is sur-
rounded by four circulating E components [14, 25].

To solve Maxwell’s curl equations in two dimensions for
TM polarization, Eqs.(1-3) are discretized by using central-
difference expressions for both the time and the space deriva-
tives. For two dimensions, the Yee cell is still useful and only
an xy plane containing H fields is necessary, as can be seen in
Figure 1.b). Eqs.(1-3) are reduced to the following taking into
account a nonmagnetic and lossless medium:

D̃z|n+1/2
i, j = D̃z|n−1/2

i, j +
∆t

∆y
√
µ0ε0

(
Hy|ni+1/2, j − Hy|ni−1/, j

)

− ∆t
∆x
√
µ0ε0

(
Hx|ni, j+1/2 + Hx|ni, j−1/2

)
, (6)

Hx|n+1
i, j+1/2 = Hx|n−1

i, j+1/2 −
∆t

∆z
√
µ0ε0

(
Ez|n+1/2

i, j+1 − Ez|n+1/2
i, j

)
, (7)

Hy|n+1
i+1/2, j = Hy|n−1

i+1/2, j +
∆t

∆z
√
µ0ε0

(
Ez|n+1/2

i+1, j − Ez|n+1/2
i, j

)
. (8)

Here, ∆x and ∆y are, respectively, the lattice space incre-
ments in the x and y coordinate directions, and i and j are in-
tegers that denote the position of sample points in the x and
y directions, respectively. The time increment is represented
by ∆t and is related to the integer n to localize a determined
observation interval. At the material boundaries the continuity
conditions for the electric and magnetic fields are satisfied im-
plicitly within the accuracy of the numerical discretization. In
the time domain a leapfrog algorithm is applied [14]. The elec-
tric and magnetic fields are calculated alternately at intervals of
1
2 ∆t. The time step has an upper bound to ensure the numerical
stability of the algorithm [14, 13, 26]. This is summarized by
the well-known “Courant condition”:

∆t ≤ ∆√
pc0

, (9)

where p is the dimension of the simulation and ∆ = ∆x = ∆y.
Throughout this paper we will for simplicity determine ∆t as

∆t ≤ ∆

2 · c0
. (10)

2.1. Perfectly matched layer absorption condition
In order to simulate unbounded free space, absorbing bound-

ary conditions are included in the region in which the optical de-
vice is totally enclosed. Usually, when calculating the E field,
we need to know the surrounding H values. At the edge of
the grid the values at one side are unknown, arbitrary and as-
sumed to be null. As a consequence, reflected waves would
go inward in order to keep the boundary conditions mentioned
previously. This phenomenon causes an unpredictable field pat-
tern in the simulation region. The perfectly matched layer ab-
sorbing boundary conditions proposed by Berenger [27], which
have been found to be effective and to cause only slight re-
flection error, are used in our study. To apply the PML to
our algorithm, the electric and magnetic fields are split into
scalar components so that independent lossy factors can be as-
signed to each electromagnetic field term. The effect of this
is to create a nonphysical absorbing medium adjacent to the
outer FDTD mesh boundary that has a wave impedance inde-
pendent of the angle of incidence and frequency of the outgoing
scattered waves. There have been numerous approaches to this
problem [14][26][28][29].

In this paper, a slight deviation from the Berenger method
will be made by introducing fictitious conductivities associated
with D and H, instead of E and H. The basic idea of this for-
malism is to create a medium that is lossy and minimize the
amount of reflection between free air and the PML region. The
reflection is determined by the intrinsic impedance of the two
media. Considering a wave propagating in a medium A which
impinges upon medium B, the amount of reflection is deter-
mined by:

Γ =
ηA − ηB

ηA + ηB
. (11)
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Figure 1: a) Unit cell in 3-D FDTD method. b) Spatial grid in 2-D FDTD method.

where ηA and ηB are the intrinsic impedances of the two media
which are determined by the dielectric constants ε and perme-
abilities µ of the two media

η =

√
µ

ε
(12)

Making both ε and µ complex, the medium becomes lossy.
In order to obtain this effect, fictitious dielectric constants and
permeabilities ε∗Fz

