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Abstract

A set is called Motzkin decomposable when it can be expressed as the Minkowski
sum of a compact convex set with a closed convex cone. The main result in this
paper establishes that a closed convex set is Motzkin decomposable if and only if
the set of extreme points of its intersection with the linear subspace orthogonal
to its lineality is bounded. The paper characterizes the class of the extended func-
tions whose epigraphs are Motzkin decomposable sets showing, in particular, that
these functions attain their global minima when they are bounded from below. The
generation of functions of this class from other functions of the same type is also
considered.
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1 Introduction

We say that a nonempty set F � Rn is decomposable in Motzkin�s sense
(M-decomposable in short) if there exist a compact convex set C and a closed
convex cone D such that F = C +D: Then we say that C +D is a Motzkin
representation (or decomposition) of F with compact and conic components C
and D; respectively. Any M-decomposable set F has a unique conic compo-
nent D = 0+F but multiple compact components when F is unbounded.

Preprint submitted to Elsevier Science 7 January 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16367808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The classical Motzkin Theorem [6] asserts that any polyhedral convex set
is M-decomposable. The convex subsets of M-decomposable sets were called
hyperbolic sets in [1] and [2].

This class of closed convex sets was characterized in di¤erent ways in [3],
two of them providing the smallest compact component when the checked
set F turns out to be M-decomposable and contains no line. The mentioned
characterizations involve a geometric object, the so-called Pareto-like set of
the intersection of F with the linear subspace orthogonal to its lineality, and
a certain linear representation of the so-called conic representation of F; i.e.,
the closed convex cone f(a; b) 2 Rn+1 : a0x � b 8x 2 Fg : The Pareto-like sets
are characterized in di¤erent ways in Section 2.

In Section 3 we give two new characterizations of the M-decomposable sets,
the main one showing that it is possible to replace the mentioned concept of
Pareto-like set by the more intuitive one of the set of extreme points. We also
show how to obtain new M-decomposable sets from a given �nite family of
sets of the same class by combining Minkowski sums and unions with convex
hulls and closures.

Finally, Section 4 considers the so-called M-decomposable functions, i.e., those
extended functions whose epigraphs are M-decomposable. These functions are
characterized and its behavior in the optimization context is analyzed. In par-
ticular, it is shown that any M-decomposable function which is bounded from
below attains its in�mum on the whole space. It is also shown that the sum of
an M-decomposable function with an a¢ ne function is M-decomposable, too,
and we indicate how to build M-decomposable functions from other functions
of the same class by combining pointwise minimum and in�mal convolution
with convex and lsc hulls. Concerning Section 4, the only antecedents are the
properties of two particular classes of M-decomposable functions: the polyhe-
dral convex functions and the support functions of nonempty closed convex
sets, whose respective epigraphs (polyhedral convex sets and closed convex
cones, respectively) are M-decomposable. Thus the common properties of both
families of functions become conjectures on M-decomposable functions to be
checked.

Throughout the paper we use the following notation. For any X � Rp; we de-
note by intX; clX; bdX; rintX; rbdX; convX; and coneX = R+ convX; the
interior, the closure, the boundary, the relative interior, the relative boundary,
the convex hull of X; and the convex conical hull of X, respectively.

The scalar product of x; y 2 Rp is denoted either by x0y or by hx; yi ; the
Euclidean norm of x by kxk ; the Euclidean distance by �; the canonical basis
by fe1; :::; epg ; the zero vector by 0p; and the closed unit ball byBp: The orthog-
onal complement of a linear subspaceX isX? := fy 2 Rp : hx; yi = 0 8x 2 Xg :

2



If X is a convex set, extrX; 0+X and linX := (0+X)\(�0+X) denote the set
of extreme points, the recession cone and the lineality space of X; respectively.
Given a convex set X and a point a 2 X;

D (X; a) := fu 2 Rp : 9� > 0 such that a+ �u 2 Xg

and
NX (a) := fu 2 Rp : hx� a; ui � 0 8x 2 Xg

are the cone of feasible directions and the normal cone at x; respectively. It
is easy to prove that NX (a) is a linear subspace of Rp whenever a 2 rintX:

Given x = (x1; :::; xp) we denote by bx the result of eliminating the last com-
ponent of x, i.e., bx = (x1; :::; xp�1) : Coherently, we identify cX = fbx : x 2 Xg
with the (orthogonal) projection of X � Rp onto Rp�1:

Given f : Rp �! R = R[f�1g ; we denote by gph f; epi f; and dom f =
[epi f its graph, its epigraph and its domain, respectively, whereas @f (x) de-
notes the subdi¤erential of f at x 2 dom f:

The conjugate of f is the function f � : Rp �! R such that

f �(u) := supfhx; ui � f(x) : x 2 dom fg:

Any set X � Rp is represented in a unique way by its indicator function

�X (x) :=

8><>: 0; if x 2 X

+1; otherwise.

The support function of X is ��X (u) = sup fhx; ui : x 2 Xg :

The lower semicontinuous (lsc) envelope of f : Rp �! R is the function
f : Rp �! R de�ned by

f(x) := infft 2 R : (x; t) 2 cl epi fg:

Clearly we have epi f = cl epi f , which implies that f is the greatest lsc func-
tion minorizing f ; so f � f: If f is convex, then f is also convex, and then f
does not take the value �1 if and only if f admits an a¢ ne minorant.

