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Abstract

Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed
as the (Minkowski) sum of a polytope and a polyhedral convex cone. This paper
provides �ve characterizations of the larger class of closed convex sets in �nite di-
mensional Euclidean spaces which are the sum of a compact convex set with a
closed convex cone. These characterizations involve di¤erent types of representa-
tions of closed convex sets as the support functions, dual cones and linear systems
whose relationships are also analyzed in the paper. The obtaining of information
about a given closed convex set F and the parametric linear optimization problem
with feasible set F from each of its di¤erent representations, including the Motzkin
decomposition, is also discussed.
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1 Introduction

We say that a set F � Rn is decomposable in Motzkin�s sense (M-decomposable
in short) if there exist a compact convex set C and a closed convex cone D
such that F = C + D: Then we say that C + D is a Motzkin representation
(or decomposition) of F with compact and conic components C and D; re-
spectively. A Motzkin representation of F is minimal whenever its compact
component is the smallest possible. Examples of M-decomposable sets are the
compact convex sets, the closed convex cones, the polyhedral convex sets, and
the sums of compact convex sets with linear subspaces. According to Klee rep-
resentation theorem [13], a su¢ cient condition for a nonempty closed convex
set to be M-decomposable is the boundedness of the set of extreme points of
the intersection of F with the orthogonal subspace to the lineality space of
F . The convex subsets of M-decomposable sets are related to inner aperture
cones and barrier cones (see [2] and [3], where they are called hyperbolic sets).
The M-decomposable sets with conic component Rn� have been used in game
theory under the name of compactly generated and comprehensive [14].

Motzkin decomposition can be seen as a new kind of representation for an im-
portant class of closed convex sets. The characterizations of M-decomposable
sets provided in this paper involve other well-known types of representations,
as indicator and support functions (see, e.g., [17] and [10]), and other less
popular, as linear inequality systems and dual cones, we recall now brie�y.

By the separation theorem, any closed convex set F � Rn; ; 6= F 6= Rn; is the
intersection of closed halfspaces. Thus F is the solution set of systems of the
form

� = fa0tx � bt; t 2 Tg ;
where T is a (possibly in�nite) set, at = (at1; :::; atn) 2 Rn and bt 2 R for all
t 2 T: Then � is said to be a linear representation of F: Any closed convex set
admits in�nitely many linear representations. One says that � is an ordinary
linear system if T is �nite and it is a linear semi-in�nite system (an LSIS in
short) otherwise. LSISs have been studied from the point of view of existence
of solutions, redundancy, and the geometry of F (see, e.g., [9], [11], [7], and
references therein).

The conic representation of a nonempty closed convex set F is

K (F ) :=
n
(a; b) 2 Rn+1 : a0x � b for all x 2 F

o
:

Since any linear representation of F is a subsystem of fa0x � b; (a; b) 2 K (F )g ;
and this is also a linear representation of F by the separation theorem, this
system is called the maximal linear representation of F: The conic representa-
tions (also called reference cones or dual cones) provide dual formulations for
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the inclusion of closed convex sets (see, e.g., the approach to the set contain-
ment problem in [12]). Di¤erent families of nonempty closed convex sets have
been characterized ([9], [8]) in terms of the geometric properties of their conic
representations: F is polyhedral if and only if K (F ) is also polyhedral, it is
compact if and only if (0n;�1) 2 intK (F ), and it is the sum of a compact
convex set with a linear subspace if and only if (0n;�1) 2 rintK (F ) (here 0n
denotes the zero vector in Rn whereas intK (F ) and rintK (F ) stand for the
interior and the relative interior of K (F ) ; respectively).

The M-decomposable sets can be also characterized by means of the following
parametric optimization problem:

P (c) : Minx2F c0x;

with parameter c 2 Rn: If F is the solution set of a given LSIS, then P (c)
is a linear semi-in�nite programming (LSIP) problem with feasible set F: We
represent by F � (c) and v (c) the optimal set and the optimal value of P (c) ;
respectively. LSIP problems arise frequently in economics, game theory, ro-
bust statistics, functional approximation, machine learning, etc. (see, e.g., the
survey paper [5]). Observe that, if F is an M-decomposable set, then P (c) is
either solvable (i.e., F � (c) 6= ;) or unbounded (v (c) = �1) for all c 2 Rn:

Each of the next sections is devoted to a di¤erent type of representation, an-
alyzing the way they can be obtained and how they can be exploited in order
to get information on F and P (c) : More in detail, Section 2 provides linear
representations of F from certain families of supporting halfspaces and ex-
tends to closed convex sets the Fourier�s elimination theorem, whose classical
version (see [18] and references therein) provides linear representations of the
projections of a given polyhedral convex set onto the coordinate hyperplanes.
Section 3 analyzes conic representations of closed convex sets, providing char-
acterizations of closed convex cones and formulae for the conic representation
of intersections and sums of closed convex sets. Finally, Section 4 character-
izes the M-decomposable sets in �ve di¤erent ways and yields formulae for the
e¤ective computation of a compact component of a given M-decomposable
set. The simplest formula derives from the constructive proof of a general-
ization of the classical decomposition theorem for polyhedral convex sets due
to Motzkin [15] whereas another one, which involves a certain Pareto set,
provides the minimal Motzkin representation.

Throughout the paper we use the following notation. The scalar product
of x; y 2 Rp is denoted by either x0y or hx; yi whereas kxk denotes the
Euclidean norm of x: For any set X � Rp; we denote by clX, bdX; and
convX, the closure, the boundary, and the convex hull of X; respectively.
The convex conical hull of X [ f0pg is denoted by coneX: If X 6= ;; we
denote by a�X and spanX the a¢ ne hull and the linear hull of X; re-
spectively. The orthogonal complement of a linear subspace X is X? :=
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fy 2 Rp : x0y = 0 for all x 2 Xg and the positive polar of a convex cone X is
X� := fy 2 Rp : x0y � 0 for all x 2 Xg : IfX is a convex set, 0+X and linX :=
(0+X) \ (�0+X) denote the recession cone and the lineality space of X; re-
spectively, whereas B (X) := fy 2 Rp : 9� 2 R such that x0y � � 8x 2 Xg is
the barrier cone of X: A boundary point x of a closed convex set X is called
smooth when there exists a unique supporting hyperplane to X at x:

Linear mappings and matrices are denoted in the same way. Given a linear
mapping A; its adjoint mapping is denoted byA�:

Given x = (x1; :::; xp) we denote by bx the result of eliminating the last com-
ponent, i.e., bx = (x1; :::; xp�1) : We identify bx with the orthogonal projection
of x 2 Rp onto the hyperplane xp = 0; say (bx; 0) : Coherently, we identifycX = fbx : x 2 Xg with the orthogonal projection of X onto xp = 0:

Given h : Rp �! R[f+1g ; we denote by domh; gphh; and epih its domain,
its graph and its epigraph, whereas rh (x) and @h (x) denote the gradient and
the convex subdi¤erential of h at x 2 domh: The conjugate of h is the function
h� : Rp �! R [ f+1g such that h�(u) := supfhu; xi � h(x) : x 2 domhg:

X � Rp is represented in a unique way by its indicator function

�X (x) :=

8><>: 0; if x 2 X

+1; otherwise.