,µ∗Fx
and µ∗Fy

are added to Eqs.(1-3). These
fictitious values used to implement the PML are different from
the real values of ε∗r (ω) which are specified by the medium.
Taking into account that in the PML region, nonreal lossy and
magnetic material will be placed, Eqs.(1-3) can be rewritten
adding fictitious PML layers:

jwDzε
∗
Fz

(x)ε∗Fz
(y) = c0

(
∂Hy

∂x
− ∂Hx

∂y

)
, (13)

Dz(w) = ε∗r (w) · Ez(w), (14)

jwHxµ
∗
Fx

(x)µ∗Fx
(y) = −c0

(
∂Ez

∂y

)
, (15)

jwHyµ
∗
Fy

(x)µ∗Fy
(y) = c0

(
∂Ez

∂x

)
. (16)

For the correct behavior of the PML, two conditions must be
fulfilled [30]:

1. The impedance going from the background medium to the
PML must be constant,

η0 = ηm =

√
µ∗Fx

ε∗Fx

= 1. (17)

2. In the direction perpendicular to the boundary (the x di-
rection, for instance), the relative dielectric constant and
relative permeability must be the inverse of those in the
other directions; i.e.,

ε∗Fx
=

1
ε∗Fy

= 1, (18)

µ∗Fx
=

1
µ∗Fy

= 1. (19)

We will assume that each of these is a complex quantity of
the form [13],[29],[30] and [31]:

ε∗Fm
= εFm +

σDm

jwε0
= 1 +

σD

jωε0
withm = x, y, (20)

µ∗Fm
= µFm +

σHm

jwµ0
= 1 +

σD

jωε0
withm = x, y. (21)

Rewriting Eq.(14-16)

jwDz

(
1 +

σD(x)
jwε0

) (
1 +

σD(y)
jwε0

)
= c0 ×

(
∂Hy

∂x
− ∂Hx

∂y

)
,(22)

jwHx

(
1 +

σD(x)
jwε0

)−1 (
1 +

σD(y)
jwε0

)
= −c0

(
∂Ez

∂y

)
, (23)

jwHy

(
1 +

σD(x)
jwε0

) (
1 +

σD(y)
jwε0

)−1

= c0

(
∂Ez

∂x

)
. (24)

Moving to the time domain, and taking the finite difference
approximations, we get the following:

Ch|i, j = Hy|ni+1/2, j − Hy|ni−1/2, j −
3



Hx|ni, j+1/2 + Hx|ni, j−1/2, (25)

Dz|n+1/2
i, j = Cx|iCy| jDz|n−1/2

i, j + Bx|iBy| j 1
2

Ch|i, j, (26)

Ce|i, j =
[
Ez|n+1/2

i+1, j − Ez|n+1/2
i, j

]
, (27)

IHy |n+1/2
i+1/2, j = IHy |n+1/2

i−1/2, j + Ay| jCe|i, j, (28)

Hy|n+1
i+1/2, j = Cx|i+1/2Hy|ni+1/2, j −

Bx|i+1/2
1
2

[
Ce|i, j + IHy |n+1/2

i+1/2, j

]
, (29)

Ce|∗i, j =
[
Ez|n+1/2

i, j − Ez|n+1/2
i, j+1

]
, (30)

IHx |n+1/2
i, j+1/2 = IHx |n+1/2

i, j+1/2 + Ax|iCe|i, j, (31)

Hx|n+1
i, j+1/2 = Cy| j+1/2Hx|ni, j+1/2 −

By| j+1/2
1
2

[
Ce|∗i, j + IHx |n+1/2

i, j+1/2

]
. (32)

where we used the fact that ∆t/∆c0 = 1/2 and the new parame-
ters are given by

Am|n = 0.333
(

n
NPML

)3

(33)

Bm|n =

(
1

1 + Am|n

)
, (34)

Cm|n =

(
1 − Am|n
1 + Am|n

)
. (35)

where, m = x or y and n = 1, 2, . . . ,NPML. NPML is the num-
ber of cells forming the PML region. Figure 2 shows the effec-
tiveness of a 10-point PML.