The lsc convex hull of f is the convex lsc function convf : Rp �! R such that

epi(convf) = cl conv(epi f):

Obviously convf � f � f:
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2 Pareto-like sets revisited

The Pareto-like set of a closed convex set F , ; 6= F � Rn; is

M (F ) :=
n
x 2 F \ (linF )? : (x�K) \ F = fxg

o
;

where
K :=

�
0+F

�
\ (linF )? (1)

is a pointed convex cone. The next result characterizesM (F ) from any linear
representation of F:

Proposition 1 Let fa0tx � bt; t 2 Tg and fc0sx = 0; s 2 Sg be linear represen-
tations of F 6= ; and (linF )? (S = ; if F does not contain lines), respectively.
Then x 2M (F ) if and only if a0tx � bt 8t 2 T; c0sx = 0 8s 2 S; and

�

0B@ ei

e0ix

1CA 2 cl cone
8><>:
0B@ at
bt

1CA ; t 2 T ;�
0B@ at

a0tx

1CA ; t 2 T ;�
0B@ cs

c0sx

1CA ; s 2 S;
0B@ 0n
�1

1CA
9>=>; ;

i = 1; ::; n:

Proof. Let K be as in (1). Since 0+F = fx 2 Rn : a0tx � 0; t 2 Tg ; we have

K = fx 2 Rn : a0tx � 0; t 2 T ; c0sx = 0; s 2 Sg :

Then x 2M (F ) if and only if x 2 F \ (linF )? and x = x is a consequence of
x 2 (x�K) \ F; i.e., the equations e0ix = e0ix; i = 1; ::; n; are consequences of
the linear system

fa0tx � bt; t 2 T ; a0t (x� x) � 0; t 2 T ; c0s (x� x) = 0; s 2 Sg :

The result follows from the nonhomogeneous Farkas Lemma for semi-in�nite
linear systems (see, e.g., [4, Theorem 3.1]). �

In the next two statements, we shall consider M-decomposable sets with
pointed recession cones. It is not too restrictive condition because, if it is
not the case for a certain M-decomposable set F , we refer to F \ (linF )? ;
whose recession cone 0+

�
F \ (linF )?

�
is always pointed.

Proposition 2 Let F be an M-decomposable set with a pointed recession cone
and x 2 F . Then x 2 M (F ) i¤ (�0+F ) \ D (F ;x) = f0ng : Hence, if F is
unbounded then M (F ) � rbdF .

Proof. The proof is evident, because M (F ) is the set of e¢ cient points of F
with respect to the cone 0+F: �
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Proposition 3 Let F be an M-decomposable set with a pointed recession cone
and x 2 rbdF . If there exists a supporting hyperplane H of F at x such that
H \F is a bounded set then x 2M (F ) : If x 2M (F ) and D (F ;x) is closed,
then there exists a supporting hyperplane H of F at x such that H \ F is a
bounded set.

Proof. Let there exist a supporting hyperplane H of F at x such that H \F
is a bounded set, H+ and H� be the closed halfspaces determined by H, and
assume that F � H+: Since H \ F is a bounded set, then (x+ 0+F ) \H =
fxg = (x� 0+F )\H. Therefore x�0+F � H�: This implies that x 2M (F ) :

Now, let x 2 M (F ) and D (F ;x) be a closed cone: We point out that
F � x+D (F ;x) : From the previous proposition we have (�0+F )\D (F ;x) =
f0ng : Let us consider the set conv ((�0+F ) \Bn) : Since 0+F is a pointed
closed convex cone, conv ((�0+F ) \Bn) is a compact base of �0+F , 0n =2
conv ((�0+F ) \Bn) and conv ((�0+F ) \Bn) \D (F ;x) = ;: There exists an
" > 0 su¢ ciently small such that still 0n =2 conv ((�0+F ) \Bn) + "Bn and
(conv ((�0+F ) \Bn) + "Bn)\D (F ;x) = ;: Now, we shall consider the closed
convex pointed cone K generated by the compact base conv ((�0+F ) \Bn)+
"Bn: First, we have that (�0+F )� f0ng � intK: Second, if we suppose that
K\D (F ;x) 6= f0ng we shall get an element y 2 (conv ((�0+F ) \Bn) + "Bn)\
D (F ;x) ; which is a contradiction. So, K \D (F ;x) = f0ng and we can sepa-
rate both closed convex cones by means a hyperplaneH: Let us translate these
cones and hyperplane at the point x: The translated hyperplane H separates
the closed sets x + D (F ;x) and x + K: Moreover x + 0+F � x + D (F ;x) :
Let d 6= 0n; d 2 0+F and x + d 2 H: Then x � d 2 H; which contradicts the
inclusion (�0+F )� f0ng � intK: Hence F \H is a bounded set. The proof
is complete. �

If the M-decomposable set is a polyhedral convex set, the above closedness
assumption on D (F ;x) is automatically satis�ed. The �rst part of Example
9 below shows that this assumption is not super�uous in the nonpolyhedral
case (consider the points � (1; 0; 0)).

The next characterization of the M-decomposable sets is Theorem 19 in [3].
Here F � (c) represents the set of global minima of the linear form hc; :i on F:

Theorem 4 Let F be a closed convex set, ; 6= F � Rn: Then the following
statements hold:
(i) F is M-decomposable if and only if M (F ) is bounded. In that case,

F = cl convM (F ) + 0+F (2)

is a Motzkin representation of F:
(ii) If F is an M-decomposable set containing no lines, then cl convM (F ) is
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the smallest compact component of F; with

M (F ) =
n
x 2 F :

�
x� 0+F

�
\ F = fxg

o
(3)

satisfying

; 6=
[�

F � (c) : c 2 int\K (F )
�
�M (F )

�
[�

F � (c) : 0n 6= c 2 cl\K (F )
�
:

(4)

3 Identifying and generating M-decomposable sets

The �rst characterization of M-decomposable sets requires the next simple
lemma.

Lemma 5 Let F � Rn be a closed convex set. Then

0+F = 0+
�
F \ (linF )?

