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Abstract. The concept of implicit active constraints at a given point provides
useful local information about the solution set of linear semi-in�nite systems
and about the optimal set in linear semi-in�nite programming provided the
set of gradient vectors of the constraints is bounded, commonly under the
additional assumption that there exists some strong Slater point. This paper
shows that the mentioned global boundedness condition can be replaced by a
weaker local condition (LUB) based on locally active constraints (active in a
ball of small radius whose center is some nominal point), providing geometric
information about the solution set and Karush-Kuhn-Tucker type conditions
for the optimal solution to be strongly unique. The maintaining of the latter
property under su¢ ciently small perturbations of all the data is also analyzed,
giving a characterization of its stability with respect to these perturbations
in terms of the strong Slater condition, the so-called Extended-Nürnberger
condition, and the LUB condition.

1. Introduction

We consider given a consistent linear semi-in�nite programming (LSIP) problem

(1.1) P : Inf c0x s.t. a0tx � bt; t 2 T;
where c 2 Rn; T is an arbitrary in�nite index set, and a� : T ! Rn and b� : T !
R are arbitrary functions. We denote by � = fa0tx � bt; t 2 Tg ; F; and F � the
constraint system, the feasible set, and the optimal set of P; respectively. Observe
that F can also be represented as fx 2 Rn : f (x) � 0g ; where f is the supremum
function of �; i.e., the lower semicontinuous convex function f : Rn ! R [ f+1g
such that f (x) := supt2T (bt � a0tx) : The system � is said to satisfy the strong
Slater (SS in brief) condition if the convex system ff (x) � 0g satis�es the Slater
condition infx2F f (x) < 0. An optimal solution x 2 F � is strongly unique if there
exists � > 0 such that

c0x � c0x+ � kx� xk ;
for all x 2 F . Here, k�k stands for the euclidean norm.
The system � is said to be upper bounded (UB in brief) if the set of left-hand-side

vectors, fat : t 2 Tg ; is bounded. It is known that the global upper boundedness
of these vectors allows to obtain valuable information about the geometry of the
feasible set F; and also about the (strong) uniqueness of solutions of P . The purpose
of this paper is to extend these results to a large class of LSIP problems by replacing
the UB condition by a weaker one whose de�nition involves the intuitive concept
of -active constraint: given  > 0, the inequality a0tx � bt is a -active constraint
at x 2 F if there exists y 2 B (x; ) (the open ball centered at x with radius )
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such that a0ty = bt: The set of left-hand-side vectors of the -active constraints at
x is denoted by W (x; ) :

(1.2) W (x; ) = fat : a0tx = bt for some y 2 B (x; )g :

We say that � is locally upper bounded (LUB in short) at x 2 F if there exists
 > 0 such that W (x; ) is bounded (this concept appeared by the �rst time, as
an assumption, in [9, Proposition 3]). We are primarily interested in those LSIP
problems whose constraint system is not UB but it is at least LUB at some feasible
point. This local condition combined with the strong Slater condition allows us
to study some geometric properties of F , and to provide optimality and strongly
unique optimality tests of Karush-Kuhn-Tucker type. Moreover, with the aid of the
Extended-Nürnberger condition (see its de�nition in Section 5), we characterize the
stability, with respect to data perturbations, of linear semi-in�nite problems which
have a strong unique optimal solution (Theorem 3, in Section 5).
In certain LSIP applications, the user would like to determine from the data,

the triple (a; b; c) ; whether F is full dimensional or not and, in the �rst case, might
want to classify a given feasible point x as an interior or a boundary point of F: In
the latter case, the practitioners would like to know, by means of a Karush-Kuhn-
Tucker type condition, whether a given boundary point x is an element of F � or not,
even more whether it is a unique optimal solution, or a strongly unique optimal
solution. The existence of a unique optimal solution is a requirement for well-
posedness in Tychonov�sense ([4], [13]), whereas the existence of a strongly unique
optimal solution guarantees the computational e¢ ciency of certain LSIP numerical
methods ([12]) and it is actually equivalent to the metric regularity of the inverse
of the optimal set mapping for an important class of LSIP problems ([3], where
a characterization of strongly unique optimal solutions due to Nürnberger ([14])
plays a crucial role). On the other hand, in many practical situations, the triple
(a; b; c) 2 (Rn)T � RT � Rn (called the nominal data in the stability framework)
can be perturbed due to either measurement errors or rounding errors occurring
during the computation process. Then, in the favorable case that P has a strongly
unique optimal solution, it can be interesting to know whether or not this property
is preserved by su¢ ciently small perturbations of the data, whose size is measured
through the pseudometric of the uniform convergence de�ned in (5.1). Observe that
the existence of a strongly unique optimal solution depends on F and c whereas the
maintaining or not of this desirable property under su¢ ciently small perturbations
depends on the nominal data (a; b; c) :
All the questions in the above paragraph can be easily answered when T is

�nite (ordinary linear programming) by means of the set of active constraints at
x, fat : t 2 T (x)g ; where T (x) := ft 2 T : a0tx = btg is the set of active indexes at
x: For an in�nite set T , it is already known how to answer these questions when
� is UB, just replacing the set of active constraints by the so-called set of implicit
active constraints at x;

