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ABSTRACT. The concept of implicit active constraints at a given point provides
useful local information about the solution set of linear semi-infinite systems
and about the optimal set in linear semi-infinite programming provided the
set of gradient vectors of the constraints is bounded, commonly under the
additional assumption that there exists some strong Slater point. This paper
shows that the mentioned global boundedness condition can be replaced by a
weaker local condition (LUB) based on locally active constraints (active in a
ball of small radius whose center is some nominal point), providing geometric
information about the solution set and Karush-Kuhn-Tucker type conditions
for the optimal solution to be strongly unique. The maintaining of the latter
property under sufficiently small perturbations of all the data is also analyzed,
giving a characterization of its stability with respect to these perturbations
in terms of the strong Slater condition, the so-called Extended-Niirnberger
condition, and the LUB condition.

1. INTRODUCTION

We consider given a consistent linear semi-infinite programming (LSIP) problem
(1.1) P : Inf dz st. ajxz > byt €T,

where ¢ € R™, T is an arbitrary infinite index set, and a. : T'— R"™ and b. : T —
R are arbitrary functions. We denote by o = {ajx > b;,t € T}, F, and F* the
constraint system, the feasible set, and the optimal set of P, respectively. Observe
that F' can also be represented as {x € R : f (x) < 0}, where f is the supremum
function of o, i.e., the lower semicontinuous convex function f : R™ — R U {+o0}
such that f(z) := sup,ep (b — ajx). The system o is said to satisfy the strong
Slater (SS in brief) condition if the convex system {f () < 0} satisfies the Slater
condition inf,cp f () < 0. An optimal solution T € F* is strongly unique if there
exists a > 0 such that
de > T+ allz -7,

for all x € F. Here, ||-|| stands for the euclidean norm.

The system o is said to be upper bounded (UB in brief) if the set of left-hand-side
vectors, {a; : t € T}, is bounded. It is known that the global upper boundedness
of these vectors allows to obtain valuable information about the geometry of the
feasible set F, and also about the (strong) uniqueness of solutions of P. The purpose
of this paper is to extend these results to a large class of LSIP problems by replacing
the UB condition by a weaker one whose definition involves the intuitive concept
of y-active constraint: given v > 0, the inequality ajx > b; is a y-active constraint
at T € F if there exists y € B(T,7) (the open ball centered at T with radius ~)
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such that ajy = b;. The set of left-hand-side vectors of the y-active constraints at
T is denoted by W (Z,7) :

(1.2) W (z,7v) = {a: : ;T = b, for some y € B (Z,7)} .

We say that o is locally upper bounded (LUB in short) at T € F if there exists
v > 0 such that W (Z,~) is bounded (this concept appeared by the first time, as
an assumption, in [9, Proposition 3]). We are primarily interested in those LSIP
problems whose constraint system is not UB but it is at least LUB at some feasible
point. This local condition combined with the strong Slater condition allows us
to study some geometric properties of F', and to provide optimality and strongly
unique optimality tests of Karush-Kuhn-Tucker type. Moreover, with the aid of the
Extended-Niirnberger condition (see its definition in Section 5), we characterize the
stability, with respect to data perturbations, of linear semi-infinite problems which
have a strong unique optimal solution (Theorem 3, in Section 5).

In certain LSIP applications, the user would like to determine from the data,
the triple (a, b, ¢) , whether F' is full dimensional or not and, in the first case, might
want to classify a given feasible point T as an interior or a boundary point of F. In
the latter case, the practitioners would like to know, by means of a Karush-Kuhn-
Tucker type condition, whether a given boundary point Z is an element of F™* or not,
even more whether it is a unique optimal solution, or a strongly unique optimal
solution. The existence of a unique optimal solution is a requirement for well-
posedness in Tychonov’sense ([4], [13]), whereas the existence of a strongly unique
optimal solution guarantees the computational efficiency of certain LSTP numerical
methods ([12]) and it is actually equivalent to the metric regularity of the inverse
of the optimal set mapping for an important class of LSIP problems ([3], where
a characterization of strongly unique optimal solutions due to Niirnberger ([14])
plays a crucial role). On the other hand, in many practical situations, the triple
(a,b,¢) € (R")" x RT x R" (called the nominal data in the stability framework)
can be perturbed due to either measurement errors or rounding errors occurring
during the computation process. Then, in the favorable case that P has a strongly
unique optimal solution, it can be interesting to know whether or not this property
is preserved by sufficiently small perturbations of the data, whose size is measured
through the pseudometric of the uniform convergence defined in (5.1). Observe that
the existence of a strongly unique optimal solution depends on F' and ¢ whereas the
maintaining or not of this desirable property under sufficiently small perturbations
depends on the nominal data (a,b,c) .