The support function of X is ��X (y) = sup fhy; xi : x 2 Xg ; whose domain is
dom ��X = B (X) : If X is closed and convex, then B (X)� = � (0+X) (see,
e.g., [17, Corol. 14.2.1]) and ���X = �X : The latter equation implies the exis-
tence of a bijection between the nonempty closed convex sets and the lower
semicontinuous (lsc in short) proper convex functions which are positively
homogeneous.

2 Linear representations

Each nonempty closed convex set F admits a multiplicity of linear represen-
tations, all of them subsystems of the maximal linear representation of F;
fa0x � b; (a; b) 2 K (F )g ; but in general there is no minimal representation of
F; as the following example shows.

Example 1 f�(cos t)x1 � (sin t)x2 � �1; t 2 Tg; with T = [0; 2�] ; is a
linear representation of F = fx 2 R2 : kxk � 1g : It is easy to realize that
the subsystem f�(cos t)x1 � (sin t)x2 � �1; t 2 Sg; with S � T; is a linear
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representation of F if and only if S is dense in T: Since there is no minimal
dense subset of T; there is no minimal linear representation of F:

Nevertheless we can consider the problem of obtaining linear representations
of F which are small in some sense: In the case that P (c) is either solvable or
unbounded for all c 2 Rn (e.g., when F is M-decomposable), we can proceed
as follows: for each (a; b) 2 K (F ) such that kak = 1 and P (a) is solvable,
take a point x(a;b) 2 bdF such that a0x � a0x(a;b) for all x 2 F; so that a0x � b
is consequence of a0x � a0x(a;b): Thenn

a0x � a0x(a;b); (a; b) 2 T
o
; with T = f(a; b) 2 K (F ) : kak = 1g ;

is a linear representation of F: A system larger than the previous one is

fa0x � b; (a; b) 2 Sg ; with S := f(a; b) 2 T : a0x = b for some x 2 bdFg ;

which is a linear representation of F by means of supporting halfspaces at the
boundary points of F: In fact, according to [17, Theorem 18.8], the index set
S in the latter linear representation can be replaced with the smaller set

Q := f(a; b) 2 T : a0x = b for some x smooth point of Fg :

Next we prove this statement in a di¤erent way, combining a class of the
separation functional introduced in [1] to analyze the perturbation of convex
sets with a well-known result of di¤erential theory.

Proposition 2 Let F $ Rn be a closed convex set with nonempty interior
and let H be the family of all the supporting hyperplanes at smooth points of
F: Then every point in Rn�F can be strictly separated from F by a member
of H:

Proof. Let x0 2 Rn�F and pick bx 2 intF: Without loss of generality, we
assume that x0 = 0n and bx = (0n�1; 1) : We de�ne f : Rn�1 �! R[f+1g
by f (y) := min f� 2 R : (y; �) 2 Fg (with the convention min ; := +1):
We can easily check that f is convex. Consider the convex open set U :=
fy 2 Rn�1 : (y; 1) 2 intFg ; which is a neighborhood of the origin because
(0n�1; 1) 2 intF ; moreover, since f is bounded above by 1 on U; it is �nite-
valued on U and is therefore continuous on U: Thus, as f (0n�1) > 0; there
exists an open convex neighborhood V � U of 0n�1 on which f is strictly
positive. Let y 2 V:

Since (y; f (y)) 2 bdF; there exists a supporting hyperplane to F at (y; f (y)) ;
that is, there is a nonzero vector (x�; ��) 2 Rn�1 � R such that

hz � y; x�i+ (�� f (y))�� � 0 for all (z; �) 2 F:

One can easily prove that �� < 0; so that, without loss of generality, we take
�� = �1:With this choice, it turns out that x� 2 @f (y) ; conversely, for every
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x� 2 @f (y) the hyperplane through (y; f (y)) orthogonal to (x�;�1) supports
F: As f is �nite-valued on V; we have @f (0n�1) 6= ;; hence, given that

@f (0n�1) = conv flimkrf (yk) : fykg ! 0n�1; f is di¤erentiable at yk 8k

and frf (yk)g convergesg ;

by [17, Theorem 25.6], there exists a sequence of points yk ! 0n�1 at which f
is di¤erentiable such that rf (yk)! x� 2 @f (0n�1) : Since

0 < f (0n�1) = lim
k
(f (yk)� hyk;rf (yk)i) ;

for some k0 we have f (yk0) � hyk0 ;rf (yk0)i > 0: Consider the hyperplane
through (yk0 ; f (yk0)) with normal (rf (yk0) ;�1) : Since @f (yk0) = frf (yk0)g ;
in view of the above arguments this is the unique supporting hyperplane to F
at (yk0 ; f (yk0)) ; hence (yk0 ; f (yk0)) is a smooth point of F and therefore its
supporting hyperplane belongs to H: One has

hz � yk0 ;rf (yk0)i � (�� f (yk0)) � 0 for all (z; �) 2 F

and, on the contrary, this inequality does not hold for (z; �) = (0n�1; 0) : So
we conclude that this hyperplane separates x0 = 0n from F: �

Corollary 3 Let F � Rn be a closed convex set with nonempty interior and
H be a family of supporting hyperplanes of F such that at every point of bdF
there is a supporting hyperplane to F belonging to H: Then every point in
Rn�F can be strictly separated from F by a member of H:

Proof. This is an immediate consequence of Proposition 2. �

The linear representation of F provided by Proposition 2 is minimal when F
is polyhedral but not in general (recall Example 1). The examples in Section
4 illustrate the use of Proposition 2 in order to validate a given linear system
as a representation of some closed convex set F:

Fundamental results in LSIS and LSIP theories provide information on F and
P (c) from the data, a given linear representation of F; say � = fa0tx � bt; t 2 Tg ;
and c: For instance, it is well-known that the homogeneous system of �,
fa0tx � 0; t 2 Tg ; is a linear representation of 0+F and that F � (c) is a non-
empty compact set if and only if c 2 int cone fat; t 2 Tg (see, e.g., [9]).