(1.3) A (x) :=

�
a 2 Rn :

�
a
a0x

�
2 clD

�
;

where

(1.4) D :=

��
at
bt

�
; t 2 T

�
is the set of coe¢ cients of �: This concept was introduced in [11] and the given
name recalls the fact that a 2 A (x) implies a0x � a0x for all x 2 F by the non-
homogeneous Farkas lemma. Clearly, A (x) is a closed subset of Rn such that
fat; t 2 T (x)g � A (x) ; where this inclusion can be stricted even for UB systems
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(see Example 5 in Section 3). As shown in [8], [9], and [11], most results on
LSIP problems with UB constraint system require the SS property of �; which is
equivalent to the existence of bx 2 Rn and " > 0 such that a0tbx � bt+ " for all t 2 T:
In such a case bx is said to be an SS point of �; a Slater point satis�es a0tx > bt for
all t 2 T: The SS condition can be seen as a constraint quali�cation stronger than
the Slater one, and also as a stability condition, as far as it is equivalent to assert
the maintaining of the consistency of the constraint system under su¢ ciently small
perturbations of a and b ([7, Theorem 3.1]).
Let us �x the notation we use in this paper. Given a subsetX of some topological

space, intX, clX and bdX represent the interior, the closure, and the boundary of
X, respectively. Given a non-empty setX � Rn; equipped with the Euclidean norm
k�k, by convX, coneX; and dimX we denote the convex hull, the convex conical
hull, and the dimension of X, respectively. Moreover, we de�ne cone ; = f0ng and
denote by X0 the positive polar of a given convex cone X. Given x 2 X; where X
is a convex set, we denote with D (X;x) the cone of feasible directions at x: Given
x; y 2 Rn, [x; y] = f(1� �)x+ �y : � 2 [0; 1]g (and similar de�nitions for ]x; y] ;
etc.); the null-vector will be denoted by 0n: All the vectors in the �nite dimensional
spaces are column vectors; but we use indistinctly (a; b) and

�
a
b

�
; a 2 Rn; b 2 R; for

notational convenience. Finally, limkxk = x and xk ! x should be interpreted as
limk!1xk = x.
The paper is organized as follows. Section 2 shows that the �niteness of the

supremum function f is a transition condition between the UB condition and the
LUB property at every feasible point. Concerning f; observe that computing f (x) ;
x 2 Rn; requires to solve a global optimization problem on T (a hard task in
general). Moreover, in the case that an explicit expression of f is available, the
amount of information on F and P obtainable from f is very limited, even though
the UB property holds, in particular the information relative to the perturbations
of the data (this approach was already explored in [9]). For this reason f plays a
very restricted role in this theory. In Section 3, we characterize A (x) assuming that
� is LUB at x: Although all the results there can be directly proved, it is preferable
to re-scale � in order to apply the known theory for UB systems; Section 4 gives
some geometric results about F . Section 5 determines whether a given x 2 F
is the (strongly) unique solution of P or not by means of a Karush-Kuhn-Tucker
condition under the assumption that � is LUB at x: It also discusses the stability
of the strong uniqueness property under small data perturbations, which obviously
requires the SS property.

2. The supremum function

In LSIP it is not always the case that an SS element is an interior point of the
solution set F: The following proposition analyzes this situation in relation with
the supremum function f .

Proposition 1. If � is SS, then F is the closure of the set of SS elements of �: If,
additionally, f is �nite-valued, then intF is the set of SS elements.

Proof: Since f is a lower semicontinuous, proper and convex function such that
infx2Rn f (x) < 0 (because � is SS) one has, by [15, Theorem 7.6],

F = fx 2 Rn : f (x) � 0g = cl fx 2 Rn : f (x) < 0g :
If f is �nite-valued, then f : Rn ! R is continuous and, from [15, Theorem 7.6],
we get

intF = fx 2 Rn : f (x) < 0g :
�
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The following property shows that the �niteness of the supremum function f is
a transition condition between the UB condition and the LUB property at every
feasible point.

Proposition 2. (i) If � is UB, then f is �nite-valued.
(ii) If f is �nite-valued, then � is LUB at every x 2 F .

Proof: (i) Assume that � is UB and take an arbitrary x 2 F: Then, given x 2 Rn,
we have

f (x) = supt2T (bt � a0tx) � supt2T a0t (x� x)
� kx� xk supt2T fkatk ; t 2 Tg < +1:

(ii) Now, suppose that f is �nite-valued, i.e., dom f = Rn: If F = Rn; then
fat; t 2 Tg = f0ng and � is trivially UB. Thus we assume that F 6= Rn: We prove
now that � is LUB at any x 2 F discussing the two possible cases for the position
of x relative to F :
If x 2 bdF; then � is LUB at x by [9, Proposition 1] because int dom f = Rn:
Otherwise, if x 2 intF; taking  > 0 such that B (x; ) � F we have W (x; ) �

f0ng ; so that � is also LUB at x: �
The next examples show that the converse statements of (i) and (ii) in Proposi-

tion 2 fail even assuming that either F is a singleton or � is SS. To �nd W (�x; ),
notice the following useful representation

(2.1) W (x; )� f0ng = fat 6= 0n : a0tx� bt <  katkg :

Example 1. f �nite-valued and � not UB: Let n = 1 and � =
�
tx � �t2; t 2 R

	
:

Here fat; t 2 Rg = R whereas f (x) = x2

4 is �nite-valued. Observe that, in this case,
F = f0g and W (0; ) = ]�; [ for all  > 0; i.e. all the sets of -active constraints
at 0 are bounded.