All the questions in the above paragraph can be easily answered when T is
finite (ordinary linear programming) by means of the set of active constraints at
T, {ar:t € T(T)}, where T (Z) := {t € T : ;T = b} is the set of active indexes at
7. For an infinite set T, it is already known how to answer these questions when
o is UB, just replacing the set of active constraints by the so-called set of implicit
active constraints at T,

(1.3) A7) = {aeR”: ( a‘,} ) € ch},

where

(1.4) D::{(ZZ),teT}

is the set of coefficients of o. This concept was introduced in [11] and the given
name recalls the fact that a € A (%) implies o’z > a'Z for all x € F by the non-
homogeneous Farkas lemma. Clearly, A (Z) is a closed subset of R™ such that
{as,t € T (T)} C A(T), where this inclusion can be stricted even for UB systems
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(see Example 5 in Section 3). As shown in [8], [9], and [11], most results on
LSIP problems with UB constraint system require the SS property of ¢, which is
equivalent to the existence of ¥ € R™ and € > 0 such that a;z > b, +¢ for all t € T.
In such a case 7 is said to be an SS point of o; a Slater point satisfies ajz > b, for
all ¢ € T. The SS condition can be seen as a constraint qualification stronger than
the Slater one, and also as a stability condition, as far as it is equivalent to assert
the maintaining of the consistency of the constraint system under sufficiently small
perturbations of a and b ([7, Theorem 3.1]).

Let us fix the notation we use in this paper. Given a subset X of some topological
space, int X, cl X and bd X represent the interior, the closure, and the boundary of
X, respectively. Given a non-empty set X C R", equipped with the Euclidean norm
[Ill, by conv X, cone X, and dim X we denote the convex hull, the convex conical
hull, and the dimension of X, respectively. Moreover, we define cone () = {0,,} and
denote by XY the positive polar of a given convex cone X. Given T € X, where X
is a convex set, we denote with D (X,Z) the cone of feasible directions at Z. Given
z,y € R", [z,y] = {(l—a)z+ay:a€0,1]} (and similar definitions for ]z,y],
etc.); the null-vector will be denoted by 0,,. All the vectors in the finite dimensional
spaces are column vectors; but we use indistinctly (a,b) and (Z), a€R" beR, for
notational convenience. Finally, limyzr = = and x; — = should be interpreted as
limy_,ooxr = .

The paper is organized as follows. Section 2 shows that the finiteness of the
supremum function f is a transition condition between the UB condition and the
LUB property at every feasible point. Concerning f, observe that computing f (),
x € R", requires to solve a global optimization problem on T (a hard task in
general). Moreover, in the case that an explicit expression of f is available, the
amount of information on F' and P obtainable from f is very limited, even though
the UB property holds, in particular the information relative to the perturbations
of the data (this approach was already explored in [9]). For this reason f plays a
very restricted role in this theory. In Section 3, we characterize A (T) assuming that
o is LUB at Z. Although all the results there can be directly proved, it is preferable
to re-scale ¢ in order to apply the known theory for UB systems; Section 4 gives
some geometric results about F. Section 5 determines whether a given T € F
is the (strongly) unique solution of P or not by means of a Karush-Kuhn-Tucker
condition under the assumption that ¢ is LUB at Z. It also discusses the stability
of the strong uniqueness property under small data perturbations, which obviously
requires the SS property.

2. THE SUPREMUM FUNCTION

In LSIP it is not always the case that an SS element is an interior point of the
solution set F. The following proposition analyzes this situation in relation with
the supremum function f.

Proposition 1. If o is SS, then F is the closure of the set of SS elements of o. If,
additionally, f is finite-valued, then int F' is the set of SS elements.

Proof: Since f is a lower semicontinuous, proper and convex function such that
infyern f () < 0 (because o is SS) one has, by [15, Theorem 7.6],
F={zeR": f(x) <0} =cl{z e R": f(z) <0}.

If f is finite-valued, then f : R™ — R is continuous and, from [15, Theorem 7.6],
we get
int F={zeR": f(x) <0}.
|
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The following property shows that the finiteness of the supremum function f is
a transition condition between the UB condition and the LUB property at every
feasible point.

Proposition 2. (i) If o is UB, then f is finite-valued.
(i) If f is finite-valued, then o is LUB at every x € F.

Proof: (i) Assume that o is UB and take an arbitrary T € F. Then, given = € R",
we have

f(z) = supier (by — atz) < super a; (T — x)
< |7 =zl suprer {lladl| 2 € T} < +o0.