2.2. Total-Field Scattered-Field formulation

The incidence of the TM plane wave, whose incidence is
assumed to be from air to medium and whose propagation in
the FDTD region is determined using the time-marching al-
gorithm, is introduced along the connecting boundary by us-
ing a total field/scattered field algorithm [14, 13, 26], where
(E,H)Total = (E,H)inc + (E,H)scat. An arbitrary angle of in-
cidence was taken into account. A scheme of the simulation
region is shown in Fig. 3 for normal incidence.

Applying the TF/SF formulation, a plane wave should not
interact with the PML, minimizing the load in that area and
reducing the amount of error.

The total field region encloses the scatterers, whereas the
scattered field region, where only the scattered field region
components are stored, encloses the total field region. As il-
lustrated in Figure 3, in the two-dimensional field every point
in the problem space is either in the total field or not; no point
lies on the border. In order to confine the incident field in the
total field region, special “connecting conditions” are required
at the border between two regions.

As can be seen in Figure 3 there are fields that use points
outside the total region to calculate the spatial derivatives when
updating their values. Therefore, the equations of the fields that
are under these constraints need to be reformulated. In addition,

Total Field

Region

j 
=

 j
a

j 
=

 j
a
 -

 1
/2

j 
=

 j
b

j 
=

 j
b
 +

 1
/2

i=ia
i=ia - 1/2

i=ib

i=ib + 1/2

Ezinc

d

rc

Ez

Hyinc

Hx

Hy

kinc

Scattered Field 

Region

φ 

Figure 3: Total field/scattered field scheme for an arbitrary angle of incidence.

this phenomenon is also produced when a field outside the total
region uses values from the total region to update its value. The
incident array (Ezinc and Hyinc ) contains all the values needed
for this purpose. However, for an arbitrary angle of incidence
a linear interpolation can be used, since values of the incident
field at the boundaries may not be stored in the memory (this
case is shown in Figure 3). This value can be located between
two samples of the incident field and calculated from the linear
interpolation. If normal incidence is considered, the connecting
conditions are defined as follows [14],[29],[32].

1. Dz field component in j = ja and j = jb.

Dz|n+1
i, ja = Dz|n+1

i, ja +
1
2

Hxinc | ja−1/2, (36)

Dz|n+1
i, jb = Dz|n+1

i, jb −
1
2

Hxinc | jb+1/2. (37)

2. Hx field component in j = ja and j = jb.

Hx|n+1/2
i, ja−1/2 = Hx|n+1/2

i, ja−1/2 +
1
2

Ezinc | ja, (38)

Hx|n+1/2
i, jb+1/2 = Hx|n+1/2

i, jb+1/2 −
1
2

Ezinc | jb. (39)

3. Hy field component in i = ia and i = ib.

Hy|n+1/2
ia−1/2, j = Hy|n+1/2

ia−1/2, j −
1
2

Ezinc | j, (40)

Hy|n+1/2
ib+1/2, j = Hy|n+1/2

ib+1/2, j +
1
2

Ezinc | j. (41)

After the source is turned on, it is allowed to run for the du-
ration of the simulation, which is long enough for several cy-
cles to scatter off the grating and reach the truncation bound-
ary. In our study a steady-state condition should be reached by
making the time steps long enough to ensure that the transient
fields have decayed away. Once the steady state is achieved,
the field distribution just above the optical device (slit, or holo-
graphic grating) can be propagated from the near field (the out-
put plane) to the far field (the observation plane) by using the
propagation method for two or three dimensions respectively.
For example, the pattern in the far field of a grating, where the
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Figure 2: Simulation of a propagating pulse. The effectiveness of the PML is clear. a) t = 50∆t. b) t = 80∆t

detector distance P is much larger than Λ/λ, Λ being the grat-
ing period, represents the angular distribution of this energy.
Simulating the propagation of energy over this distance with
the FDTD algorithm, given the discretization requirements of
a structure with large dielectric constants and/or detailed struc-
tures, requires an extremely large computational grid. However,
truncating the mesh closer to the scatterer and calculating the
far field response from the values of the field near the scatterer,
the performance of the algorithm in terms of memory and time
processing is improved.