To the authors�knowledge, the problem consisting of obtaining a linear rep-
resentation of the image of F by a linear mapping is not considered in the
existing literature. Observe that, if A : Rm �! Rn is a linear mapping, then
fa0tAy � bt; t 2 Tg is a linear representation of A�1 (F ) : Nevertheless, �nding
a representation of A (F ) is a di¢ cult task with some exceptions (e.g., if A
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is an automorphism in Rn, then fa0tA�1x � bt; t 2 Tg is a linear representa-
tion of A (F )). Observe that A (F ) is generally nonclosed even though F is
a cone (recall that, in that case, the Farkas Lemma in [4] establishes that
(A�1 (F ))

�
= A� (F �) if and only if A� (F �) is closed). The next result con-

siders a type of mapping which arises frequently in practice (e.g., in the next
two sections): the orthogonal projection onto a given hyperplane H; denoted
by projH : Rn �! Rn: Obviously, projH (x) = (x+ span fvg) \ H; where
v 2 Rn� f0ng is some vector orthogonal to H:

Proposition 4 Let � = fa0tx � bt; t 2 Tg be a linear representation of F 6= ;
and let v 2 Rn� f0ng be orthogonal to the hyperplane H: Then each of the
following conditions guarantees that projH (F ) is closed:
(i) fa0tv : t 2 Tg contains positive and negative elements.
(ii) a0tv = 0 for all t 2 T:
(iii) P (�v) is bounded.

Proof.We can assume that 0n 2 H: According to [17, Theorem 9.1], since the
kernel of projH is spanfvg; spanfvg \ (0+F ) � linF implies that projH (F ) is
closed.

(i) If fa0tv : t 2 Tg contains positive and negative elements, then neither a0tv �
0 for all t 2 T nor a0tv � 0 for all t 2 T; i.e, �v =2 0+F: Thus spanfvg\(0+F ) =
f0ng � linF:

(ii) a0tv = 0 for all t 2 T if and only if spanfvg � linF:

(iii) If there exist scalars � and � such that � � v0x � � for all x 2 F; then
�v =2 0+F: Hence (iii))(i). �

Obviously, if F is bounded, then condition (iii) holds. We consider now the
problem of determining projH (F ) when H is some coordinate hyperplane. In
the classical version of the elimination theorem, due to Fourier (1827), F is a
polyhedral convex set (see [18]). We can take H = fx 2 Rn : xn = 0g without
loss of generality (w.l.o.g. in brief), so that the problem consists of representingbF = projH (F ) : From now on en denotes the last vector of the canonical basis
of Rn:

We associate with � = fa0tx � bt; t 2 Tg the index sets

T+ := f t 2 T : atn > 0g ; T� := f t 2 T : atn < 0g ; T0 := f t 2 T : atn = 0g
(1)
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(which form a partition of T ), the vectors ct =
�
ct1; :::; ct(n�1)

�
2 Rn�1 such

that

ctk :=

8>><>>:
�atk
atn

; if t 2 T+ [ T�

�atk; ; if t 2 T0;

k = 1; :::; n� 1; and the scalars dt 2 R such that

dt :=

8>><>>:
bt
atn

; if t 2 T+ [ T�

bt; ; if t 2 T0:

Theorem 5 (Generalized Fourier�s Theorem) Let � = fa0tx � bt; t 2 Tg be a
linear representation of F 6= ;. Then bF is the solution set of the (reduced)
system b�; de�ned as follows:
(i) b� := n

(ct � cs)0 bx � ds � dt; (t; s) 2 T� � T+; c0tbx+ dt � 0; t 2 T0o ;
if T+ 6= ; 6= T�; i.e., �en =2 0+F:
(ii) b� := n

c0tbx+ dt � 0; t 2 T0; supt2T+ (c0tbx+ dt) < +1o
;

if T+ 6= ; = T�; i.e., en 2 0+F� linF:
(iii) b� := n

c0tbx+ dt � 0; t 2 T0; inft2T� (c0tbx+ dt) > �1o
;

if T+ = ; 6= T�; i.e., �en 2 0+F� linF:
(iv) b� := fc0tbx+ dt � 0; t 2 T0g ;
if T+ = ; = T�; i.e., en 2 linF:
Moreover, bF is closed in cases (i) and (iv), and also in cases (ii) and (iii)
provided the set f(ct; dt); t 2 T+ [ T�g is bounded.

Proof. We can write the inequality of index t 2 T in � as

atnxn � � ( bat)0 bx+ bt; (2)

that can reformulate (2) as follows:

xn� c0tbx+ dt; if t 2 T+; (3)
c0tbx+ dt�xn; if t 2 T�; (4)

0� c0tbx+ dt; if t 2 T0: (5)

By de�nition of b�; if (bx; xn) 2 F then bx is solution of b�: Now we discuss four
possible cases for the emptiness or not of T+ and T� :

(i) Since 0+F is the solution set of the homogeneous system of �; T+ 6= ; 6= T�
if and only if �en =2 0+F:
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If bx = (x1; :::; xn�1) is solution of b�; then there exist real numbers � and �
such that

� = inf
t2T�

fc0tbx+ dtg � sup
t2T+

fc0sbx+ dsg = �: (6)

It is obvious that (bx; xn) satis�es (3), (4) and (5) for any xn 2 [�; �], so that
it is a solution of (2) for all t 2 T , i.e., (bx; xn) 2 F: Thus bF is the solution
set of the reduced system b�: Since this is a linear system, bF is closed (also by
Proposition 4 (i)).

(ii) T+ 6= ; = T� if and only if en 2 0+F and �en =2 0+F if and only if
en 2 0+F� linF:

If bx = (x1; :::; xn�1) is a solution of b�; we can take some
xn � sup

t2T+
fc0tbx+ dtg :

Then (bx; xn) satis�es (3) and (5), so that (bx; xn) 2 F:
Now we assume that f(ct; dt); t 2 T+ [ T�g is bounded. Then, by the Cauchy-
Schwarz inequality, supt2T+ fc0tbx+ dtg < +1 for all bx 2 Rn�1; and bF is closed
because it is the solution set of a linear system.

(iii) The same argument as in (ii).