(ii) Now, suppose that f is finite-valued, i.e., dom f = R™. If F' = R", then
{as,t € T} ={0,} and o is trivially UB. Thus we assume that F' # R"™. We prove
now that ¢ is LUB at any = € F' discussing the two possible cases for the position
of x relative to F':

If x € bd F, then ¢ is LUB at « by [9, Proposition 1] because int dom f = R™.

Otherwise, if € int F), taking v > 0 such that B (z,v) C F we have W (z,~) C
{0,}, so that o is also LUB at «. O

The next examples show that the converse statements of (i) and (ii) in Proposi-
tion 2 fail even assuming that either F' is a singleton or o is SS. To find W (Z, ),
notice the following useful representation

(2.1) W&, 1) \A0n} = {ar # 0n 2 4T — b <y llac]}-

Example 1. [ finite-valued and o not UB: Letn =1 ando = {tz > —t*,t € R} .

Here {as,t € R} = R whereas f (x) = % is finite-valued. Observe that, in this case,
F = {0} and W (0,7) = |—, 7] for ally > 0, i.e. all the sets of y-active constraints
at 0 are bounded.

Example 2. ¢ LUB at the unique feasible point, f not finite-valued: Let
n =1 and consider the following representation of F = {0} :

2t 4+ 2
J:{— ST > — i 2,156]—1,1[}.

(1-1¢2) (1-1¢2)
Its supremum function
.’62
_ 1227 x € ]—1, ].[,
/(@) { 400, otherwise,

is mot finite-valued. On the other hand,

v (o) - (-t all 55

so that o is LUB at the unique solution of o.

Example 3. f finite-valued, o SS and not UB: Let n =1 and 0 =
{te > —t* -1, t e Ry }. Then F = {x > —2} and

re={ T oL o0,

-1, otherwise.

Example 4. o LUB at any feasible point and SS, f not finite-valued: Let
n=2,T=7Z\{0} and

o={te; > —t—t*t€Z,t>0,~tx; >3t,tEZ, t <0}.
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It can be realized that F =
for allz € F and all v €

[—2,400) xR, that 09 is SS, and that W (z,~v) C {(1,0)}
]
Newvertheless, in this case f

0,1[. Thus, o is SS and LUB at all its feasible points.
(x) = 400 for any v = (1, x2) with x; < —3.

3. IMPLICIT ACTIVE CONSTRAINTS

We associate with o = {ajz > by, t € T} its normalized system o = {c?t':z: > bNt, te T}
defined by
-1 .
(7o) = ol b i 00,
ty VUt ] — .
(at, by) otherwise.
Obviously, o is a UB linear representation of F. Given T € F, we represent by
W (Z,7) and by A (T) the sets of y—active constraints and the set of implicit active

constraints at T relative to o, respectively. From the definition of the set of y—active
constraints we get its invariance under normalization in the sense that a; € W (Z,~)

if and only if a; € W(E, 7). The next result compares the set of implicit active
constraints at Z relative to o and o.

Lemma 1. Ifa € A(Z)\{0,}, thena := lal| "t a € A(T). Conversely, if o is LUB
atT and a € A(Z)\ {0,}, then there exists a € A(T) \ {0n} such that a = |[a] a.
Thus, cone A (T) C cone A (T) and the equality holds whenever o is LUB at T.

Proof: If a € A(%) \ {0,}, take a sequence {4} C T such that a;, — a and
by, — a'T. Without loss of generality (w.l.o.g.) we may assume that a;, # 0,, for

all k, hence a;, — @ and b;, — a'Z,soa € A(T).

Now we take @ € A(Z) \ {0,}. Let v and g be positive numbers such that
W (Z,v) C B(0p, ). Let {tx} C T such that a;, # 0,, at, — a, and I;; — a'T.
Multiplying by T and by —1 both sequences, and summing up them, we get
(aTk/Efl;;) — 0. W.l.o.g. we may assume that d‘fk'ff b:; < « for all k, so
that aj, T — by, < |lag, ||, so (2.1) gives a;, € W (Z,y) C B (0, ), for all k. Thus
we can assume, by passing to a subsequence if necessary, that {atk} is a convergent

sequence. Let a;, — a € R™, in which case ||at, || — ||a]| and so a = ||a|| @ because
oo = %0 = &

From ”Z:H = btk — a'T we get that b, — |a||a'Z. Hence, a = |a||a €
A(T). O

Remark 1. Notice that 0,, € A(T) implies that 0, € A(T), while the converse
does not hold.

Example 5. If o = {t2x > —t,t=1,2,. } then D = {(t2 —t) t=1,2,. }
D and D = {(1,—t71),t=1,2,...}, clD = DU{(1,0)}. Now, forz =0 €
F =R, we have A(Z) =0 and A(Z) = {1}, so that cone A (%) # cone A (). The
reason is that o is not LUB at T. Observe that cl{a, :t € T ()} =0 ¢ A(T).