2.3. Far Field Transformation in two dimensions
In the time domain, the Schelkunoff equivalence principle

has been used by many authors in different studies[33, 34,
35, 36, 37] for three-dimensional transient calculations evaluat-
ing the Time-Domain Integral Expresion (TDIE) of the fields.
Nevertheless, evaluation of the TDIE in two dimensions is
not straightforward. Luebbers et al. [38] proposed a mixed
frequency/time-domain algorithm which involves two Fourier
transformations to obtain the time-domain response. In this pa-
per an approach based on the equivalence principle was imple-
mented to calculate, in the time domain, the transient far-field
response of a two-dimensional structure by directly evaluating a
two-dimensional form of the TDIE [15]. The procedure leads to
an easily implementable algorithm consisting of the numerical
evaluation of a two-dimensional integral. This algorithm can
be implemented in a marching-on-in-time procedure simulta-
neously with the FDTD advancing algorithm.

The equivalence principle [23] allows of the actual sources
to be substituted by a set of equivalent electric and magnetic
surface current densities, located in the near field zone. These
currents are given by

JS (r′, t) = n̂ ×H(r′, t), (42)
MS (r′, t) = −n̂ × E(r′, t), (43)

x

y

E

H
k

r'

r'

r

R

z'
z

r

P Pfar
proj

Pfar

Contour 
La

Figure 4: Near to far field transformation scheme.

where n̂ is a unit vector normal to the surface and coming out of
it and the primed parameters indicate the source while the un-
primed parameters are the scattered field. In Fig. 10 the prob-
lem is illustrated schematically. It is known how the electric
and magnetic current densities contribute to the radiated elec-
tric field [39]:

E(r, t)rad
m =

µ0
4π

∫
S ′

([∂tJS (r′,t)]τ×R)×R
R3 dS ′, (44)

E(r, t)rad
e = − 1

4πc0

∫
S ′

([∂tMS (r′,t)]τ×R)×R
R2 dS ′, (45)

where R = r − r′ is the vector from the source point to the
field point. The total electric field is the sum of the electric and
magnetic contributions E(r, t)rad = E(r, t)rad

e + E(r, t)rad
m . The

fundamental point of the procedure, based on previous studies
[40, 15], is to evaluate of the integral along z′, taking advantage
for the expression of the retarded sources by a time integral us-
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ing the translation property of the Dirac delta function. Taking
into account this property and manipulating Eqs. (44-45) math-
ematically we can obtain the final expression for the electric far
field:

E(r, t)far = − 1

2π
√

2
√

r

∫

La

dl′ ×
∫ t′=t−R/c0

t′=−∞

η0∂t′JS (r′, t) + ∂t′MS (r′, t) × r̂√
c0(t − t′) − R

dt′, (46)

where r̂ = r/r and La is the conversion contour showed in Fig
10.

Due to the unbounded behavior of the integrand when t′ →
(t − R/c0)−, the time integral is solved by combining numerical
and analytical techniques [15, 41].

3. Rigorous Coupled Wave Theory

There are different methods in the literature that precisely
describe electromagnetic propagation in volume diffractive ele-
ments [42, 43, 44, 45, 46, 47].

In this section, we briefly review the RCW theory for the
case of lossless sinusoidal transmission diffraction gratings. For
more details see Refs. [21], [48].

In this case the Fourier expansion of the relative permittivity
in the hologram is expressed as:

εr(x, y) =
∑

h

εhe jhKr (47)

where εh is the h-th Fourier component of the relative permit-
tivity in the grating region and K is the grating vector, the mag-
nitude of which is related to the grating period, Λ , as follows:

|K| = 2π
Λ

(48)

In the unslanted geometry expression, 47 can be converted into:

εr(x) =
∑

h

εhe jhKx (49)

where it is assumed that the periodic relative permittivity varies
in the x direction, parallel to the grating boundaries. The waves
are assumed to propagate in the xy plane, with the electric field
polarized in the z direction, so that TM polarization is studied.