Example 2. � LUB at the unique feasible point, f not �nite-valued: Let
n = 1 and consider the following representation of F = f0g :

� =

(
� 2t

(1� t2)2
x � � t4 + t2

(1� t2)2
; t 2 ]�1; 1[

)
:

Its supremum function

f (x) =

�
x2

1�x2 ; x 2 ]�1; 1[ ;
+1; otherwise,

is not �nite-valued. On the other hand,

W

�
0;
5

16

�
=

(
� 2t

(1� t2)2
; t 2

�
�1
2
;
1

2

�)
=

�
�16
9
;
16

9

�
;

so that � is LUB at the unique solution of �:

Example 3. f �nite-valued, � SS and not UB: Let n = 1 and � =�
tx � �t2 � 1; t 2 R+

	
: Then F = fx � �2g and

f (x) =

�
x2

4 � 1; x � 0;
�1; otherwise.

Example 4. � LUB at any feasible point and SS, f not �nite-valued: Let
n = 2; T = Zn f0g and

� =
�
tx1 � �t� t2; t 2 Z, t > 0;�tx1 � 3t; t 2 Z, t < 0

	
:
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It can be realized that F = [�2;+1)�R, that 02 is SS, and that W (�x; ) � f(1; 0)g
for all �x 2 F and all  2 ]0; 1[ : Thus, � is SS and LUB at all its feasible points.
Nevertheless, in this case f (x) = +1 for any x = (x1; x2) with x1 < �3:

3. Implicit active constraints

We associate with � = fa0tx � bt; t 2 Tg its normalized system e� = neat0x � ebt; t 2 To
de�ned by �eat; ebt� = � katk�1 (at; bt) ; if at 6= 0n;

(at; bt) ; otherwise.

Obviously, e� is a UB linear representation of F: Given x 2 F; we represent byfW (x; ) and by eA (x) the sets of �active constraints and the set of implicit active
constraints at x relative to e�; respectively. From the de�nition of the set of �active
constraints we get its invariance under normalization in the sense that at 2W (x; )

if and only if eat 2 fW (x; ) : The next result compares the set of implicit active
constraints at x relative to � and e�:
Lemma 1. If a 2 A (x)nf0ng ; then ea := kak�1 a 2 eA (x) : Conversely, if � is LUB
at x and ea 2 eA (x) n f0ng ; then there exists a 2 A (x) n f0ng such that a = kakea:
Thus, coneA (x) � cone eA (x) and the equality holds whenever � is LUB at x:
Proof: If a 2 A (x) n f0ng ; take a sequence ftkg � T such that atk ! a and

btk ! a0x: Without loss of generality (w.l.o.g.) we may assume that atk 6= 0n for
all k; hence fatk ! ea and fbtk ! ea0x; so ea 2 eA (x) :
Now we take ea 2 eA (x) n f0ng : Let  and � be positive numbers such that

W (x; ) � B (0n; �) : Let ftkg � T such that fatk 6= 0n, fatk ! ea; and fbtk ! ea0x:
Multiplying by x and by �1 both sequences, and summing up them, we get�fatk 0x� fbtk� ! 0: W.l.o.g. we may assume that fatk 0x � fbtk <  for all k; so

that a0tkx� btk <  katkk ; so (2.1) gives atk 2W (x; ) � B (0n; �) ; for all k: Thus
we can assume, by passing to a subsequence if necessary, that fatkg is a convergent
sequence. Let atk ! a 2 Rn; in which case katkk ! kak and so a = kakea because
atk
katkk

= fatk ! ea:
From

btk
katkk

= fbtk ! ea0x we get that btk ! kakea0x: Hence, a = kakea 2
A (x) : �

Remark 1. Notice that 0n 2 eA (x) implies that 0n 2 A (x) ; while the converse
does not hold.

Example 5. If � =
�
t2x � �t; t = 1; 2; : : :

	
; then D =

��
t2;�t

�
; t = 1; 2; : : :

	
=

clD and eD =
��
1;�t�1

�
; t = 1; 2; : : :

	
; cl eD = eD [ f(1; 0)g : Now, for x = 0 2

F = R+; we have A (x) = ; and eA (x) = f1g ; so that coneA (x) 6= cone eA (x) : The
reason is that � is not LUB at x: Observe that cl feat : t 2 T (x)g = ;  eA (x) :
In general, the SS property is neither transmitted from � to e� nor from e� to

�: In fact, � = f�1 � tx � 1; t 2 Ng ; which is not LUB at its unique solution
satis�es the SS condition whereas e� = �

� 1
t � x �

1
t ; t 2 N

	
does not (the same

happens in Example 7, where the given system is highly stable whereas its nor-
malized system is unstable). Analogously, the SS condition fails at the UB system
� =

�
tx � �t2; t 2 ]0; 1]

	
whereas e� is SS.