In general, the SS property is neither transmitted from ¢ to ¢ nor from & to
o. In fact, 0 = {-1<tx <1t € N} Which is not LUB at its unique solution
satisfies the SS condition whereas 6 = {—1 < < 1,t € N} does not (the same
happens in Example 7, where the given system is hlghly stable whereas its nor-
malized system is unstable). Analogously, the SS condition fails at the UB system
o= {tx > —t*t €]0,1]} whereas & is SS.

Lemma 2. Let o be LUB at some feasible point. If o is SS, then o is SS.
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Proof: Let T, € F and let v, u,e be positive scalars such that W (z,v) C
B (0n,p) and a}@ > by +¢ for all ¢ € T. We shall prove that y := ZZ is an SS
point for . We discuss two possible cases for ¢ € T such that a; # 0,, (the case
a; = 0y, is trivial).

~

If aiT — by > v ||la¢||, then a;' T > b: +~and @;'% > b:, so that

(3.1) 'y > 5t+%.

Alternatively, if a/T — by < ~y|jac||, then a; € W (Z,7) and so |ja;||”" > i Since

a;T > by and a;T > by + &, we have

~ e ~ €
3.2 ai'y > b > b+ —
(3:2) aty,t+2”at”ft+2ﬂ
Combining (3.1) and (3.2) we get the aimed conclusion. O

The next result expresses the polar of the feasible directions cone at a point
T € F D (F;E)O7 in terms of A (Z). This expression will play a crucial role in
Section 5 as far as T is an optimal solution of P if and only if ¢ € D (F;f)0 , and
it is a strongly unique optimal solution if and only if ¢ € int D (F ;T)O. Notice

that cone A (%) is always a subset of D (F, )", which follows immediately from the
definition of A (T).

Proposition 3. If o is SS and LUB at T, then 0,, ¢ conv A (T), and cone A (T) =
D (F,7)° is pointed.

Proof: We show the first statement assuming the contrary, i.e., that 0, €

conv A (Z). Let dy,...,d,, € A(Z) and non-negative scalars Aj, ..., A\, such that
Z‘—1 Aid; = 0, and Z‘—1 A; = 1. For each ¢ = 1,...,m there exists a sequence

{tr}>2, C T such that

di T atlr
(3.3) < &7 > = 1171}1( b > .

Let T € F and € > 0 be such that ajZ > b + ¢ for all ¢ € T. Multiplying by
(%, —1) both members of (3.3) we get d} (¥ — T) = lim, (a;,@ - bt;-) > ¢, whereas
0= Zm Ndi (Z—T) > Zm Aie = . This is a contradicltion

T L= T L= T T : _
Now, since the normalized system & is UB and SS, by Lemma 2, cone A (Z) is closed

and pointed ([11, Lemma 2.6(c)]) and cone A (z) = D (F, )" ([8, Proposition 5.4]).
The conclusion follows from Lemma 1. g

Proposition 4. IfT is an SS element of o, then A (T) = 0. The converse statement
holds if o is LUB at 7.

Proof: Assume that a}Z > b; + € for some positive € and for all t € T. Then,

there is no sequence {(a,, b, )} such that lim, a;, = a satisfies that o'Z = lim, b;_;
so A(T) = 0.
Now suppose that o is LUB at T and A (Z) = 0. Then ¢ is a UB system with
A(Z) = 0 by Lemma 1 and Remark 1. Thus T is an SS point of &, by [11, Lemma
2.6(a)], but we cannot conclude that Z is an SS point of o. So, we will consider the
following new re-scaling of o. Put

() = { ol b >,
o (at,be) otherwise,
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and consider the new UB system ¢ = {c?t'ac > bAt, te T} . Clearly F =F and any
SS point of & is also an SS point of o. Moreover, ﬁ(*) = (); in fact assume that

(7) # () and let w € A (T) . Then, there exists a sequence {ay, } such that a;, — u
and btk — u/'Z. Now, if ||as, || > 1 for infinitely many k’s, then u € A (Z) = (), which
is a contradiction; if ||as, || < 1 for infinitely many £’s, then u € A (z) = 0, another

contradiction. Thus A (z) = (), and hence [11, Lemma 2.6(a)] applies again to give
that T is an SS point of 7. Therefore, T is also SS for o. g

4. GEOMETRIC APPLICATIONS

The following example shows a variety of possibilities that we have to deal with in
the semi-infinite setting, even for a system that satisfies the strong Slater condition.