It is further assumed here that the diffraction grating (medium
II in Fig. 5) is embedded between two homogeneous media,
I and III. If a plane wave impinges onto the hologram from
medium I, the electric field in media I and III will be expressed
as:

EI = e[− j(kx0 x+ky0 y)] +
∑

i

Rie
[
− j

(
kxi x−kI

yi
y
)]
, (50)

EIII =
∑

i

Tie
[
− j

(
kxi x−kIII

zi
(y−d)

)]
. (51)

We define kx0 = k0ε
1/2
I sin θ, kz0 = k0ε

1/2
I cos θ, k0 = 2π/λ0,

where θ is the angle of incidence in medium I, λ0 is the free-
space wavelength, εI is the relative permittivity of medium I, Ri

K

k

E

H

L

q0

I II IIIx

y

d

Figure 5: Scheme of a diffraction grating.

is the amplitude of the i-th order backward-diffracted wave and
Ti is the amplitude of the i-th order forward-diffracted wave. kxi

is determined by the vector Floquet condition:

kxi = kx0 − iK, (52)

where the z components of the propagation vectors for the i-th
orders are:

kI
zi

=
(
k2

0ε1 − k2
xi

)1/2
(53)

In the grating region the tangential electric (z component)
and magnetic (x component) fields may be expressed as:

EII
z =

∑

i

S zi (y)e(− jkxi x) (54)

HII
x = − j

(
ε0

µ0

)1/2 ∑

i

Uxi (y)e(− jkxi x) (55)

Substituting equations (54) and (55) by equation (49) in
Maxwell’s equations, the following set of first order coupled
equations can be derived:

∂S zi

∂y
= k0Uxi (56)

∂Uxi

∂y
=


k2

xi

k0

 S yi − k0

∑

p

ε(i−p)S yp (57)

The amplitudes S yi and Uxi can be obtained by solving equa-
tions (56)-(57) using the formalism described in ref [21]. The
2×N arbitrary constants that arise from the 2xN coupled equa-
tions (56),( 57), where N is the number of orders retained, can
be obtained by matching the tangential electric and magnetic
field components at the two boundaries. Imposing the boundary
conditions at the I-II and II-III interfaces permits the amplitudes
of the backward waves, Ri, and of the forward waves, Ti to be
calculated. The diffraction efficiencies for the different orders
are expressed as:
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ηR
u = RiR∗i Re

(
kzi1

kz0

)
(58)

ηT
i = TiT ∗i Re

(
kzi3

kz0

)
(59)

4. Experiment

In this section, the results obtained via the FDTD method are
compared with some well-known theoretical values. Firstly,
several arrays of apertures are simulated. The results of the
electric far-field are compared with the analytical irradiance in
the Fraunhofer region. These simulations give us the opportu-
nity to validate our numerical method in order to simulate more
complicated optical structures such as volume holographic grat-
ings. Secondly, numerical results of the volume holographic
gratings are presented with their theoretical values, which are
calculated using of the RCWT applied to periodic media.

4.1. Fraunhofer diffraction

The diffraction pattern produced by an array of apertures in
the Fraunhofer region is a well known problem in optics. Due
to the fact that closed analytical expressions exist in the Fraun-
hofer region for this type of configurations, the FDTD method
can be validated comparing and contrasting curves obtained via
FDTD simulation with analytical curves. In optical laboratory
situations diffraction is mainly studied in the forward direction,
that is, for small angles from the direction of propagation of the
incident field. Furthermore, the distances are much larger than
the wavelength λ, r >> λ. As a consequence, the irradiance
pattern in the far-field region involves large distances and, as
a result, bigger grids in the FDTD method must be simulated.
However, the near-field to far-field transformation can be used
to solve this problem.

A diagram of the systems chosen to be simulated is shown in
Fig 6, where a defined number of apertures are displayed.