Lemma 2. Let � be LUB at some feasible point. If � is SS, then e� is SS.
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Proof: Let x; bx 2 F and let ; �; " be positive scalars such that W (x; ) �
B (0n; �) and a0tbx � bt + " for all t 2 T: We shall prove that y := x+bx

2 is an SS
point for e�: We discuss two possible cases for t 2 T such that at 6= 0n (the case
at = 0n is trivial).
If a0tx� bt �  katk ; then eat0x � ebt +  and eat0bx � ebt; so that
(3.1) eat0y � ebt + 

2
:

Alternatively, if a0tx � bt <  katk ; then at 2 W (x; ) and so katk�1 � 1
� : Since

a0tx � bt and a0tbx � bt + "; we have
(3.2) eat0y � ebt + "

2 katk
� ebt + "

2�
:

Combining (3.1) and (3.2) we get the aimed conclusion. �
The next result expresses the polar of the feasible directions cone at a point

x 2 F; D (F ;x)
0
; in terms of A (x) : This expression will play a crucial role in

Section 5 as far as x is an optimal solution of P if and only if c 2 D (F ;x)0 ; and
it is a strongly unique optimal solution if and only if c 2 intD (F ;x)

0
: Notice

that coneA (x) is always a subset of D (F; x)0 ; which follows immediately from the
de�nition of A (x).

Proposition 3. If � is SS and LUB at x, then 0n =2 convA (x) ; and coneA (x) =
D (F; x)

0 is pointed.

Proof: We show the �rst statement assuming the contrary, i.e., that 0n 2
convA (x) : Let d1; :::; dm 2 A (x) and non-negative scalars �1; :::; �m such thatXm

i=1
�idi = 0n and

Xm

i=1
�i = 1: For each i = 1; :::;m there exists a sequence

ftri g
1
r=1 � T such that

(3.3)
�

di
d0ix

�
= lim

r

�
atri
btri

�
:

Let bx 2 F and " > 0 be such that a0tbx � bt + " for all t 2 T . Multiplying by
(bx;�1) both members of (3.3) we get d0i (bx� x) = limr �a0tri bx� btri � � "; whereas
0 =

Xm

i=1
�id

0
i (bx� x) �Xm

i=1
�i" = ": This is a contradiction.

Now, since the normalized system e� is UB and SS, by Lemma 2, cone eA (x) is closed
and pointed ([11, Lemma 2.6(c)]) and coneA (x) = D (F; x)0 ([8, Proposition 5.4]).
The conclusion follows from Lemma 1. �

Proposition 4. If x is an SS element of �; then A (x) = ;: The converse statement
holds if � is LUB at x:

Proof: Assume that a0tx � bt + " for some positive " and for all t 2 T . Then,
there is no sequence f(atr ; btr )g such that limr atr = a satis�es that a0x = limr btr ;
so A (x) = ;:
Now suppose that � is LUB at x and A (x) = ;: Then e� is a UB system witheA (x) = ; by Lemma 1 and Remark 1. Thus x is an SS point of e�; by [11, Lemma
2.6(a)], but we cannot conclude that x is an SS point of �: So, we will consider the
following new re-scaling of �: Put�bat; bbt� = � katk�1 (at; bt) ; if katk > 1;

(at; bt) ; otherwise,
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and consider the new UB system b� = nbat0x � bbt; t 2 To : Clearly bF = F and any

SS point of b� is also an SS point of �: Moreover, bA (x) = ;; in fact assume thatbA (x) 6= ; and let u 2 bA (x) : Then, there exists a sequence fatkg such that catk ! u

and cbtk ! u0x: Now, if katkk > 1 for in�nitely many k0s, then u 2 eA (x) = ;, which
is a contradiction; if katkk � 1 for in�nitely many k0s, then u 2 A (x) = ;, another
contradiction. Thus bA (x) = ;; and hence [11, Lemma 2.6(a)] applies again to give
that x is an SS point of b�. Therefore, x is also SS for �. �

4. Geometric applications

The following example shows a variety of possibilities that we have to deal with in
the semi-in�nite setting, even for a system that satis�es the strong Slater condition.