Example 6. Consider o = {(2 —k)z1 + (1 —2k)xy > 1—k,k € N}. Then o is
SS, and we have F' = {(I;) To < T1,To < = — 2331} Observe that for v > 0,

T' e bd F C (1)
W(ey) =A@) ¢ {(7) ken}
cone A (fl) : (;;) 1o < %xl,xg < 2!E1} U {02}
D (F,EI)O : (i;) 1 X0 < —x1, 29 < 25(:1}
zPebdF ()
w (52,7) : {(1 2k) k € N large enough}
A@) 0
cone A (Z%) : {02}
p(Fa?)" : {(3):ez0},
and
73 €bd F i 0
W (@%,7) = A(z%) ()
cone A (z°) = D (F,E3)O : {(_2) cx > O} ,
. k—1
for v > 0 small enough (exactly, v < inf {\/m7 ke N}) .

Notice that o is not UB, but it is LUB at 3. Furthermore, the interior of F is not
the set of (strong) Slater points; actually any boundary point of the form (s, % — %s)
is S for s > % This is the case of T+ and T2. Moreover, T € bd F and F is a full
dimensional polyhedral conver set although A (fl) is mot compact and cone A (El)

is not even closed; o is not LUB at T".

The LUB condition is related to the full dimensionality of F' as the following
proposition shows.

Proposition 5. If dim F' = n, then o is LUB at some feasible point. Conversely,
if o is SS and LUB at some feasible point, then dim F' = n.

Proof: Taking T and v > 0 such that B (Z,v) C F we have W (Z,~) C {0,}.
Conversely, let o be SS and LUB at T € F. By Lemma 2, the normalized system &
is SS, which gives that int F' # () by Propositions 1 and 2 (i). Therefore dim F' = n.
([
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In general, it is not easy to classify a given T € F as interior or boundary point
(specially when the SS condition fails). We have seen in Proposition 1 that, if ¢ is
SS and dim F' = n, then

intF:{xeR”:f(m)<0}:{xGR”:tin:fF(agx—bt)>0}.
€

The system o = {x > f%, te N} shows that we can have
int F# {x e R": ajxz > by, t €T}

even though dimF = n and ¢ is UB and SS (0 € bd F is a Slater point of o).
Proposition 1 shows that the finiteness of the supremum function f is a sufficient
condition to assure that any SS element is an interior point, and vice versa. This is
also the case for UB systems, which can be seen by a straightforward calculation,
or by an application of Proposition 2 (i) combined with the mentioned Proposition
1. Example 6 shows that we can not replace the UB condition by the LUB one.
Obviously, another sufficient condition for T € F to be an interior point of F' is
that Z is an SS point of .

The next result provides two necessary conditions for a feasible point to be a
boundary point of F. These two conditions extend [8, Proposition 5.1] and [11,
Lemma 2.6(a)] from UB to systems which are LUB at some feasible point, respec-
tively; the second one eliminates the unnecessary assumption that o is SS. We will
make use of the following double inclusion ([8, Lemma 5.2]):

(4.1) A@)INA{0,} C [ AW (Z,7) C A(T) for all T € F.
v>0
Proposition 6. If o is LUB at T € bd F, then () clW (z,7) # 0 and A(T) is a
v>0

nonempty compact set.

Proof: Since the normalized system & is UB at T € bd F, Proposition 5.1 in [§]

gives the existence of u € [ AW (T,7). In the case that u = 0,,, we necessarily
v>0

have that 0,, € 1% (Z,) for all v > 0, which only occurs when 0,, € W (z,~) for all

v > 0, thus 0, € () W (z,7) C A(Z), by (4.1). Then, () clW (T,v) # 0 and
¥>0 v>0
A(Z) # (0. Suppose now that u # 0,,. From (4.1) applied to &, we get that

AW (z,7) c A(@),

>0
50 0, # u € A(T). From Lemma 1, it follows that A (z)\ {0,} # 0. Finally, (4.1)
gives that

0#A@)N\A0} C [ dW (T,7),
v>0

which, together with the LUB property of o at Z, implies that A (Z) is bounded, so
it is compact because it is always a closed subset of R™. O

Proposition 3 provides assumptions under which D (F,Z)° can be replaced with
cone A (Z), which depends on the data (instead of depending on the usually un-
known set F'). This allows us to obtain geometric information on F'; for instance, a
necessary condition for F' being quasipolyhedral (i.e., the non-empty intersections
of F with polytopes are polytopes).

Proposition 7. Let o be SS and suppose that it is LUB at T € F. Then, a necessary
condition for F to be quasipolyhedral is that cone A (T) is polyhedral.
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Proof: Proposition 3 gives the equality cone A (Z) = D (F, E)O . If F is quasipoly-
hedral, then D (F,%)° is polyhedral, so cone A () must be polyhedral. O

5. APPLICATIONS TO OPTIMALITY CONDITIONS AND STABILITY

The next two results provide optimality and strongly unique optimality tests of
Karush-Kuhn-Tucker type. The first one shows that the combination of the SS and
the LUB properties provides a constraint qualification in LSIP.