In Fig. 6, it can be seen how the apertures are modelled in the
method by opening several slits in a perfect conductor plane.
These slits are illuminated by a plane wave using the TF/SF
formulation. The sampling plane contains the near-field values
of the electromagnetic field to be propagated to the i-th point in
the far-field (Pi

far).
For an array of N apertures, the analytical irradiance expres-

sion is:

I(0)
N2

(
sinβ
β

)2 ( sinNα
sinα

)2

, (60)

with β = kb/2sinθ and α = kd/2sinθ. The angle θ is estab-
lished as the angle formed by the vector r j

i (distance between
the near-field point i and the far-field point j) and the normal of
the output plane of the apertures.

The variable parameters such as the wavelength and the spa-
tial period are fixed as λ=633 nm and ∆x = λ/10. The diffrac-
tion pattern points must be situated at a distance from the slits
satisfying Fraunhofer’s far field condition F = a2/Lλ � 1.
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.

.

Figure 6: Diagram of an array of apertures simulation.

Where a is the width of the slit and L is the distance between
the far field observation point (screen) and the plane slits. Dis-
tance L was established for all the simulations as 4000λ, sat-
isfying the Fraunhofer’s far field condition. The distant ob-
servation points were obtained by means of the near-field to
far-field transformation (Section 2.3) along the x-coordinate at
y = 40000∆. The irradiance patterns, which are proportional to
the electric field, are computed by means of NF/FF propagation.
A sampling plane near the output plane of the apertures array
contains the near field that is propagated to the far field. The
electric far-field values are calculated across a line placed at y
= 4000 ∆. When a simulation finishes, the values of the electric
far-field plane are available as a function of time. The modulus
of the electric far field (|Ez|) as a function of time is shown in
Fig. 7.b). From these values, the normalized irradiance can be
easily derived as can be seen in 7.a).

In Fig. 8 the simulation results are compared with the analyt-
ical values. As can be seen from the graph, the results obtained
via the FDTD method are a good enough fit to the analytical
curves in the Fraunhofer region. This simulation validated our
implementation of the FDTD method for optical wavelengths.

The numerical results were obtained by simulating of volume
diffraction gratings in a two-dimensional grid. A grating with
constant parameters, n0 = 1.63, Λ = 0.83 µm was chosen. The
thickness of the grating varied from 1 µm to 25 µm, and two
refractive index modulation were chosen, ∆n = 0.025 and ∆n
= 0.015. The wavelength of the incident wave was fixed at
λ = 633 nm.

In order to minimize the diffractions at the borders of the
total-field and the scattered field, the shape of the dielectric con-
stants (related to the refractive index by n =

√
εr) was modified

7



a)

-1.8 -1.2 -0.6 0 0.6 1.2 1.80

0.2

0.4

0.6

0.8

1

I(
q)

/I
(0

) (
n.
u)



b)

Analytical
FDTD

Analytical
FDTD

b/p (n.u)
-1.8 -1.2 -0.6 0 0.6 1.2 1.80

0.2

0.4

0.6

0.8

1
I(
q)

/I
(0

) (
n.
u)



b/p (n.u)

Figure 8: Normalized irradiance for N apertures with aperture width of a=50∆ and gap between apertures d=70∆. a)N=5. b)N=7.
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at the borders of the simulation.

εr =



εmax x < ia1

εmax cos
(

π
2·(ia2−ia1 ) (x − ia1 )

)
· εgrating ia1 ≥ x ≤ ia2

εgrating ' n2
0 + 2n0n1 cos

(
2π
Λ

x
)

ia2 ≥ x ≤ ib2

εmax sin
(

π
2·(ib1−ib2 ) (x − ib2 )

)
· εgrating ib2 ≥ x ≤ ib1

εmax x > ib1

(61)

The TF/SF formulation was designed to simulate structures
that are completely confined inside the total region. Classi-
cal theory for diffraction gratings analysis considers in most
cases an infinite grating. For our implementation of the FDTD
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method, this approach cannot be assumed yet. Therefore the
TF/SF must be formulated in zones where a dielectric medium
is defined. Eq. (61) defines a dielectric structure that guides the
light at the borders of the simulation region straight to the PML
region in order to avoid undesired diffraction effects at the finite
limits of our grating.

Fig. 9.a) shows the mask applied to the electrical permittivity
and Fig. 9.b) its final tendency.