�
+ linF: (5)

Proof. It is consequence of the well-known decomposition of a convex set F
as the sum of a closed convex set containing no lines with a linear subspace:

F = F \ (linF )? + linF (6)

(see, e.g., [7, p. 65]). �

According to Klee representation theorem [5], a su¢ cient condition for a
nonempty closed convex set F to be M-decomposable is the boundedness of
F \ (linF )? : The next result shows that this condition is also necessary.

Theorem 6 A closed convex set F � Rn is M-decomposable if and only if
F \ (linF )? is M-decomposable. In this event, any compact component of F \
(linF )? is a compact component of F too. Consequently, F is M-decomposable
whenever 0+F is a linear subspace.

Proof. "If". Let C be a compact convex set such that F \ (linF )? = C +

0+
�
F \ (linF )?

�
: Then, by (6),

F = C + 0+
�
F \ (linF )?

�
+ linF: (7)

Since 0+
�
F \ (linF )?

�
� (linF )? ; the convex cone 0+

�
F \ (linF )?

�
+ linF

is closed, and hence (7) is an M-decomposition of F with compact component
C:
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"Only if". Let C be a compact convex set such that

F = C + 0+F: (8)

Without loss of generality, we can assume that C � (linF )? (see the �rst
paragraph of the proof of [3, Theorem 19]). Since C � F \ (linF )?, we have
C + 0+

�
F \ (linF )?

�
� F \ (linF )? : To prove the opposite inclusion, let

x 2 F \ (linF )? : In view of (8) and (5), there exist y 2 C+0+
�
F \ (linF )?

�
and d 2 linF such that x = y + d: Since x; y 2 (linF )? ; we have 0 =
hx; di = hy; di + kdk2 = kdk2 ; so that d = 0 and therefore x = y 2 C +

0+
�
F \ (linF )?

�
: We have thus proved the inclusion F \ (linF )? � C +

0+
�
F \ (linF )?

�
and hence the equality between these two sets, which shows

that F \ (linF )? is M-decomposable.

>From (7) it is clear that any compact component of F \(linF )? is a compact
component of F too.

Now we assume that 0+F is a linear subspace. Given y 2 0+
�
F \ (linF )?

�
;

y 2 0+F = linF (by assumption) and y 2 0+ (linF )? = (linF )? ; so that
y = 0n: Thus F \ (linF )? is M-decomposable because it is a compact convex
set. �

Observe that an M-decomposable set F has a smallest compact component if
and only if linF = f0ng (i.e., extF 6= ;).

Corollary 7 Let f : Rn �! R be a proper convex function. Then @f (x) is
M-decomposable for any x 2 rint dom f:

Proof. Let x 2 rint dom f: Then @f (x) 6= ; and this implies that 0+@f (x) =
Ndom f (x) (see, e.g. [7, p. 218, l. 9-15]), this cone being actually a linear sub-
space because x 2 rint dom f: The conclusion follows from Theorem 6. �

The preceding result does not hold if the assumption x 2 rint dom f is re-
moved, since every nonempty closed convex set is the subdi¤erential of its
support function at the origin.

To get a counterpart of Theorem 4 in terms of extr
�
F \ (linF )?

�
instead of

M (F ) we need a lemma.

Lemma 8 Let F be a closed convex set, ; 6= F � Rn and let L := linF: Then
M (F ) = F \ L? if F \ L? is bounded and

extr
�
F \ L?

�
�M (F ) � conv extr

�
F \ L?

�
\ rbd

�
F \ L?

�
; (9)
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otherwise. Hence, M (F ) and extr
�
F \ L?

�
have the same convex hull and,

so, both sets are simultaneously bounded or unbounded.

Proof. Let K be as in (1).

Assume that F \ L? is bounded. Then K = (0+F ) \ L? = 0+
�
F \ L?

�
=

f0ng ; so that

M (F ) =
n
x 2 F \ L? : fxg \ F = fxg

o
= F \ L? = conv extr

�
F \ L?

�
:

Assume now that F \ L? is unbounded. Let x 2 extr
�
F \ L?

�
and y 2

(x�K) \ F: We have y 2 F \ L? because x � K � L? � L? = L?: Since
x�y 2 K � 0+F; we also have 2x�y 2 F\L?; therefore, as x 2 extr

�
F \ L?

�
is the midpoint of the segment with endpoints y; 2x � y 2 F \ L?; it follows
that y = x:We have thus proved that (x�K)\F = fxg ; that is, x 2M (F ) :

So, extr
�
F \ L?

�
�M (F ) :

Next we prove that M (F ) � rbd
�
F \ L?

�
:

Let us take any point x 2 M(F ); i.e., x 2 F \ L? such that (x�K) \ F =
fxg : Obviously,

rint (x�K) \ rint
�
F \ L?

�
� fxg : (10)

On the other hand, 0n 2 rbdK because K is pointed and does not reduce to
f0ng, so that x 2 rbd (x�K) which together with (10) gives rint (x�K) \
rint

�
F \ L?

�
= ;: Let H be a hyperplane separating x � K and F \ L?

properly. We have F \ L? * H (otherwise, since K = 0+
�
F \ L?

�
� H �

H; x � K � H and H does not separate both sets properly). Hence, x 2
rbd

�
F \ L?

�
(otherwise, x 2 rint

�
F \ L?

�
entails F \ L? � H).

Observe that H supports F \ L? properly at x; and the same is true for the
hyperplane H \ L? + linF which supports F properly at x too.

We will prove that M (F ) � conv extr
�
F \ L?

�
by induction on k := dimF:

Let k = 1: Then F is a closed hal�ine (if F is a whole line, then linF = F ,
L? is a hyperplane orthogonal to F and, so, F \L? is singleton, contradicting
the unboundedness of F \L?). If F = fx+ �y : � � 0g ; where x; y 2 Rn and
y 6= 0n; then linF = f0ng ; L? = Rn; and M (F ) = fxg = extr

�
F \ L?