Theorem 1. Let T € F. If ¢ € cone A (T), then T € F*. The converse statement
holds if o is SS, and LUB at T.

Proof: The direct statement is [8, Corollary 5.5].
Now, assuming that ¢ is SS and LUB at Z, according to Proposition 3, T is an
optimal solution of P if and only if ¢ € D (F,Z)° = cone A () . O

Taking ¢ = (—1,—2) and the SS (but not UB) system ¢ in Example 6, we have
7!,7% € F* despite of ¢ ¢ cone A (fl) (which coincides here with the ordinary
active cone at Ei), 1 = 1,2. Thus, the local boundedness of ¢ at the checked point
is essential for the above optimality test. Concerning z°, where o is LUB, ¢ ¢

cone A (z°) entails z° ¢ F*.

Theorem 2. Let T € F. If ¢ € int cone A (T), then T is a strongly unique optimal
solution of P. The converse statement holds if o is SS, and LUB at .

Proof: Tt is similar to the previous one. O

Theorem 2 has potential application in the context of parametric LSIP, where it
is assumed that all the data in the given problem P, i.e., the triple 7 = (a, b, ¢) that
we identify with P from now on, can be perturbed. We associate with 7 the set II
(called space of parameters) of all the similar problems (i.e., LSIP problems with n
decision variables and index set T') obtained through arbitrary perturbations of the
data of bounded size. We consider II equipped with the pseudometric of the uniform
convergence, i.e., given two parameters 71 = (a',b',¢') and 7 = (a?,0%,¢?),

()-GOl

we use the same symbol to mark a perturbation of the nominal problem 7 and
its associated objects (for instance, Wi (x,v) and A; (x) denote the set of y-active
constraints and the implicit active set at « € F) relative to w1 € II, respectively).
We say that an LSIP problem 7 is UB (or LUB at some feasible point) if its
constraint system is so. It is easy to see that the subspace of UB problems form
an open and closed subset of II. It has been proved (in [10]) that the subset of UB
problems with strongly unique optimal solution contains an open and dense subset
of the subspace of UB problems. This generic result does not hold for the class of
problems which are LUB at some point, but we shall show (in Theorem 3 below)
that it is possible to identify open subsets of II formed by problems with strongly
unique optimal solution. Unfortunately, re-scaling here is of limited use because
a small perturbation of a particular constraint of ¢ with small coefficients could
provoke a large perturbation in the equivalent system.

As a corollary of the next lemma we obtain that the LUB property at some
point is stable in the following sense: If w is LUB at T € F, then there are open
neighborhoods V of m and U of Z, such that 7 is LUB at z1, for any 71 € V and
any z; € U N F}.

(5.1) d (71, m2) = max { ||c1 - 02|| ,SUP;er
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Lemma 3. Let 7 = (a,b,c), x € R™, and v > 0 be such that W (z,v) is bounded.
Then there exists an open neighborhood V' of 7 such that the sets Wi(z,3) are
uniformly bounded for any 71 € V and z € B(x, ).

Proof: Suppose the contrary. Then there exist sequences {7y}, {2z}, and {afk}
such that 7, — m, zx € B(z,%) and af, € Wi(z, %) such that ||af || > &k, k =
1, 2,.... Forevery k € N, we can find yp € B(z, 3) C B(x, ) such that (afk) Yk =

Smce {yr} is a bounded sequence, we may assume w1thout loss of generality
thatyk—wyeclB( )andd(Trk, )<%,k:1,2,....
For k=1,2,..., we have

1
||atkH - Hatkn < |Haka Ha’tk'” < E7
whereby

, 1 1
lae Il > ok, || = 7 >k~ 7.

Let k € NJk > 1. Then,

!
ahoe—bu| < (o — o) w] + [, — bu
1
<, — ok |l + &
1
< = 1).
el + 1)
Choose ¢}, such that aj, yr, — by, = —¢, ||ag, ||, then
gl = | Gt = b sl +1) gl +1
lla, k=1 k? -1
From the above inequality, for k sufficiently large, we obtain
lex| < %
In that case, yi + €k ” H € B(z,7), because |lyx — x| < ZL. Moreover,
(yk ek llas ||) = ay, Y + ek llag, || = b,
k

so ay, € W(z,7) (a bounded set). This contradicts ||as, || > k —  for all k € N.
(I

We consider the following sets of parameters:

IIg = {m € II : 7 has an optimal solution},
IIsy = {7 € I : 7 has a strongly unique optimal solution} .