(iv) T+ = ; = T� if and only if �en 2 0+F if and only if en 2 linF: In this
case bx = (x1; :::; xn�1) is solution of b� if and only if (bx; xn) 2 F for all xn 2 R:
�

Let us discuss the latter statement in Theorem 5. First, observe that the
boundedness of f(ct; dt); t 2 T+ [ T�g depends on the given representation of
F: In fact, if F is a polyhedral convex set, any linear representation fa0tx � bt; t 2 Tg
such that jT j <1 satis�es this boundedness condition, which gets lost by re-
placing a single inequality a0tx � bt; with t 2 T+[T�; by the equivalent system
fa0tx � bt � s; s = 0; 1; :::g : In Example 1, since the partition of T is formed
by T+ =]�; 2�[; T� =]0; �[; and T0 = f0; �; 2�g; the reduced system of � is

�̂ =

8><>:
�
cos s
sin s

� cos t
sin t

�
x1 � 1

sin s
� 1

sin t
; (t; s) 2 T� � T+

(cos t)x1 � �1; t 2 T0

9>=>; ;
whose solution set bF = [�1; 1] is closed although f(ct; dt); t 2 T+ [ T�g is un-
bounded. Thus, the boundedness condition is not necessary for the closedness
of bF : Even more, the next example shows that the closedness of bF does not im-
ply the existence of some linear representation of F satisfying the boundedness
condition.
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Example 6 Let f : Rn �! R be any convex function not being Lipschitz
continuous. Since f is �nite-valued, the projection of epi f onto the hyperplane
y = 0 is the whole of Rn; so it is closed. Let us suppose that there exists a
linear representation

� = futx+ vty � wt; t 2 Tg

of epi f satisfying the boundedness condition. Obviously, T� = ; and we can
suppose w.l.o.g. that vt = 1 for all t 2 T+: Then � consists of some trivial
constraints of the type 0x + 0y � wt (with wt � 0), if T0 6= ;; and the linear
representations of the epigraphs of a family of a¢ ne minorants of f whose
pointwise supremum is f; that is,

sup
t2T+

fwt � u0txg = f (x) ; 8x 2 Rn:

By the boundedness of fut; t 2 Tg ; the family fwt � u0tx; t 2 Tg would consist
of a¢ ne functions with the same Lipschitz constant. Then f would be Lipschitz
continuous, which is not the case.

When F is bounded, as in Example 1, the variables can be eliminated in any
order, the successive projections on intersections of coordinate hyperplanes
being always obtained as in case (i). This provides an analytic method for the
feasibility problem in LSISs with bounded solution set.

3 Conic representations

Let F be the solution set of � = fa0tx � bt; t 2 Tg : The characteristic cone and
the �rst moment cone of � are cone f(at; bt) ; t 2 T ; (0n;�1)g and cone fat; t 2 Tg ;
respectively. For instance, the characteristic cone and the �rst moment cone
of the maximal linear representation of F are K (F ) and its vertical projection
\K (F ); respectively.

Two basic results on LSISs involve the closure of the characteristic cone: �rst,
� is consistent (i.e., F 6= ;) if and only if

(0n; 1) =2 cl cone f(at; bt) ; t 2 T ; (0n;�1)g

(existence theorem); and second, if F 6= ;; a linear inequality a0x � b is
consequence of � (i.e., a0x � b for all x 2 F ) if and only if

(a; b) 2 cl cone f(at; bt) ; t 2 T ; (0n;�1)g

(nonhomogeneous Farkas Lemma). From the latter result and the separation

10



theorem we get that the conic representation of F 6= ; is

K (F ) = cl cone f(at; bt) ; t 2 T ; (0n;�1)g :

This means that associating to each nonempty closed convex set its reference
cone, we have established a bijection between nonempty closed convex sets in
Rn and closed convex cones in Rn+1 containing (0n;�1) but not containing
(0n; 1) : Observe that (a; b) 2 K (F ) if and only if h(a; b) ; (x;�1)i � 0 8x 2 F:
Thus,

K (F ) = (cone (F � f�1g))� :

On the other hand, by de�nition of conic representation, given � > 0; K (�F ) =n
(a; b) :

�
a; b

�

�
2 K (F )

o
: Moreover, given two nonempty closed convex sets

F and G; F � G if and only if K (G) � K (F ) and F = G if and only if
K (G) = K (F ) : These statements are also consequence of the next result
together with well known properties of the support functions.

Proposition 7 Let F � Rn be a nonempty closed convex set. Then K (F ) =
� epi ��F :

Proof. Let F 6= ; be closed and convex. Since K (F ) provides the maximal
linear representation of F and fa0x � b; (a; b) 2 � epi ��Fg is another linear
representation of F because

x 2 F , �F (x) � 0

, hu; xi � ��F (u); 8u 2 dom ��F
, hu; xi � ��F (u) + �; 8u 2 dom ��F ; 8� 2 R+;

we have � epi ��F � K (F ) : Conversely, if (a; b) 2 K (F ) ; then �a0x � �b for
all x 2 F; i.e., ��F (�a) � �b: Thus � (a; b) 2 epi ��F : �

We have incidentally shown that fa0x � b; (a; b) 2 � gph ��Fg is another linear
representation of F: The next result provides information on F and P (c) from
K (F ) :

Proposition 8 Let F � Rn be a nonempty closed convex set. Then the fol-
lowing statements hold:
(i) Given x 2 Rn; x 2 F if and only if (x;�1) 2 K (F )� : Moreover, xn+1 � 0
for all (x; xn+1) 2 K (F )� :
(ii) F contains an extreme point if and only if int\K (F ) 6= ;:
(iii) B (F ) = �\K (F ) and 0+F =

�
\K (F )

��
:

(iv) a� F = fx 2 Rn : a0x = b for all (a; b) 2 linK (F )g :
(v) bdF =

[�
F � (c) : 0n 6= c 2 cl\K (F )

�
:

11



(vi) K (cl conv (F [G)) = K (F ) \K (G) for any closed convex set G:
(vii) If A : Rn �! Rm is a linear mapping such that AF is closed, then
K (AF ) = f(a; b) : (A�a; b) 2 K (F )g :
(viii) Given c 2 Rn and x� 2 F; x� 2 F � (c) if and only if (c; c0x�) 2 K (F ) :
(ix) If c 2 int\K (F ); then F � (c) 6= ;:

Proof. (i) x 2 F if and only a0x � b (i.e., h(a; b) ; (x;�1)i � 0); for all (a; b) 2
K (F ) if and only (x;�1) 2 K (F )� : On the other hand, since (0n;�1) 2
K (F ) ; h(0n;�1) ; (x; xn+1)i = �xn+1 � 0 for all (x; xn+1) 2 K (F )� :

(ii) F contains an extreme point if and only if linF = f0ng if and only if

span fa : (a; b) 2 K (F )g = span\K (F ) = Rn;

i.e., int\K (F ) 6= ;:

(iii) The orthogonal projection of both members of epi ��F = � K (F ) on

the hyperplane xn+1 = 0 yields B (F ) = �\K (F ) and, taking positive polars,
0+F =

�
\K (F )

��
:

(iv) Given (a; b) 2 Rn+1; a0x = b for all x 2 F if and only � (a; b) 2 K (F ) if
and only (a; b) 2 linK (F ) :

(v) Let x 2 bdF and c 2 Rn� f0ng be such that fx 2 Rn : c0x � c0xg is a
supporting halfspace to F at x; in which case x 2 F � (c) : Given d 2 0+F; since
x + d 2 F; c0 (x+ d) � c0x; i.e., c0d � 0: By (iii), c 2 [0+F ]� =

�
\K (F )

���
=

cl\K (F ): Thus

bdF �
[�

F � (c) : 0n 6= c 2 cl\K (F )
�
:

The reverse inclusion is trivial.