�
:

Let k > 1: Let H be a hyperplane which supports properly F at x (we have
already shown the existence of such a hyperplane). Obviously, L = linF �
H � x (the linear subspace parallel to H). Let eF := F \H; with dim eF < k;
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and let eL := lin eF = linF \ (H � x) = linF: We have eL? := �
lin eF�? = L?

and

fK :=
�
0+ eF�\ eL? = 0+ (F \H)\L? = �

0+F
�
\L?\(H � x) = K\(H � x) :

Let y 2
�
x� fK� \ eF : Since x� y 2 fK � K and y 2 eF � F; and x 2M (F ) ;

we have y = x: Hence, x 2 M
� eF� := n

x 2 eF \ eL : �x� fK� \ eF = fxgo
and x 2 conv extr

� eF \ L?� by the induction hypothesis. Because H supports

F \L? at x; extr
� eF \ L?� = extr �F \H \ L?� � extr �F \ L?� and we get

x 2 conv extr
�
F \ L?

�
:

We have thus proved the required inclusion. �

The next two examples show that the three sets in (9) may coincide (even
simultaneously) or not.

Example 9 Consider the closed convex set

F :=
�
x 2 R3 : � 1 � x1 � 1; x2 � �

q
1� x21

�
:

We have 0+F = cone f(0; 1; 0) ;� (0; 0; 1)g ; L? = (linF )? = R2 � f0g ; K :=
(0+F ) \ L? = cone f(0; 1; 0)g ; and

extr
�
F \ L?

�
=M (F ) = conv extr

�
F \ L?

�
\ rbd

�
F \ L?

�
=
�
(x1; x2; 0) 2 R3 : � 1 � x1 � 1; x2 = �

q
1� x21

�
:

Notice that M (F ) is the smallest compact component of F \L?: Observe also
that the unique plane supporting properly F at x = (1; 0; 0) 2 M(F ) is H =
fx 2 R3 : x1 = 1g whereas any plane containing the line fx 2 R3 : x1 = 1; x3 = 0g ;
except fx 2 R3 : x3 = 0g ; separates properly x �K and F \ L?: Any of the
latter planes contains the translated cone x�K whereas its intersection with
F yields the facet fx 2 R3 : x1 = 1; x2 � 0; x3 = 0g :

Example 10 Consider the polyhedral closed convex set

F :=
n
x 2 R3 : x1 + x2 � 1; x3 � xi � 0; i = 1; 2

o
:

Obviously, L? = R3; 0+F = conv f(0; 0; 1)g ; extrF = fc1; c2; c3; c4g ; where
c1 = (0; 0; 0) ; c2 = (1; 0; 1) ; c3 = (0; 1; 1) ; and c4 =

�
1
2
; 1
2
; 1
2

�
;

M (F ) = conv fc1; c2; c4g [ conv fc1; c3; c4g ;

and
conv extrF \ bdF =M (F ) [ conv fc2; c3; c4g :
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Thus,
extrF $M (F ) $ conv extrF \ bdF:

Here the smallest compact component of F is

F = conv fc1; c2; c3; c4g :

Theorem 11 Let F be a closed convex set, ; 6= F � Rn: Then the following
statements hold:
(i) F is M-decomposable if and only if extr

�
F \ (linF )?

�
is bounded. In that

case,

F = cl conv extr
�
F \ (linF )?

�
+ 0+F (11)

is a Motzkin representation of F:
(ii) If F is an M-decomposable set containing no lines, then the compact com-
ponent of F in (11) is the smallest one, with extr

�
F \ (linF )?

�
= extrF

satisfying

; 6=
[
f(F )� (c) : j(F )� (c)j = 1; c 2 Rng � extrF

� cl
�[

f(F )� (c) : j(F )� (c)j = 1; c 2 Rng
�
:

(12)

Proof. Statement (i) and the �rst part of (ii) are straightforward consequences
of Theorem 4 and Lemma 8 whereas (12) follows from Straszewicz�s Theorem
(see, e.g., [7, Theorem 18.6]). �

If F is a polyhedral convex set, F\(linF )? is polyhedral too, so that extr
�
F \ (linF )?

�
is �nite. Thus, any polyhedral convex set is M-decomposable. Even more, from
(11), the smallest compact component of F is a polytope (this proves the clas-
sical Motzkin�s Theorem in [6]). Thus, for polyhedral convex sets, the �rst
inclusion in (9) is generally strict except in particular cases (as lines and hy-
perplanes) because extr

�
F \ (linF )?

�
is �nite whereas M (F ) is commonly

in�nite.

On the other hand, because
n
lin
h
F \ (linF )?

io?
= f0ng? = Rn;

extr
��
F \ (linF )?

�
\
n
lin
h
F \ (linF )?

io?�
= extr

�
F \ (linF )?

�
:

Thus, by Theorem 11, F \ (linF )? is M-decomposable if and only if F is
decomposable (this is an alternative proof of Theorem 6).

Obviously, the decomposability property is preserved by the product by scalars.
Moreover, if F is M-decomposable and " > 0; the set fx 2 Rn : � (x; F ) � "g
is M-decomposable too. Concerning the ordinary binary operations with sets
(Cartesian product, sum, union, intersection), only the Cartesian product is
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closed in the class of the M-decomposable sets (this has been shown in [3]
for the intersection whereas it is obvious for the sum and union). The next
result shows that applying convex hulls and/or closures to sums and unions
(but not to intersections, because they are already closed and convex) we get
M-decomposable sets.

Theorem 12 If F1; :::; Fm are M-decomposable sets, then cl
�Xm

i=1
Fi
�
and

cl conv
�[m

i=1
Fi
�
are M-decomposable.