According to [7, Theorem 3.1], if the constraint system of a problem 7 is SS,
then it is stable with respect to consistency, i.e., there is some neighborhood of 7
such that any of the problems in that neighborhood is consistent. Other stability
properties are related to the set-valued optimal mapping F* : II = R" that assigns
to each problem 7y its optimal solution set, F}, and to the set-valued mapping of
implicit constraints A : II x R™ — R™, such that A (71, ) is the set defined as
n (1.3) for all z € R™, with Dy as in (1.4); this mapping is totally different to
the so-called active set mapping from R™ to R™ considered in [5], which consists
of the intersection of the convex cone generated by the ordinary active constraints
with the unit sphere, with fixed data. The following continuity concepts are due
to Bouligand and Kuratowski (see [1] or [2] for a general setting). F* is said to
be lower semicontinuous at m € II (Isc in brief) if, for each open set U C R
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such that U N F* (w) # 0, there exists an open neighborhood V' C II of , such
that U N F*(my1) # 0 for each m; € V. F* is upper semicontinuous at m € II
(usc in brief) if, for each open set U C R™ such that F* (7) C U, there exists an
open neighborhood V' C II of 7, such that F* (r1) C U for each m;y € V. F* is
continuous at w € Il if it is Isc and usc 7 € II. Finally, F* is closed at m € dom F* if
for any sequences {m;} C R"™ and {z;} C R" satisfying x € F*(ny) for all k € N,
limy 7, = 7, and limg 2, = x, one has © € F*(w). It is well known that F* is
usc at ™ € dom F* whenever F* is closed and uniformly bounded at m (i.e., there
exists a bounded set C' C R™ such that F* (71) C C for any 7 sufficiently close to
7). Similar definitions and properties take place for the mapping A to be lsc, usc,
continuous, closed, or uniformly bounded at (, ), where we consider the product
topology on II x R™.

We state the following proposition for further reference (its proof can be found
in [6, Theorem 10.4]).

Proposition 8. Let w € IIg and assume that o is SS.
(i) If F* is a bounded set, then F* is usc at .
(ii) If F* is a singleton, then F* is lsc at .

Proposition 9. A is closed at any (m,x) € II x R™.

Proof: Let us take an arbitrary (m,z) and sequences {(mj,z;)} C II x R™ and
{ax} C R™ such that ay € A (7, xx) for all k € N, (7, z) — (7, 2), and ap — a.
From the definition of the mapping A, for each k € N, we can find ¢}, € T such that
1

1
Hak —aka < T and ‘(afk)/xk — bfk < =

Let us fix e > 0 and ko € N such that [lay —a| < e, 1+ < e, and d(mg, 7) < € for
every k > kg. Then

la = ai, || < lla = arll + [lax — af, || < 2¢,

and
lo —ae, || < [laz, —all + [|ae, — az, || <3e,
for k > ko. Thus a;, — a. Moreover,

/ / k' k' k k
ay, © — by, = aj, (x—xp) + (ay, —ay) x, + (af,) xk — bf, +bF, — by, — 0.
Hence

a'x = limy, ay, © = limy, by, .

Therefore a € A (7, ), which proves the proposition. O

Proposition 10. Let 7 € Il be LUB at T € F. Then A is usc at (7,7T).

Proof: Let v > 0 be such that W(Z,v) is bounded. By Lemma 3, there exist
an open set V C II and a bounded closed set C C R™ such that 7 € V, and
Wi(z, %) C C for any 7 € V and x € B(T, 7). From (4.1),

A(mi,z) = A; (z) € () Wi (2,7) U{0,} C Wi (z, %) U{0,} c CU{0,},
v'>0

for all (m1,z),m € V,z € B(T, g) So, A is uniformly bounded at (m,Z). This
together with the closedness of A at (7, %) established in Proposition 9 above proves
that A is usc at (7,T). O

Definition. 7 € II satisfies the Extended Niirnberger (EN in brief) condition at
T € F if there exists {31, ...,En} C A(T) such that ¢ € cone {81,...,En} and ¢ €
int cone {dy, ...,d,} for any set {di,...,d,} C A(T) such that ¢ € cone{dy,...,d,}.
We say that w € 11 satisfies the Extended Nirnberger condition if w satisfies this
condition at some T € F'.
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Proposition 11. If 7 satisfies the Extended Nirnberger condition at some point T
of F, then m € Mgy and F* = {T}. If in addition o is SS, then F* is continuous
at ™ and w € intIlg.