Example 6. Consider � = f(2� k)x1 + (1� 2k)x2 � 1� k; k 2 Ng : Then � is
SS, and we have F =

n�
x1
x2

�
: x2 � x1; x2 � 1

2 �
1
2x1

o
: Observe that for  > 0;

x1 2 bdF :
�
1=3
1=3

�
W
�
x1; 

�
= A

�
x1
�
:
n�

2�k
1�2k

�
: k 2 N

o
coneA

�
x1
�

:
n�

x1
x2

�
: x2 � 1

2x1; x2 < 2x1

o
[ f02g

D
�
F; x1

�0
:
n�

x1
x2

�
: x2 � �x1; x2 � 2x1

o
;

x2 2 bdF :
�
1
0

�
W
�
x2; 

�
:
n�

2�k
1�2k

�
: k 2 N large enough

o
A
�
x2
�

: ;
coneA

�
x2
�
: f02g

D
�
F; x2

�0
:
n� �x

�2x
�
: x � 0

o
;

and

x3 2 bdF : 02
W
�
x3; 

�
= A

�
x3
�

:
�
1
�1
�

coneA
�
x3
�
= D

�
F; x3

�0
:
n�

x
�x
�
: x � 0

o
;

for  > 0 small enough (exactly,  < inf
�

k�1p
(2�k)2+(1�2k)2

; k 2 N
�
) .

Notice that � is not UB, but it is LUB at x3: Furthermore, the interior of F is not
the set of (strong) Slater points; actually any boundary point of the form

�
s; 12 �

1
2s
�

is SS for s > 1
3 : This is the case of x

1 and x2: Moreover, x1 2 bdF and F is a full
dimensional polyhedral convex set although A

�
x1
�
is not compact and coneA

�
x1
�

is not even closed; � is not LUB at x1.

The LUB condition is related to the full dimensionality of F as the following
proposition shows.

Proposition 5. If dimF = n; then � is LUB at some feasible point. Conversely,
if � is SS and LUB at some feasible point, then dimF = n:

Proof: Taking x and  > 0 such that B (x; ) � F we have W (x; ) � f0ng :
Conversely, let � be SS and LUB at x 2 F: By Lemma 2, the normalized system e�
is SS, which gives that intF 6= ; by Propositions 1 and 2 (i). Therefore dimF = n.
�
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In general, it is not easy to classify a given x 2 F as interior or boundary point
(specially when the SS condition fails). We have seen in Proposition 1 that, if � is
SS and dimF = n; then

intF = fx 2 Rn : f (x) < 0g =
�
x 2 Rn : inf

t2T
( a0tx� bt) > 0

�
:

The system � =
�
x � �1

t ; t 2 N
	
shows that we can have

intF 6= fx 2 Rn : a0tx > bt; t 2 Tg

even though dimF = n and � is UB and SS (0 2 bdF is a Slater point of �).
Proposition 1 shows that the �niteness of the supremum function f is a su¢ cient
condition to assure that any SS element is an interior point, and vice versa. This is
also the case for UB systems, which can be seen by a straightforward calculation,
or by an application of Proposition 2 (i) combined with the mentioned Proposition
1. Example 6 shows that we can not replace the UB condition by the LUB one.
Obviously, another su¢ cient condition for x 2 F to be an interior point of F is
that x is an SS point of e�:
The next result provides two necessary conditions for a feasible point to be a

boundary point of F: These two conditions extend [8, Proposition 5.1] and [11,
Lemma 2.6(a)] from UB to systems which are LUB at some feasible point, respec-
tively; the second one eliminates the unnecessary assumption that � is SS. We will
make use of the following double inclusion ([8, Lemma 5.2]):

(4.1) A (x)� f0ng �
\
>0

clW (x; ) � A (x) for all x 2 F:

Proposition 6. If � is LUB at x 2 bdF; then
T
>0

clW (x; ) 6= ; and A (x) is a

nonempty compact set.

Proof: Since the normalized system e� is UB at x 2 bdF; Proposition 5.1 in [8]
gives the existence of u 2

T
>0

clfW (x; ) : In the case that u = 0n, we necessarily

have that 0n 2 fW (x; ) for all  > 0; which only occurs when 0n 2W (x; ) for all
 > 0; thus 0n 2

T
>0

clW (x; ) � A (x) ; by (4.1). Then,
T
>0

clW (x; ) 6= ; and

A (x) 6= ;: Suppose now that u 6= 0n: From (4.1) applied to e�, we get that\
>0

clfW (x; ) � eA (x) ;
so 0n 6= u 2 eA (x) : From Lemma 1, it follows that A (x)� f0ng 6= ;: Finally, (4.1)
gives that

; 6= A (x)� f0ng �
\
>0

clW (x; ) ;

which, together with the LUB property of � at x; implies that A (x) is bounded, so
it is compact because it is always a closed subset of Rn: �

Proposition 3 provides assumptions under which D (F; x)0 can be replaced with
coneA (x) ; which depends on the data (instead of depending on the usually un-
known set F ). This allows us to obtain geometric information on F ; for instance, a
necessary condition for F being quasipolyhedral (i.e., the non-empty intersections
of F with polytopes are polytopes).

Proposition 7. Let � be SS and suppose that it is LUB at x 2 F: Then, a necessary
condition for F to be quasipolyhedral is that coneA (x) is polyhedral.
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Proof: Proposition 3 gives the equality coneA (x) = D (F; x)0 : If F is quasipoly-
hedral, then D (F; x)0 is polyhedral; so coneA (x) must be polyhedral. �

5. Applications to optimality conditions and stability

The next two results provide optimality and strongly unique optimality tests of
Karush-Kuhn-Tucker type. The �rst one shows that the combination of the SS and
the LUB properties provides a constraint quali�cation in LSIP.