Proof. It is su¢ cient to prove the statement for m = 2: Let Fi = Ci + Di;
with Ci compact convex and Di closed convex cone, i = 1; 2:

First of all, recall that if C is a compact and convex subset of Rn and D � Rn
is a convex cone, then cl(C +D) = C + clD: Thus,

cl (F1 + F2) = cl (C1 + C2 +D1 +D2) = C1 + C2 + cl (D1 +D2) ;

which is obviously an M-decomposable set.

Let x 2 conv (F1 [ F2) : Then there exist � 2 [0; 1] and (ci; di) 2 (Ci; Di);
i = 1; 2 such that

x = � (c1 + d1) + (1� �) (c2 + d2) =

= �c1 + (1� �) c2 + �d1 + (1� �) d2 2 conv (C1 [ C2) +D1 +D2:

Hence,
conv (F1 [ F2) � conv (C1 [ C2) +D1 +D2; (13)

where conv (C1 [ C2) is a compact set by Mazur�s Theorem.

Now, let x 2 conv (C1 [ C2) +D1 +D2: Therefore, there exist � 2 [0; 1] and
(ci; di) 2 Ci �Di; i = 1; 2 such that

x = �c1 + (1� �) c2 + d1 + d2:

If � 2 ]0; 1[ ; then

x = �

 
c1 +

d1
�

!
+ (1� �)

 
c2 +

d2
1� �

!
2 conv (F1 [ F2) :

If � = 1; then

x = lim
�%1

"
�

 
c1 +

d1
�

!
+ (1� �)

 
c2 +

d2
1� �

!#
2 cl conv (F1 [ F2) ;

where c2 2 C2 is an arbitrary point.
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The same is true when � = 0: Hence, we have

conv (C1 [ C2) +D1 +D2 � cl conv (F1 [ F2) : (14)

>From (13) and (14) we get

cl conv (F1 [ F2) = cl [conv (C1 [ C2) +D1 +D2]

= conv (C1 [ C2) + cl (D1 +D2) ;

where the latter set is the sum of a compact convex set and a closed convex
cone. �

4 M-decomposable functions

A function f : Rn �! R is decomposable in Motzkin�s sense (M-decomposable
in short) if epi f is M-decomposable. In this event, f is convex, lower semicon-
tinuous (also abbreviated as lsc) and non identically +1: Moreover, the conic
component of epi f is 0+ (epi f) = epi f0+; where f0+ denotes the recession
function of f (obviously, any recession function is M-decomposable). The next
two propositions characterize the proper and the improper M-decomposable
functions, respectively. We will need the following Lemma:

Lemma 13 Let f be a proper convex function and M be an a¢ ne manifold
parallel to (lin epi f)?. Then

extr (epi f \M) � gph f:

Proof. Let (x; �) 2 extr (epi f \M) ; and denote by � the orthogonal projec-
tion mapping from Rn onto M: Since (x; �) 2M; we have

(x; �) = � (x; �) = �
�
1
2
[(x; f (x)) + (x; 2�� f (x))]

�
= 1

2
[� (x; f (x)) + � (x; 2�� f (x))] :

>From (x; �) 2 epi f it follows that (x; 2�� f (x)) 2 epi f: Consequently,
� (x; f (x)) ; � (x; 2�� f (x)) 2 (epi f + lin epi f)\M = epi f \M and hence,
by (x; �) 2 extr (epi f \M) ; we must have (x; �) = � (x; f (x)) : This equality
implies that (x; �) � (x; f (x)) 2 lin epi f and therefore, since epi f contains
no vertical lines (as f is proper), we conclude that (x; �) = (x; f (x)) 2 gph f:
�

Theorem 14 Let f be an lsc proper convex function. Then the following state-
ments hold:

12



(i) f is M-decomposable if and only if extr
h
epi f \ (lin epi f)?

i
is bounded.

(ii) If gph f \ (lin epi f)? is bounded, then f is M-decomposable.
(iii) If dom f is bounded and f is bounded on dom f; then f is M-decomposable.
(iv) If f is M-decomposable and �nite-valued, then f cannot be strictly convex.

Proof. (i) It is straightforward consequence of Theorem 11 applied to the
nonempty closed convex set epi f:

(ii) By Lemma 13,

extr
h
epi f \ (lin epi f)?

i
� gph f \ (lin epi f)? ;

and the conclusion follows from (i).

(iii) Since gph f � dom f � f (dom f) and this set is bounded, the conclusion
follows from (ii).

(iv) If f is �nite-valued and strictly convex, then epi f does not contain lines
and extr epi f = gph f , so that

extr
h
epi f \ (lin epi f)?

i
= gph f

is unbounded and the conclusion follows again from (i). �

Corollary 15 Let ; 6= F � Rn be a closed set. Then the following statements
are equivalent:
(i) F is M-decomposable.
(ii) The indicator function �F is M-decomposable.
(iii) The distance function � (�; F ) is M-decomposable.

Proof. The three statements (i)-(iii) imply the convexity of F because

fx 2 epi �F : xn+1 = 0g = fx 2 epi � (�; F ) : xn+1 = 0g = F � f0g :

Let L = linF:

(i), (ii) It follows from theorems 14 and 11 applied to �F and F; respectively.
Indeed, since

(lin epi �F )
? = [lin (F � R+)]? = L? � R;

�F is M-decomposable if and only if

extr
h
(F � R+) \

�
L? � R

�i
=extr

h�
F \ L?

�
� R+

i
=extr

�
F \ L?

�
� extrR+

=extr
�
F \ L?

�
� f0g

13



is bounded if and only if F is M-decomposable.