(vi) and (vii) are the result of combining Proposition 7 with Corollaries 16.3.1
and 16.5.1 in [17], respectively.

(viii) Let c 2 Rn and x� 2 F: Then x� 2 F � (c) if and only if c0x � c0x� for all
x 2 F; i.e., (c; c0x�) 2 K (F ) :

(ix) If c 2 int\K (F ) = int cone fa : (a; b) 2 K (F )g ; then F � (c) 6= ;: �

From statement (i) in Proposition 8 we conclude that, if F 6= ;; then K (F )�
is contained in the halfspace xn+1 � 0 but not in its boundary xn+1 = 0:

12



We consider now the characterization of closed convex cones in terms of its
conic representation. This characterization allows us to give conditions guar-
anteeing the dual equations K (F \G) = K (F ) + K (G) and K (F +G) =
K (F ) \K (G) :

Proposition 9 Let F � Rn be a nonempty closed convex set. Then the fol-
lowing statements are equivalent to each other:
(i) F is a cone.
(ii) K (F ) = F � � R�:
(iii) K (F ) = \K (F )� R�:
(iv) There exists a set D � Rn such that K (F ) = D � R�:

Proof. (i))(ii) Since F is a closed convex cone, Farkas Lemma for closed
convex cones yields

F = F �� = fx 2 Rn : y0x � 0 for all y 2 F �g ;

so that fy0x � 0; y 2 F �g is a linear representation of F andK (F ) = cl (F � � R�) =
F � � R�:

(ii))(iii))(iv) These implications are trivial.

(iv))(i) Let K (F ) = D � R�; with D � Rn: Let y 2 F and � > 0: Let
(a; b) 2 D�R�: Since b

�
2 R� and F is the solution set of its maximal linear

representation fa0x � b; (a; b) 2 D � R�g ; we have a0y � b
�
; i.e., a0 (�y) � b:

Thus �y 2 F: �

Theorem 10 Let F and G be nonempty closed convex sets in Rn: Then the
following statements are true:
(i) K (F ) +K (G) � K (F \G) : The equality holds if K (F )\ (�K (G)) is a
linear subspace of Rn+1:
(ii) If G is a cone, then

K (F +G) = K (F ) \ (G� � R) : (7)

Moreover, K (F +G) = K (F ) \K (G) if, additionally, F \ (�G) 6= ;:

Proof. (i) The aggregation of the maximal linear representations of F and
G gives a linear representation of F \G; with characteristic cone

cone (K (F ) [K (G)) = K (F ) +K (G) ;

so that
K (F \G) = cl [K (F ) +K (G)] (8)

and (i) holds.
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If K (F )\(�K (G)) is a linear subspace of Rn+1; then K (F )+K (G) is closed
convex cone [17, Corollary 9.1.3] and (8) becomesK (F \G) = K (F )+K (G) :

(ii) Assume that G is a cone. Given (a; b) 2 Rn+1;

(a; b) 2 K (F +G) , a0 (x+ y) � b 8x 2 F and 8y 2 G

, a0x � b 8x 2 F and a0y � 0 8y 2 G

, (a; b) 2 K (F ) and a 2 G�:

Thus, (16) holds.

By Proposition 9 and (7),

K (F )\K (G) = K (F )\ (G� � R�) � K (F )\ (G� � R) = K (F +G) : (9)

Let us prove the reverse inclusion when, additionally, F \ (�G) 6= ;. Let
(a; b) 2 K (F +G) : Obviously, (a; b) 2 K (F ) and a 2 G�: Since F \(�G) 6= ;
means that 0n 2 F + G; b � a00n = 0; so that (a; b) 2 G� � R� = K (G) ;
again by Proposition 9. Therefore, (a; b) 2 K (F ) \K (G) : �

Statement (i) in Theorem 10 is also a consequence of [6, Proposition 3.2]. The
next examples show that the additional assumptions in both statements of
Theorem 10 are not super�uous.

Example 11 Since the compact convex set

conv
n�
t; 1;�t2

�
; t 2 [�1; 1] ; (0; 0;�1)

o
does not contain the origin, its conic hull is a closed convex cone that does not
contain (0; 0; 1) : So, it is the reference cone of some nonempty closed convex
set F: Consider the closed convex cone G = R�R�; with K (G) = f0g �R2�:
Since

K (F ) +K (G) = cone
n�
t; 1;�t2

�
; t 2 [�1; 1] ; (0;�1; 0) ; (0; 0;�1)

o
is not closed, we cannot have K (F ) + K (G) = K (F \G) : Here K (F ) \
(�K (G)) = f0g � R+ � f0g is not a linear subspace of R3:

Example 12 Let F = f(1; 1)g and G = R2+: We have

K (F ) = cone f(1; 0; 1) ; (�1; 0;�1) ; (0; 1; 1) ; (0;�1;�1) ; (0; 0;�1)g ;

K (G) = cone f(1; 0; 0) ; (0; 1; 0) ; (0; 0;�1)g ;
and

K (F +G) = cone f(1; 0; 1) ; (0; 1; 1) ; (0; 0;�1)g ;
with K (G) = K (F ) \K (G)  K (F +G) : Obviously, F \ (�G) = ;:

14



4 Motzkin representations

First we establish some simple properties of the M-decomposable sets.

Proposition 13 Let F = C +D be a Motzkin representation of F: Then:
(i) K (F ) = K (C) \ (D� � R) :
(ii) a� F = a� C + spanD:
(iii) If A : Rn �! Rm is a linear mapping and D is polyhedral, then A (F ) =
A (C) + A (D) is a Motzkin representation of A (F ) :
(iv) F � (c) \ C 6= ; for each c 2 Rn such that v (c) > �1:

(v) v (c) =

8><>:min fc
0x : x 2 Cg ; if c 2 D�

�1; otherwise.
(vi) B (F ) = �D� and 0+F = D:

Proof. (i) It is Theorem 10 (ii).

(ii) By assumption, any x 2 a� F can be written as x =
mX
i=1

�ic
i +

mX
i=1

�id
i;

with
mX
i=1

�i = 1; ci 2 C; di 2 D; i = 1; :::;m: Since
mX
i=1

�ic
i 2 a� C and

mX
i=1

�id
i 2 spanD; we get a� F � a� C + spanD: The reverse inclusion is

trivial.

(iii) Under the assumptions, A (C) is a compact convex set and A (D) a poly-
hedral (and so closed) convex cone.