Theorem 1. Let x 2 F: If c 2 coneA (x) ; then x 2 F �: The converse statement
holds if � is SS, and LUB at x:

Proof: The direct statement is [8, Corollary 5.5].
Now, assuming that � is SS and LUB at x; according to Proposition 3, x is an

optimal solution of P if and only if c 2 D (F; x)0 = coneA (x) : �

Taking c = (�1;�2) and the SS (but not UB) system � in Example 6, we have
x1; x2 2 F � despite of c =2 coneA

�
xi
�
(which coincides here with the ordinary

active cone at xi), i = 1; 2: Thus, the local boundedness of � at the checked point
is essential for the above optimality test. Concerning x3; where � is LUB, c =2
coneA

�
x3
�
entails x3 =2 F �:

Theorem 2. Let x 2 F: If c 2 int coneA (x) ; then x is a strongly unique optimal
solution of P: The converse statement holds if � is SS, and LUB at x:

Proof: It is similar to the previous one. �

Theorem 2 has potential application in the context of parametric LSIP, where it
is assumed that all the data in the given problem P; i.e., the triple � = (a; b; c) that
we identify with P from now on, can be perturbed. We associate with � the set �
(called space of parameters) of all the similar problems (i.e., LSIP problems with n
decision variables and index set T ) obtained through arbitrary perturbations of the
data of bounded size. We consider � equipped with the pseudometric of the uniform
convergence, i.e., given two parameters �1 =

�
a1; b1; c1

�
and �2 =

�
a2; b2; c2

�
;

(5.1) d (�1; �2) := max

�c1 � c2 ; supt2T �a1tb1t
�
�
�
a2t
b2t

�� ;
we use the same symbol to mark a perturbation of the nominal problem � and
its associated objects (for instance, W1 (x; ) and A1 (x) denote the set of -active
constraints and the implicit active set at x 2 F1 relative to �1 2 �; respectively).
We say that an LSIP problem � is UB (or LUB at some feasible point) if its
constraint system is so. It is easy to see that the subspace of UB problems form
an open and closed subset of �: It has been proved (in [10]) that the subset of UB
problems with strongly unique optimal solution contains an open and dense subset
of the subspace of UB problems. This generic result does not hold for the class of
problems which are LUB at some point, but we shall show (in Theorem 3 below)
that it is possible to identify open subsets of � formed by problems with strongly
unique optimal solution. Unfortunately, re-scaling here is of limited use because
a small perturbation of a particular constraint of � with small coe¢ cients could
provoke a large perturbation in the equivalent system.
As a corollary of the next lemma we obtain that the LUB property at some

point is stable in the following sense: If � is LUB at x 2 F; then there are open
neighborhoods V of � and U of x, such that �1 is LUB at x1; for any �1 2 V and
any x1 2 U \ F1.
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Lemma 3. Let � = (a; b; c) ; x 2 Rn; and  > 0 be such that W (x; ) is bounded.
Then there exists an open neighborhood V of � such that the sets W1(z;


3 ) are

uniformly bounded for any �1 2 V and z 2 B(x; 3 ):

Proof: Suppose the contrary. Then there exist sequences f�kg ; fzkg ; and
�
aktk
	

such that �k ! �; zk 2 B(x; 3 ) and a
k
tk
2 Wk(zk;


3 ) such that

aktk > k; k =

1; 2; ::: : For every k 2 N; we can �nd yk 2 B(zk; 3 ) � B(x;
2
3 ) such that

�
aktk
�0
yk =

bktk : Since fykg is a bounded sequence, we may assume without loss of generality
that yk ! y 2 clB(x; 23 ) and d (�k; �) <

1
k ; k = 1; 2; ::: :

For k = 1; 2; :::; we haveaktk� katkk � ��aktk� katkk�� < 1

k
;

whereby

katkk �
aktk� 1

k
> k � 1

k
:

Let k 2 N; k > 1: Then,��a0tkyk � btk �� �
����atk � aktk�0 yk���+ ��bktk � btk ��

<
atk � aktk kykk+ 1

k

<
1

k
(kykk+ 1):

Choose "k such that a0tkyk � btk = �"k katkk ; then

j"kj =
����a0tkyk � btkkatkk

���� < 1
k (kykk+ 1)
k � 1

k

=
kykk+ 1
k2 � 1 :

From the above inequality, for k su¢ ciently large, we obtain

j"kj <


3
:

In that case, yk + "k
atk
katkk

2 B(x; ); because kyk � xk � 2
3 : Moreover,

a0tk

�
yk + "k

atk
katkk

�
= a0tkyk + "k katkk = btk ;

so atk 2 W (x; ) (a bounded set). This contradicts katkk > k � 1
k for all k 2 N:

�

We consider the following sets of parameters:

�S = f� 2 � : � has an optimal solutiong ;
�SU = f� 2 � : � has a strongly unique optimal solutiong :
According to [7, Theorem 3.1], if the constraint system of a problem � is SS,

then it is stable with respect to consistency, i.e., there is some neighborhood of �
such that any of the problems in that neighborhood is consistent. Other stability
properties are related to the set-valued optimal mapping F� : �� Rn that assigns
to each problem �1 its optimal solution set, F �1 , and to the set-valued mapping of
implicit constraints A : � � Rn ! Rn; such that A (�1; x) is the set de�ned as
in (1.3) for all x 2 Rn; with D1 as in (1.4); this mapping is totally di¤erent to
the so-called active set mapping from Rn to Rn considered in [5], which consists
of the intersection of the convex cone generated by the ordinary active constraints
with the unit sphere, with �xed data. The following continuity concepts are due
to Bouligand and Kuratowski (see [1] or [2] for a general setting). F� is said to
be lower semicontinuous at � 2 � (lsc in brief) if, for each open set U � Rn
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such that U \ F� (�) 6= ;, there exists an open neighborhood V � � of �, such
that U \ F� (�1) 6= ; for each �1 2 V . F� is upper semicontinuous at � 2 �
(usc in brief) if, for each open set U � Rn such that F� (�) � U , there exists an
open neighborhood V � � of �, such that F� (�1) � U for each �1 2 V . F� is
continuous at � 2 � if it is lsc and usc � 2 �. Finally, F� is closed at � 2 domF� if
for any sequences f�kg � Rn and fxkg � Rn satisfying xk 2 F�(�k) for all k 2 N;
limk �k = �; and limk xk = x; one has x 2 F�(�). It is well known that F� is
usc at � 2 domF� whenever F� is closed and uniformly bounded at � (i.e., there
exists a bounded set C � Rn such that F� (�1) � C for any �1 su¢ ciently close to
�). Similar de�nitions and properties take place for the mapping A to be lsc, usc,
continuous, closed, or uniformly bounded at (�; x) ; where we consider the product
topology on �� Rn.
We state the following proposition for further reference (its proof can be found

in [6, Theorem 10.4]).

Proposition 8. Let � 2 �S and assume that � is SS.
(i) If F � is a bounded set, then F� is usc at �:
(ii) If F � is a singleton, then F� is lsc at �:
Proposition 9. A is closed at any (�; x) 2 �� Rn:
Proof: Let us take an arbitrary (�; x) and sequences f(�k; xk)g � � � Rn and

fakg � Rn such that ak 2 A (�k; xk) for all k 2 N; (�k; xk)! (�; x) ; and ak ! a:
From the de�nition of the mapping A, for each k 2 N; we can �nd tk 2 T such thatak � aktk < 1

k
and

����aktk�0 xk � bktk ��� < 1

k
:

Let us �x " > 0 and k0 2 N such that kak � ak < "; 1k < "; and d(�k; �) < " for
every k � k0: Then a� aktk � ka� akk+ ak � aktk < 2";
and

ka� atkk �
aktk � a+ atk � aktk < 3";

for k � k0. Thus atk ! a: Moreover,

a0tkx� btk = a
0
tk
(x� xk) +

�
atk � aktk

�0
xk +

�
aktk
�0
xk � bktk + b

k
tk
� btk ! 0:

Hence
a0x = limk a

0
tk
x = limk btk :

Therefore a 2 A (�; x) ; which proves the proposition. �

Proposition 10. Let � 2 � be LUB at x 2 F: Then A is usc at (�; x) :

Proof: Let  > 0 be such that W (x; ) is bounded. By Lemma 3, there exist
an open set V � � and a bounded closed set C � Rn such that � 2 V; and
W1(x;


3 ) � C for any �1 2 V and x 2 B(x; 3 ): From (4.1),

A (�1; x) = A1 (x) �
\
0>0

clW1 (x; 
0) [ f0ng � clW1(x;



3
) [ f0ng � C [ f0ng ;

for all (�1; x) ; �1 2 V; x 2 B(x; 3 ). So, A is uniformly bounded at (�; x) : This
together with the closedness of A at (�; x) established in Proposition 9 above proves
that A is usc at (�; x) : �
De�nition. � 2 � satis�es the Extended Nürnberger (EN in brief) condition at
x 2 F if there exists

�
d1; :::; dn

	
� A (x) such that c 2 cone

�
d1; :::; dn

	
and c 2

int cone fd1; :::; dng for any set fd1; :::; dng � A (x) such that c 2 cone fd1; :::; dng :
We say that � 2 � satis�es the Extended Nürnberger condition if � satis�es this
condition at some x 2 F .
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Proposition 11. If � satis�es the Extended Nürnberger condition at some point x
of F; then � 2 �SU and F � = fxg. If in addition � is SS, then F� is continuous
at � and � 2 int�S :

Proof: The fact that A (x) � D (F; x)
0, under the EN condition, implies that

� 2 �SU and F � = fxg : Moreover, if � is SS, Proposition 8 gives the continuity of
F� at �; so for any " > 0 there is some � > 0 such that ; 6= F �1 � B (x; ") whenever
d (�; �1) < �. Thus � 2 int�S . �

The following theorem gives conditions for � 2 int�SU ; involving the SS condi-
tion, the EN condition, and the LUB property.