(i), (iii) The argument is similar to the previous one, replacing �F (x) with
f (x) := � (x; F ) : In fact, since

(lin epi f)? = [lin (F � f0g)]? = L? � R;

f is M-decomposable if and only if

extr
n
(x; ) 2 L? � R : � (x; F ) � 

o
=
h
extr

�
F \ L?

�i
� f0g

is bounded if and only if F is M-decomposable. �

Proposition 16 Let f be an improper lsc convex function non identically
+1: Then, f is M-decomposable if and only if f (x) = �1 for all x 2 dom f
and dom f is an M-decomposable set.

Proof. The lower semicontinuity assumption on f entails that f (x) = �1
for all x 2 rint dom f: Let x 2 rbd dom f such that f (x) 2 R: Because
cl dom f = cl rint dom f; there exists a sequence fxkg � rint dom f such that
xk ! x: Then, f(xk; f (x)� 1)g � epi f for all k 2 N and (xk; f (x)� 1) !
(x; f (x)� 1) =2 epi f (contradiction). Thus f (x) = �1:

We have shown that f (x) = �1 for all x 2 dom f: Since dom f � R = epi f
is a closed convex set, dom f is also closed and convex. Moreover, we have

lin epi f = (lin dom f)� f0g+ f0ng � R:

Thus, applying Theorem 6 to epi f and dom f; we conclude that epi f is M-
decomposable if and only if

epi f \ (lin epi f)? =
h
dom f \ (lin dom f)?

i
� f0g

is M-decomposable if and only if dom f is M-decomposable. �

The next result gives an interesting property of the M-decomposable functions
in the optimization framework.

Proposition 17 Let f : Rn �! R be an M-decomposable function bounded
from below on Rn: Then f achieves a global minimum on Rn:

Proof. Let � 2 R be such that f (x) � � for all x 2 Rn: Then � �
xn+1 for all (x1; :::; xn+1) 2 epi f: Since the linear mapping (x1; :::; xn+1) 7!
xn+1 is bounded from below on the M-decomposable set epi f; there exists
(x1; :::; xn+1) 2 epi f such that xn+1 � xn+1 for all (x1; :::; xn+1) 2 epi f: Obvi-
ously, we must have xn+1 = f (x1; :::; xn) (otherwise (x1; :::; xn; f (x1; :::; xn)) 2
epi f is preferable to (x1; :::; xn+1)).

14



Since f (x1; :::; xn) � xn+1 for all (x1; :::; xn+1) 2 epi f and (x1; :::; xn; f (x1; :::; xn)) 2
epi f; we get f (x1; :::; xn) � f (x1; :::; xn) for all (x1; :::; xn) 2 Rn: Then
(x1; :::; xn) is a global minimizer of f on Rn: �

Given that support functions are sublinear and hence M-decomposable (as
their epigraphs are closed convex cones), from the observation we have made
in Section 3 that every nonempty closed convex set is the subdi¤erential of
its support function at the origin, it follows that the subdi¤erential of an
M-decomposable function at a relative boundary point of its domain is not
necessarily M-decomposable.

It is well known that, if f is a polyhedral convex function bounded from below
on a polyhedral convex set F; then f attains its minimum on F ([7, Corollary
27.3.2]). The next example shows that we cannot replace in this statement
"polyhedral convex" by "M-decomposable".

Example 18 Consider the closed convex cone

K := cone
��
1; t;

1� t
t

�
; t > 0; (0; 1; 0) ; (0; 0; 1)

�
:

Let f : R2 �! R be the M-decomposable function whose epigraph is epi f = K
and let F = [0; 1] � R: We have inf ff (x) : x 2 Fg = �1 but f (x) 6= �1 for
all x 2 F:

It is worth observing that any lsc proper convex function is the pointwise limit
of a sequence of M-decomposable functions as an immediate consequence of
the next result.

Proposition 19 Every lsc proper convex function is the pointwise limit of a
sequence of polyhedral convex functions.

Proof. Let f : Rn �! R be an lsc proper convex function. Let ' : N �! Qn
be an arbitrary bijection. Then, for every x 2 Rn one has

f (x) = f �� (x) = supu2Rn fhx; ui � f � (x)g = supu2Qn fhx; ui � f � (x)g

= supk2N supu2f'(0);:::;'(k)g fhx; ui � f � (x)g

= limk�!1 supu2f'(0);:::;'(k)g fhx; ui � f � (x)g ;

where supu2f'(0);:::;'(k)g fhx; ui � f � (x)g is a polyhedral convex function for all
k: �

Finally, we analyze the usual operations which provide convex functions from
other convex functions from the point of view of the preservation of the M-
decomposability.
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Proposition 20 Let f : Rn �! R be M-decomposable and � > 0: Then �f
is M-decomposable.

Proof. Let A be the (n+ 1) � (n+ 1) matrix obtained by replacing the last
element of the diagonal of the identity matrix by � and let epi f = C+D; where
C is a compact convex set and D is a closed convex cone. Then, epi (�f) =
A epi f = AC + AD is the sum of a compact convex set with a closed convex
cone. �

Lemma 21 Let f : Rn �! R and let g : Rn �! R be linear. Then, given u 2
Rn and  2 R; (u; ) 2 lin epi f if and only if (u;  + g (u)) 2 lin epi (f + g) :

Proof. We have

(u; ) 2 lin epi f

, (x; y) + � (u; ) 2 epi f 8 (x; y) 2 epi f 8� 2 R

, f (x+ �u) � y + � 8 (x; y) 2 epi f 8� 2 R

, (f + g) (x+ �u) � �+ � ( + g (u)) 8 (x; �) 2 epi (f + g) 8� 2 R

, (u;  + g (u)) 2 lin epi (f + g) : �

Lemma 22 Let f be a proper convex function and let g : Rn �! R be linear.
Then, (x; y) 2 extr

h
epi f \ (lin epi f)?