Proof: The fact that A(z) C D (F,z)°, under the EN condition, implies that
7w € gy and F* = {T}. Moreover, if ¢ is SS, Proposition 8 gives the continuity of
F* at , so for any £ > 0 there is some § > 0 such that () # F} C B (%, e) whenever
d(m,m1) < d. Thus 7 € int IIg. O

The following theorem gives conditions for 7 € int IIgs, involving the SS condi-
tion, the EN condition, and the LUB property.

Theorem 3. Let o be SS. If m € 11 satisfies the Extended Niirnberger condition at
T € bdF and 7 is LUB at T, then w € intllgyy. The converse statement holds if
is LUB at the unique solution T € F*.

Proof: Since o is SS, the problem 7 is stable with respect to consistency. Assume
that = € II satisfies the EN condition at T € bd F' and 7 is LUB at Z. Let us
suppose that m ¢ int Ilgy. By the previous result = € int IIg, therefore there exists
a sequence {7y} C IIg\IIgy such that 7 — 7. We may also assume that there is
a sequence {zy} such that z), € F}', x, — T (see Proposition 11 and its proof), and
each 7 is LUB at zy, k € N. Let Ay (x) := A (7, k) denote the set of implicit
active constraints of mj at zx, k € N; similarly A (Z) := A (7, Z). From Theorem
1, for a given k € N and x, € F}* there exist M < n, 8} > 0 and al, € A (z),
i =1,..., M such that the vectors at, i = 1,..., M are linearly independent and

M
(5.2) =S Bl
=1

Taking into account that mj € IIg\IIgy, we get M < n. Without loss of generality,
we may assume that for each k € N we have the same M € N. Since the mapping of
implicit constraints A is usc at (7, %), whereby a}, — a; € A(Z), i =1,...,M. We

shall prove that the sequences {62}101 , i =1,..., M are bounded. Let us assume
the contrary and take the sequence 5, = Zf\il Bi — oo. If in the equality (5.2) we
divide by f}, and take limit for £ — oo, we obtain (by passing to a subsequence if

necessary)
M
On = E Hlah
i=1

where Zf\il 6" =1, s0 0, € conv A(Z). Proposition 3, provides a contradiction.
So we may assume w.l.o.g. that each sequence {Bz}k converges, say ch — B,
i =1,...,M. Hence c = Zf\il B;a; with M < n, which means that m does not
satisfy the EN condition at . This is a contradiction.

For the converse, let us suppose that 7 € intllgy and w is LUB at the unique
solution T € F*. Let v > 0 be such that R := sup{|lat| : a: € W (T,7)} < oc.
There exist M <n, o; >0 and a; € A(T), i = 1,..., M, such that the vectors a;,
i =1,..., M, are linearly independent and

M
Cc = E ;.
i=1

Here

a; = lim a and a;Z = lim by ,
T T T "
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there exists a non null vector
hence lim, aj,u = aju = 0, i
T = (ak,bk,ck), such that 7, — 7, and = and = — E“ € Ff, for k € N large
enough. For each k € N we define

for some sequences {( tl,bﬂ)} oy M. Assume that M < n. So,
u

>1
€ R™ such that |ul| = 1 and afu = 0, and
1,..., M. We shall construct a sequence {Tl'k}

aff =a, teT, and ¥ :=¢,

bf:{ by — ¢ lajul, tef{teT:a, € W(z,7)},

by, otherwise.
Then
& R
d(mg,m) = sup{|bt - bti} = sup |atu| < R||u|| ==
teT te{teT:areW (T,v)} k k’

whereby 7, — 7. From the definition of bf, and recalling that whenever a; ¢
W (Z,~), we have that ajy > by, for all y € B (Z,7), for k € N large enough and for
any t € T,

1
a;T > by > by — % |ayul, and

_ 1 1
ay (x— ku) > by — z lajul,

therefore  and T — %u € Fy, k € N large enough.
We have that, for each i = 1,..., M,

@, = limb,;: = limbf, and
r r r T

1 1
These facts imply that for every & € N large enough, a; is in Ai (ZT) and in

Ag (f— %u), i =1,...,M, hence T and = — %u € [}, which contradicts the fact
that 7 € int IIgy;. Therefore M = n. O

The following example shows that there are problems 7« € int IIg;; which are not
LUB at the strongly unique optimal solution.

Example 7. Let n = 2, and let T be the set of non-null integers. Consider the
following problem:

Inf xr1 + X9
P s.t. —kxy > —1, k=-1,-2,...,
k.’l?g 1 k=

Then F = R2, F* = {02}, and W (02,7) is unbounded for all v > 0. The set of
actiwe implicit constraints at T = Oy is empty. Nonetheless, m € intllgy because
T = 02 is a strongly unique optimal solution of w, and there is an open neighborhood
of m where the feasible set remains constant. Notice that this problem does not fulfill
the EN condition at T = 0.
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