Theorem 3. Let � be SS. If � 2 � satis�es the Extended Nürnberger condition at
x 2 bdF and � is LUB at x; then � 2 int�SU : The converse statement holds if �
is LUB at the unique solution x 2 F �:

Proof: Since � is SS, the problem � is stable with respect to consistency. Assume
that � 2 � satis�es the EN condition at x 2 bdF and � is LUB at x: Let us
suppose that � =2 int�SU : By the previous result � 2 int�S ; therefore there exists
a sequence f�kg � �Sn�SU such that �k ! �: We may also assume that there is
a sequence fxkg such that xk 2 F �k ; xk ! x (see Proposition 11 and its proof), and
each �k is LUB at xk; k 2 N. Let Ak (xk) := A (�k; xk) denote the set of implicit
active constraints of �k at xk; k 2 N; similarly A (�x) := A (�; �x) : From Theorem
1, for a given k 2 N and xk 2 F �k there exist M � n; �ik > 0 and aik 2 Ak (xk) ;
i = 1; :::;M such that the vectors aik; i = 1; :::;M are linearly independent and

(5.2) ck =
MX
i=1

�ika
i
k:

Taking into account that �k 2 �Sn�SU ; we get M < n: Without loss of generality,
we may assume that for each k 2 N we have the sameM 2 N: Since the mapping of
implicit constraints A is usc at (�; x) ; whereby aik ! ai 2 A (x) ; i = 1; :::;M: We
shall prove that the sequences

�
�ik
	
k�1 ; i = 1; :::;M are bounded. Let us assume

the contrary and take the sequence �k =
PM

i=1 �
i
k !1: If in the equality (5.2) we

divide by �k and take limit for k ! 1; we obtain (by passing to a subsequence if
necessary)

0n =

MX
i=1

�iai;

where
PM

i=1 �
i = 1; so 0n 2 convA (x) : Proposition 3, provides a contradiction.

So we may assume w.l.o.g. that each sequence
�
�ik
	
k
converges, say �ik ! �i;

i = 1; :::;M . Hence c =
PM

i=1 �iai with M < n; which means that � does not
satisfy the EN condition at x: This is a contradiction.
For the converse, let us suppose that � 2 int�SU and � is LUB at the unique
solution x 2 F �: Let  > 0 be such that R := sup fkatk : at 2W (x; )g < 1:
There exist M � n; �i > 0 and ai 2 A (x) ; i = 1; :::;M; such that the vectors ai;
i = 1; :::;M; are linearly independent and

c =
MX
i=1

�iai:

Here

ai = lim
r
atir and a0ix = lim

r
btir ,
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for some sequences
n�
a0tir
; btir

�o
r�1

; i = 1; :::;M . Assume that M < n: So,

there exists a non null vector u 2 Rn such that kuk = 1 and a0iu = 0; and
hence limr a0tiru = a0iu = 0; i = 1; :::;M: We shall construct a sequence f�kg ;
�k =

�
ak; bk; ck

�
; such that �k ! �; and x and x � 1

ku 2 F
�
k , for k 2 N large

enough. For each k 2 N we de�ne

akt := at; t 2 T; and ck := c;

bkt =

�
bt � 1

k ja
0
tuj ; t 2 ft 2 T : at 2W (x; )g ;

bt; otherwise.

Then

d (�k; �) = sup
t2T

���bkt � bt��	 = sup
t2ft2T :at2W (x;)g

1

k
ja0tuj �

1

k
R kuk = R

k
;

whereby �k ! �: From the de�nition of bkt ; and recalling that whenever at =2
W (�x; ), we have that a0ty � bt; for all y 2 B (�x; ), for k 2 N large enough and for
any t 2 T;

a0tx � bt � bt �
1

k
ja0tuj ; and

a0t

�
x� 1

k
u

�
� bt �

1

k
ja0tuj ;

therefore x and x� 1
ku 2 Fk; k 2 N large enough.

We have that, for each i = 1; :::;M;

a0ix = lim
r
btir = limr

bktir and

a0i

�
x� 1

k
u

�
= lim

r

�
a0tirx�

1

k
a0tiru

�
= lim

r
btir = limk

bktir :

These facts imply that for every k 2 N large enough, ai is in Ak (x) and in
Ak
�
x� 1

ku
�
; i = 1; :::;M; hence x and x � 1

ku 2 F
�
k ; which contradicts the fact

that � 2 int�SU : Therefore M = n: �

The following example shows that there are problems � 2 int�SU which are not
LUB at the strongly unique optimal solution.

Example 7. Let n = 2; and let T be the set of non-null integers. Consider the
following problem:

P :

8<: Inf x1 + x2
s.t. �kx1 � �1; k = �1;�2; : : : ;

kx2 � �1; k = 1; 2; : : : :

Then F = R2+; F � = f02g ; and W (02; ) is unbounded for all  > 0: The set of
active implicit constraints at �x = 02 is empty. Nonetheless, � 2 int�SU because
�x = 02 is a strongly unique optimal solution of �; and there is an open neighborhood
of � where the feasible set remains constant. Notice that this problem does not ful�ll
the EN condition at �x = 02:
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