i
if and only if

(x; y + g (x)) 2 extr
n
epi (f + g) \

h
(lin epi (f + g))? + (x; y + g (x))

io
: (15)

Proof. First, we prove the direct statement. Let (x; y) 2 extr
h
epi f \ (lin epi f)?

i
:

By Lemma 13, (x; y) = (x; f (x)) : Let

(x; (f + g) (x)) = (1� �) (x1; y1) + � (x2; y2) ; (16)

with � 2 ]0; 1[ ; (x1; y1) 6= (x2; y2) ; and

(xi; yi) 2 epi (f + g) \
h
(lin epi (f + g))? + (x; y + g (x))

i
; i = 1; 2: (17)

Then,
0n+1 6= (x1 � x2; y1 � y2) 2 (lin epi (f + g))? (18)

because (xi; yi) 2 (lin epi (f + g))? + (x; y + g (x)) ; i = 1; 2:

If (x1 � x2; y1 � y2 � g (x1) + g (x2)) 2 lin epi f; Lemma 21 yields (x1 � x2; y1 � y2) 2
lin epi (f + g) ; and this contradicts (18). Thus we have

(x1 � x2; y1 � g (x1)� (y2 � g (x2))) =2 lin epi f: (19)
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>From (16), x = (1� �)x1 + �x2; so that g (x) = (1� �) g (x1) + �g (x2) :
Summing up (0n;�g (x)) to both members of (16), we get

(x; f (x)) = (1� �) (x1; y1 � g (x1)) + � (x2; y2 � g (x2)) ; (20)

with (xi; yi � g (xi)) 2 epi f; i = 1; 2; by (17). According to (19), these two
points have di¤erent orthogonal projections on (lin epi f)? ; say (exi; eyi) ; i =
1; 2: Because the projection is along lines contained in epi f; (exi; eyi) 2 epi f; i =
1; 2: Applying the orthogonal projection on the linear subspace (lin epi f)? to
both members of (20) we get (x; f (x)) = (1� �) (ex1; ey1) + � (ex2; ey2) ; with
(exi; eyi) 2 epi f \ (lin epi f)? ; so that (x; f (x)) =2 extr hepi f \ (lin epi f)?i :
Now, we shall prove the converse statement. Let

(x; y + g (x)) 2 extr
n
epi (f + g) \

h
(lin epi (f + g))? + (x; y + g (x))

io
:

Since f +g is a proper convex function, by Lemma 13 we have (x; y + g (x)) 2
gph (f + g) ; that is, y = f (x) : Suppose there exist � 2 ]0; 1[ and (x1; y1) 6=
(x2; y2) ; such that (xi; yi) 2 epi f \ (lin epi f)? ; i = 1; 2; and

(x; f (x)) = (1� �) (x1; y1) + � (x2; y2) :

Obviously, 0n+1 6= (x1 � x2; y1 � y2) 2 (lin epi f)? ; x = (1� �)x1 + �x2; and
g (x) = (1� �) g (x1) + �g (x2) : So,

(x; y + g (x)) = (x; f(x) + g (x)) = (1� �) (x1; y1 + g(x1))+� (x2; y2 + g(x2)) :

We have that (xi; yi + g(xi)) 2 epi (f + g) ; i = 1; 2: If

(x1 � x2; y1 + g (x1)� (y2 + g (x2))) 2 lin epi (f + g) ;

Lemma 21 yields (x1 � x2; y1 � y2) 2 lin epi f; which is not true. Thus, we
have

(x1 � x2; y1 + g (x1)� (y2 + g (x2))) =2 lin epi (f + g) :
The points (xi; yi + g(xi)) 2 epi (f + g) ; i = 1; 2; have di¤erent orthogo-
nal projections on the linear manifold (lin epi (f + g))? + (x; y + g (x)) ; say
(exi; eyi) ; i = 1; 2: Because the projection is along lines contained in epi (f + g) ;
(exi; eyi) 2 epi (f + g) ; i = 1; 2: So, �nally we get

(x; f (x) + g(x)) = (1� �) (ex1; ey1) + � (ex2; ey2) ;
with

(exi; eyi) 2 epi (f + g) \ h(lin epi (f + g))? + (x; f(x) + g (x))i ;
whereby

(x; f (x) + g(x)) =2 extr
n
epi (f + g) \

h
(lin epi (f + g))? + (x; f(x) + g (x))

io
;
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which is a contradiction. �

Theorem 23 Let f : Rn �! R be an M-decomposable function and let g :
Rn �! R be an a¢ ne function. Then, f + g is M-decomposable.

Proof. If f is improper, the conclusion follows from Proposition 16. Let us
consider the case when f is proper. We can assume w.l.o.g. that g is linear. By
Theorem 14, extr

h
epi f \ (lin epi f)?

i
is a bounded set, so that its orthogonal

projection onto Rn�f0g is bounded too. Since g is linear, it is bounded on the
latter set. Let k1 and k2 be scalars such that k(x; f (x))k � k1 and jg (x)j � k2
for all (x; f (x)) 2 extr

h
epi f \ (lin epi f)?

i
: Then, by Lemma 22,

k(x; (f + g) (x))k � k(x; f (x))k+ k(0n; g (x))k � k := k1 + k2

for all

(x; (f + g) (x)) 2 extr
n
epi (f + g) \

h
(lin epi (f + g))? + (x; (f + g) (x))

io
=extr

n
[epi (f + g)� (x; (f + g) (x))] \ (lin epi (f + g))?

o
+(x; (f + g) (x)) : (21)

Since epi (f + g) � (x; (f + g) (x)) = epih; h : Rn �! R being the func-
tion de�ned by h (y) = (f + g) (y + x) � (f + g) (x) ; and lin epi (f + g) =
lin epih (because epih is a translate of epi (f + g)), it follows that the set
extr

n
epih \ (lin epih)?

o
is bounded. Hence, by Theorem 11, the set epih is

M-decomposable and therefore the set epi (f + g) = epih+ (x; (f + g) (x)) is
M-decomposable, too. This proves that the function f+g is M-decomposable. �

When f and g are proper polyhedral convex functions, f + g is a polyhe-
dral convex function. Analogously, when f and g are support functions of
two nonempty convex sets C1 and C2, their sum is the support function of
C1 + C2 and, so, it is an M-decomposable function. Nevertheless, neither the
sums of support functions with proper polyhedral convex functions nor the
sums of support functions with translated support functions are necessarily
M-decomposable, as the next two examples show.