Furthermore, the TF-SF formulation was truncated in order
to permit propagation of the plane waves along the diffraction
grating without inherent numerical errors. TF/SF is truncated
to avoid applying Eqs. (37) and (39) and to define jb as the be-
ginning of the diffraction grating. Since the “connecting condi-
tion” was removed in the plane j = jb the plane wave generated
travels from the plane ja to the end of the simulation region.
The numerical errors produced at the interface between total
field and scattered field are produced by linear interpolations
necessary to obtain the values of the incident field. Interpola-
tion is applied when the angle of incidence of the plane wave is
different from 0 or 90.

All these modifications are shown in Fig. 10. More precisely
Fig.10.a) show a diagram of the simulation before applying the
permittivity masks and Fig.10.b) the result of a preliminary sim-
ulation with the undesired interference pattern. On the other
hand, Fig. 10.c) to 10.f) shown several time steps of a simula-
tion of the same phase grating with the improvement explained
previously. It can be seen that the interference is tunneled to
the PML region minimizing its contribution in the fields out-
side the grating. Transmitted and diffracted plane waves can be
easily identified traveling in Bragg angles from the normal to
the surface of the grating.

Regarding diffraction and angular efficiency results, all these
parameters are obtained from the electric far-field pattern calcu-
lated in time-marching simulation from the values on the output
surface of the grating. The electric far-field distribution is free
of interference between transmitted (m = 0) and diffracted or-
ders (m = 1). In Fig. 10.f) it can be seen how the plane waves
corresponding with the transmitted and diffracted orders pro-
duce an interference pattern near to the output of the grating
due to the interference of two plane waves.

The far-field distribution of the electric field is obtained by
means of NF/FF propagation explained in section 2.3 avoiding
enlarging the area of simulation. The plane where far field val-
ues are propagated was established at 80λ from the output plane
of the grating.

Diffraction and transmission efficiency curves are repre-
sented in Fig. 11 and Fig. 12 for diffraction gratings of
n1=0.025 and n1=0.015 respectively. The values obtained by
the FDTD method are contrasted with the results of the RCW
theory detailed in section 3. In all cases good agreement be-
tween the two methods is obtained.

The angular efficiency is calculated by means of several sim-
ulations in which the incidence angle is modified with respect
to the Bragg condition defined as sin θ′0 = λ/2n0∆, where θ′0 is
related to the reconstruction angle inside the grating by Snell’s
law. In Fig.13 the values computed by the FDTD method for
angular efficiency are shown for a grating with n1 = 0.025.

Also, values obtained by the method explained in section 3 are
showed. Similar results are represented in Fig. 13 in which the
refractive index modulation was established as n1 = 0.015.

5. Conclusions

In this paper the FDTD method has been applied with suc-
cessful results to analyze holographic gratings. More precisely,
several volume diffraction gratings were simulated. In a first
step, an experiment based on apertures permitted validation of
the method in the Fraunhofer region. More precisely several
arrays of apertures were simulated. In these cases, the far-field
distribution permitted the irradiance pattern to be obtained, and
this was compared with analytical curves. Once the method was
validated, volume holographic gratings were simulated in order
to study their diffraction and angular efficiency. In a similar
manner, NF/FF propagation was applied to obtain the far-field
distribution to avoid interference between orders at the output
of the grating. The far-field distribution computed enabled the
diffraction efficiency to be obtained, and this was compared
with theoretical curves obtained using the RCWT. Moreover,
the angular efficiency was analyzed and again good agreement
was obtained between numerical and analytical curves.

Formalisms such as the perfectly matched layers and near-
field to far-field propagation allowed the FDTD method to be
applied to these optical devices with satisfactory results and low
computational requirements.

On the other hand, several authors have encountered differ-
ent drawbacks to applying the FDTD method to this type of
devices, which are quite different from typical electromagnetic
scattering structures. Making slight modifications to the TF/SF
formulation and applying a mask to the electrical permittivity
permitted the interference pattern produced in the interface re-
gion between total field and scattered field to be reduced as soon
as the light in this area is guided to the PML layers.
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