(iv) and (v) are immediate, whereas (vi) is a straightforward consequence of
(v). �

From (vi) it follows that the barrier cone of any M-decomposable set is closed,
but the converse statement is not true (consider the convex hull of a branch
of hyperbola). On the other hand, the M-decomposable sets in R2 have no
asymptotes (a hal�ine L is an asymptote of F if F \ L = ; and d (F;L) = 0),
but there are also sets in R2 which are not M-decomposable but have no
asymptotes, like, e.g., the set F = f(x; y) : x2 � yg : In higher dimensions one
can even �nd hyperbolic sets with these properties, as the next example shows.

Example 14 Let F = cl convX; with X =
n�
cos s; sin s; s

2��s

�
: s 2 [0; 2�[

o
:

Since F is closed and convex, its recession cone 0+F coincides with its asymp-
totic cone

F1 :=
�
d : 9�k ! +1; xk 2 F such that d = lim

k!1

xk
�k

�
:
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Then, given three sequences fskg � [0; 2�[ ; fxkg � X; and f�kg � R+ such
that sk ! 2�; xk =

�
cos sk; sin sk;

sk
2��sk

�
; and �k = kxkk for all k 2 N; we

have limk!1
xk
�k
= (0; 0; 1) 2 0+F: Even more, 0+F = R+ (0; 0; 1) : If L =

fx0 + �y : � � 0g is an asymptote of F; necessarily y 2 0+F = R+ (0; 0; 1) :
But then d (F;L) = 0 implies that kbx0k = 1: If bx0 = (cos s0; sin s0) ; with
s0 2 [0; 2�[ ; then (cos s0; sin s0; �) 2 F \L for � large enough (contradiction).
Thus F is a closed convex set with no asymptote, but it is not M-decomposable.
Moreover F is hyperbolic, since it is contained in the M-decomposable set
f(x; y; z) : x2 + y2 � 1g = f(x; y; z) : x2 + y2 � 1; z = 0g+ f(0; 0; z) : z 2 Rg :

On the other hand, M-decomposable sets in Rn may have asymptotes if n � 3:

Example 15 Consider the set F =
n
x 2 Rn : x2n �

Pn�1
i=1 x

2
i ; xn � 0

o
(the ice-

cream cone in Rn). It is a closed convex cone, hence it is M-decomposable.
However, every bidimensional vertical section of F not containing the origin
is a hyperbolic set with asymptotes (for instance, the intersection of F with the
plane x2 = � � � = xn�1 = 1 has two asymptotes, namely, the intersections of
the hyperplanes xn = x1 and xn = �x1 with that plane), and such asymptotes
are obviously asymptotes of F; too.

Although no topological or geometric characterization of the M-decomposable
sets is available, the next �ve results characterize these sets in terms of the
corresponding parametric problems, the support functions, the conic repre-
sentations, the Pareto e¢ cient sets (to be de�ned later), and the linear rep-
resentations of their dual cones, respectively. Moreover, the two latter results
provide the minimal Motzkin representation of F and a simple formula for
obtaining a Motzkin representation of F; respectively.

Proposition 16 A set F � Rn is M-decomposable if and only if there exists
a compact set C � F such that F � (c) \ C 6= ; for each c 2 Rn such that
v (c) > �1:

Proof. The "only if" part is consequence of statement (v) in Proposition 13.
To prove the "if" statement, let us consider the support functions of F and
C: Our assumption clearly implies that ��F (c) = �

�
C (c) for every c 2 Rn such

that v (�c) > �1: In other words, ��F = ��C+ �fc2Rn:v(�c)>�1g: Since ��F is lsc,
��C is continuous (as it is �nite-valued), and B (F )

� = (dom ��F )
� = �0+F; it

turns out that �fc2Rn:v(�c)>�1g = �
�
F � ��C is lsc, which amounts to saying that

the set fc 2 Rn : v (�c) > �1g is closed, so that it coincides with � (0+F )� :
We thus have �fc2Rn:v(�c)>�1g = ��(0+F )� = �

�
0+F and therefore

��F = �
�
C + �

�
0+F = �

�
cl convC + �

�
0+F = �

�
cl conv(C+0+F ): (10)

Given that cl convC is compact and 0+F is convex and closed, cl convC+0+F
is a closed convex set, too. Hence, from (10) we deduce that F = cl convC +
0+F; which shows that F is M-decomposable. �
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Proposition 17 A closed convex set F � Rn is M-decomposable if and only
if dom ��F is closed and the restriction of �

�
F to dom �

�
F has a �nite sublinear

extension to the whole of Rn:

Proof. Assume �rst that F = C + D for some compact convex set C and
some closed convex cone D: Then dom ��F = B (F ) = �D�; hence it is closed.
Moreover, ��F = �

�
C + �

�
D = �

�
C + �B(F ); which shows that �

�
F coincides with the

�nite valued sublinear function ��C on B (F ) :

Conversely, suppose that B (F ) is closed and the restriction of ��F to B (F ) has
a �nite sublinear extension to the whole of Rn: This �nite sublinear extension
is the support function ��C of some compact convex set C: On the other hand,
since B (F ) is a closed convex cone it coincides with its second negative polar,
so that B (F ) is the negative polar of some closed convex cone D: We thus
have ��F = �

�
C + �B(F ) = �

�
C + �

�
D = �

�
C+D: Given that both F and C +D are

closed convex sets, from these equalities we conclude that F = C +D; which
shows that F is M-decomposable. �

Proposition 18 Let F be a nonempty closed convex set in Rn: Then F is M-
decomposable if and only if there exist two closed convex cones K � Rn+1 and
L � Rn such that K (F ) = K \ (L� R) ; (0n; 1) =2 K and (0n;�1) 2 intK:

Proof. Let F = C + D be such that C is a compact convex set and D
a closed convex cone. The direct statement follows from Proposition 13 (i),
taking K = K (C) and L = D�:

Conversely, assume that there exist K and L as in the statement and let
C = fx 2 Rn : a0x � b 8 (a; b) 2 Kg : The set C is convex and compact (as
(0n;�1) 2 intK). Moreover, one has C + L� � F ; indeed, if x 2 C; d 2 L�
and (a; b) 2 K (F ) then, by (a; b) 2 K and a 2 L; we have a0x � b and
a0d � 0; so that a0 (x+ d) � b: Thus we only need to prove the opposite
inclusion. To this aim, let x0 2 F and assume, towards a contradiction, that
x0 =2 C + L�: Since C + L� is a closed convex set, by the separation theorem
there exists (a; b) 2 Rn+1 such that a0 (x+ d) � b > a0x0 for every x 2 C and
d 2 L�: We thus have a0x � b for every x 2 C; and hence (a; b) 2 K (C) = K
(this equality following from the fact that K is a closed convex cone that
contains (0n;�1) and does not contain (0n; 1)) and a 2 L�� = L: Consequently,
(a; b) 2 K\(L� R) = K (F ) ; which contradicts the assumption x0 2 F: �

Theorem 19 Let F be a closed convex set, ; 6= F � Rn: Let L := linF;
K := 0+F \ L?; and

M (F ) :=
n
x 2 F \ L? : (x�K) \ F = fxg

o
:

Then the following statements hold:
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(i) F is M-decomposable if and only if M (F ) is bounded. In that case,

F = cl convM (F ) + 0+F (11)

is a Motzkin representation of F:
(ii) If F is M-decomposable and contains an extreme point, then (11) is the
minimal Motzkin representation of F; with

M (F ) =
n
x 2 F :

�
x� 0+F

�
\ F = fxg

o
(12)

satisfying

; 6=
[�

F � (c) : c 2 int\K (F )
�
�M (F )

�
[�

F � (c) : 0n 6= c 2 cl\K (F )
�
:

(13)

Proof. (i) Assume that F is M-decomposable. Let F = C + 0+F; with C
compact convex. We can assume that C � L? (otherwise we replace it with
its orthogonal projection on L?; i.e., the compact convex set (C + L) \ L?;
which is another compact component of F ).

First we show thatM (F ) is bounded. Let x 2M (F ) : Since x 2 F = L+K+
C, we can write x = a+ b+ c; a 2 L; b 2 K; c 2 C: Since x� a� c = b 2 K;
a + c 2 L + C � F; and x 2 M (F ) ; we have x = a + c: Then x = c because
x; c 2 L?: We get M (F ) � C and so M (F ) is bounded.

Now we assume that M (F ) is bounded. Obviously,

cl convM (F ) + 0+F � F + 0+F = F: (14)

Next we prove the reverse inclusion of (14).

Let v 2 F: We can write in a unique way v = u + y; u 2 L; y 2 L?:
Since y = v � u 2 F + 0+F = F; we have y 2 F \ L? \ (y � 0+F ) ; with
0+
h
F \ L? \ (y � 0+F )

i
= L \ L? = f0ng ; so that F \ L? \ (y � 0+F ) =

F \ (y �K) is a nonempty compact convex set.

Let ey be an optimal solution of the optimization problem
P : Minx2F\(y�K) d0x;

where d is an element of K such that d0x > 0 for all x 2 K� f0ng (the
existence of such a vector is consequence of [16, Theorem 3.13], taking into
account that K is a pointed closed convex cone).

Now we prove that ey 2 M (F ) : Let by 2 F be such that ey � by 2 K: We must
show that ey = by: In fact, since

by � y = (by � ey) + (ey � y) 2 (�K) + (�K) = �K;
18



because ey 2 y�K; we have by 2 F\(y �K) ; and so d0ey � d0by; i.e., d0 (ey � by) �
0; with ey � by 2 K: This implies ey = by by the assumption on d:
Since ey 2 y �K � y � 0+F and ey 2M (F ) ; we get

v = y + u 2
�ey + 0+F�+ L = y + 0+F �M (F ) + 0+F:

Hence F =M (F ) + 0+F; and we conclude that

F =cl convF = cl conv
�
M (F ) + 0+F

�
= cl

�
convM (F ) + conv 0+F

�
=cl

�
convM (F ) + 0+F

�
= cl convM (F ) + cl 0+F

=cl convM (F ) + 0+F

and F is M-decomposable.

(ii) Since 0+F is pointed, M (F ) � C; which implies cl convM (F ) � C; with
M (F ) as in (12) because L? = Rn: Now we shall prove (13).

[�
F � (c) : c 2 int\K (F )

�
6= ; by Proposition 8, statements (ii) and (ix).

Now let x� 2 F � (c) ; with c 2 int\K (F ): By (iii) in Proposition 8,

c 2 int\K (F ) = int cl\K (F ) = int
�
\K (F )

���
= int

�
0+F

��
;

so that c0d > 0 for all d 2 0+F� f0ng (this is part of the argument of [16,
Theorem 3.13 (iii)]): Let y 2 F be such that y 6= x� and y 2 x� � 0+F: Since
x��y 2 0+F� f0ng ; c0 (x� � y) > 0; in contradiction with x� 2 F � (c) : Thus,
x� 2M (F ) :

Finally, Given x 2M (F ) and d 2 0+F� f0ng ; since
n
x� d

k

o1
k=1

is contained

in Rn�F and x� d
k
! x; we have

x 2 bdF =
[�

F � (c) : 0n 6= c 2 cl\K (F )
�

by (v) in Proposition 8. This completes the proof. �

We can interpret M (F ) as the Pareto e¢ cient set of F \ L? relative to its
recession cone. Actually, in part (i), we have shown thatM (F ) bounded entails
F =M (F )+0+F; but this is not a Motzkin representation of F becauseM (F )
is generally nonconvex. Observe also that, if F contains an extreme point and
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every element of

M (F )�
[�

F � (c) : c 2 int\K (F )
�

is an extreme point of F; then

clM (F ) = cl
[�

F � (c) : c 2 int\K (F )
�
:

In fact, given x 2M (F )�
[�

F � (c) : c 2 int\K (F )
�
; by [17, Theorem 18.6]

there exists a sequence
n
xk
o1
k=1

of exposed points of F such that xk ! x:

Let ck 2 Rn be such that F �
�
ck
�
=
n
xk
o
; k = 1; 2:; ; ; : Let d 2 0+F� f0ng :

Since xk + d 2 F�
n
xk
o
;
�
ck
�0 �
xk + d

�
>
�
ck
�0
xk; i.e.,

�
ck
�0
d > 0: Then

ck 2 int 0+F by [16, Theorem 3.13]. Hence x 2 cl
[�

F � (c) : c 2 int\K (F )
�
:

This proves that clM (F ) � cl
[�

F � (c) : c 2 int\K (F )
�
whereas the con-

verse inclusion is a consequence of (13).

Along the next proof, given an arbitrary set S; we denote by R(S) the set of
mappings from S to R with a �nite support set and by R(S)+ the positive cone
in the linear space R(S):We also maintain the notation of (1) for the partition
of the index set of a linear system based on the sign of the coe¢ cient of the last
variable. Thus, for an homogeneous system fh(cs; ds) ; (x; xn+1)i � 0; s 2 Sg ;
s 2 S� , ds < 0 and s 2 S0 , ds = 0:

Theorem 20 (Generalized Motzkin Theorem) Let F � Rn be a nonempty
closed convex set. Then F is M-decomposable if and only if there exists a
linear representation of K (F ) ; fh(cs; ds) ; (x; xn+1)i � 0; s 2 Sg ; such thatn
cs
ds
: s 2 S�

o
is bounded. In such a case,

F = cl conv
�
� cs
ds
: s 2 S�

�
+ cl cone fcs : s 2 S0g (15)

is a Motzkin representation of F:

Proof. First we assume that F is M-decomposable such that F = C + D;
where C is a compact convex set and D is a closed convex cone. Then, by
Proposition 13 (i),

fh(c;�1) ; (x; xn+1)i � 0; c 2 C; h(d; 0) ; (x; xn+1)i � 0; d 2 Dg (16)

is a linear representation of K (F ) satisfying the boundedness condition.