Example 24 f (x; y) = k(x; y)k is the support function of the closed unit ball
and g (x; y) = jy � 1j is a �nite polyhedral convex function, but their sum is
not M-decomposable because extr epi (f + g) = gph (f + g) :

Example 25 Let f be the same function as in Example 24 and g (x; y) =
k(x; y � 1)k : Even though g is the composition of f with a translation, its sum
with f is not M-decomposable because the projection of extr epi (f + g) � R3
on R2; [R2�R (0; 1)] [ f(0; 0) ; (0; 1)g ; is unbounded.
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Proposition 26 Let f; g : Rn �! R be M-decomposable functions. Then
convmin ff; gg is M-decomposable.

Proof. Let h := min ff; gg : Then epih = epi f [ epi g; where epi f and epi g
are M-decomposable sets. By Theorem 12, cl conv epih is M-decomposable,
i.e., the function convh is M-decomposable. �

The next three examples show that the Fenchel conjugate, the maximum and
the in�mal convolution of M-decomposable functions are not necessarily M-
decomposable neither (although the three operations are closed in the class of
polyhedral convex functions).

Example 27 If F is a nonempty closed convex set not M-decomposable, its
support function ��F is an M-decomposable function whose Fenchel conjugate
���F = �F is not M-decomposable by Theorem 14.

Example 28 Let f; g : R2 �! R be such that f = k�k and g = �H ; where H �
R2 is an arbitrary line such that 02 =2 H: Both functions are M-decomposable
but epimax ff; gg is the convex hull of a branch of hyperbola, so that max ff; gg
is not M-decomposable.

Example 29 Let F1 and F2 be two M-decomposable sets in R3 whose intersec-
tion is closed but not M-decomposable (see [3, Example 24]) for the existence
of such sets). According to Corollary 15, the indicator functions �F1 and �F2
are M-decomposable but the lsc envelope of their maximum max f�F1 ; �F2g =
�F1\F2 = �clF1\F2 = �F1\F2 is not.

Example 30 Let f; g : R2 �! R be

f (x; y) =

8>>>>><>>>>>:
x2+y2

2
; y > 0;

0; (x; y) = (0; 0) ;

�1; otherwise,

and g (x; y) =

8><>:�1; (x; y) = (0; 0) ;+1; otherwise.

Since epi f = cone f(cos t; 1 + sin t) ; t 2 [0; 2�]g and epi g = R (0; 0; 1) are a
closed convex cone and a line, respectively, both functions are M-decomposable.
Moreover, epi f + epi g = [(R� R++) [ f(0; 0)g]� R; so that the in�mal con-
volution of f and g is

(f�g) (x; y) = inf f� : (x; y; �) 2 epi f + epi gg

=

8><>:�1; (x; y) 2 (R� R++) [ f(0; 0)g ;+1; , otherwise,

whose epigraph, epi (f�g) = epi f + epi g; is not even closed.
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However, the next proposition states that the lsc hull of the in�mal convolution
of two M-decomposable functions is M-decomposable.

Proposition 31 Let f; g : Rn �! R be M-decomposable functions. Then f�g
is M-decomposable.

Proof. Since epi f�g = cl epi (f�g) = cl (epi f + epi g) ; the statement follows
from Theorem 12. �

Proposition 19 shows that the pointwise limit of M-decomposable functions is
not necessarily M-decomposable. The next example shows that this statement
still holds for the uniform limit.

Example 32 The convex non M-decomposable function f : R �! R de�ned
by f (x) =

p
x2 + 1: is the uniform limit of a sequence of polyhedral convex

because the second order derivative of f is bounded and the graph of f has the
asymptotes f(x; y) 2 R2 : y = xg and f(x; y) 2 R2 : y = �xg :

Finally, we show that the Motzkin decomposability of a function is indepen-
dent of the corresponding property of its sublevel sets. This is obvious in one
sense (the non M-decomposable function f (x) = kxk2 has M-decomposable
sublevel sets). In the particular case that f is a polyhedral convex function,
given � 2 R; the sublevel set fx 2 Rn : f (x) � �g is the projection of the
polyhedral convex set epi f \ fx 2 Rn+1 : xn+1 � �g on Rn � f0g ; so that it
is a polyhedral convex set too. The last example in this section shows that
we cannot replace "polyhedral convex" with "M-decomposable" in the latter
statement.

Example 33 Consider the function f : R2 �! R such that

f (x; y) =

8><>:�
p
y2 � x2; if y � jxj ;

+1; otherwise,

whose epigraph is the closed convex cone

cone f(cos t; 1; sin t) ; t 2 [�; 2�] ; (0; 0; 1)g :

Obviously, f is an M-decomposable function butn
(x; y) 2 R2 : f (x; y) � �

o
=
n
(x; y) 2 R2 : y � jxj

o
(a closed convex cone) when � � 0 andn

(x; y) 2 R2 : f (x; y) � �
o
=
n
(x; y; �) 2 R3 : y2 � x2 + �2; y � 0

o
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(the convex hull of a branch of hyperbola and, so, a non M-decomposable set),
when � < 0:
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