Conversely, assume that fh(cs; ds) ; (x; xn+1)i � 0; s 2 Sg is a linear represen-
tation of K (F ) such that

n
cs
ds
: s 2 S�

o
is bounded. Given s 2 S; since

20



(cs; ds) 2 K (F )� ; ds � 0 according to Proposition 8 (i).

If ds = 0 for all s 2 S; then

K (F )� = cl cone f(cs; 0) ; s 2 Sg �
n
(x; xn+1) 2 Rn+1 : xn+1 = 0

o
;

in contradiction with statement (i) of Proposition 8 (we are assuming F 6= ;).
Hence there exists some s 2 S such that ds < 0: Dividing by jdsj if it is
necessary, we can assume w.l.o.g. that ds = �1 for all s 2 S�: Obviously,

K (F )� = cl cone f(cs;�1) ; s 2 S�; (cs; 0) ; s 2 S0g : (17)

Let C := cl convfcs; s 2 S�g 6= ; and D := cl conefcs; s 2 S0g:We must prove
that F = C +D:

First we show that C + D � F: Given x 2 C + D, there exist sequences
f�kg � R(S�)+ and f�kg � R

(S0)
+ such that

x = lim
k

X
s2S�

�kscs + lim
k

X
s2S0

�kscs and
X
s2S�

�ks = 1 8k.

Then, according to (17),

(x;�1) = lim
k

24 X
s2S�

�s (cs;�1) +
X
s2S0

�s (cs; 0)

35 2 K (F )� ;
so that x 2 F . Thus, C +D � F .

Now we assume that x 2 F: Then (x;�1) 2 K� and, again by (17), there
exists

n
�k
o
� R(S)+ such that

(x;�1) = lim
k

24 X
s2S�

�ks (cs;�1) +
X
s2S0

�ks (cs; 0)

35 ;
i.e.,

x = lim
k

24 X
s2S�

�kscs +
X
s2S0

�kscs

35 and lim
k

X
s2S�

�ks = 1: (18)

Let �k :=
P
s2S� �

k
s ; k = 1; 2; : : :. Since limk �k = 1 we can assume w.l.o.g.

�k > 0 for all k: From (18) we get

x = lim
k

24 X
s2S�

�ks
�k
cs +

X
s2S0

�ks
�k
cs

35 : (19)
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Let

xk :=
X
s2S�

�ks
�k
cs 2 conv fcs; s 2 S�g � C:

Since C is compact, we can assume by considering a suitable subsequence that
there exists x 2 C such that limk x

k = x 2 C: De�ning

yk :=
X
s2S0

�ks
�k
cs 2 conefcs; s 2 S0g � D;

(19) implies that limk y
k = x� x 2 D, so that x = x+ (x� x) 2 C +D. We

conclude that F � C +D: �

For the linear representation of K (F ) given by (16),



 cs
ds




 � maxc2C kck for
all s 2 S�: An alternative bound can be obtained observing that, by the
compactness of C; K (C) contains a ball centered at (0n;�1) and radius � > 0:
Since the distance from (0n;�1) to any hyperplane c0x� xn+1 = 0 is at least
�;



 cs
ds




 � 1
�
for all s 2 S�: Once again, the boundedness assumption depends

on the available linear representation of K (F ) and not on K (F ) itself. In
fact, taking two arbitrary indexes u 2 S� and v 2 S0; and aggregating the
redundant constraints h(cu; du) + r (cv; dv) ; (x; xn+1)i � 0; r 2 N; to the given
linear representation of K (F ) ; we obtain a new linear representation of K (F )
that violates the boundedness condition.

Notice that the boundedness assumption of Theorem 20 holds if jS�j < 1
(e.g., when F is a polyhedral convex set S can be taken �nite). Under the
mentioned boundedness assumption, by Theorem 5 and Proposition 8 (iii), we
have

\K (F ) = fx 2 Rn : c0sx � 0; s 2 S0g =
�
0+F

��
:

In relation with equation (v) in Proposition 13, observe that v (c) can be
expressed in terms of the data (a linear representation of K (F )) under the
assumption of Theorem 20 because

min fc0x : x 2 Cg = inf
(
c0cs
jdsj

: s 2 S�
)
:

Example 21 Letn�
s2 � 2s+ 1

�
x1 + s

2x2 � x3 � 0; s 2 [0; 1] ; x1 � 0; x2 � 0
o

be a linear representation of the reference cone of certain set F to be described.
Since the arch of parabola (or the astroid

q
jx1j+

q
jx2j = 1)n�

s2 � 2s+ 1; s2
�
; s 2 [0; 1]

o
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is bounded, F is the sum of the convex hull of this arch of parabola and the
convex conical hull of f(1; 0) ; (0; 1)g ; i.e., R2+: The mentioned arch coincides
also with M (F ) : All the boundary points of such an M-decomposable set F
are smooth, so that we get, from Proposition 2, the linear representation of F;n

tx1 + (1� t)x2 � t� t2; t 2 [0; 1]
o
;

from which we obtain another description of the conic representation of F :

K (F ) = cone
n�
t; 1� t; t� t2

�
; t 2 [0; 1] ; (0; 0;�1)

o
:

Example 22 Let fs2x1 + x2 � sx3 � 0; s 2 R++g be a linear representation
of K (F ) : Here

n
cs
jdsj : ds < 0; s 2 S

o
is unbounded. In fact, we have F = C+D

with C = cl conv f(s; s�1) ; s 2 R++g (the unbounded convex hull of a branch
of the hyperbola x1x2 = 1) and D = cl cone ; = f02g : Observe that, since any
boundary point of F is smooth, fx1 + t2x2 � 2t; t 2 R++g is a linear represen-
tation of F and the conic representation of F turns out to be the closure of its
characteristic cone, i.e.,

K (F ) = cone
n�
1; t2; 2t

�
; t 2 R++; (0; 1; 0) ; (0; 0;�1)

o
:

Obviously, the decomposability property is preserved by the cartesian product
and by the product by scalars, but not by the Minkowski sum (recall that the
sum of closed convex cones is not necessarily closed) unless an additional
condition holds.

Proposition 23 Let fFi; i 2 Ig be a �nite family of M-decomposable sets in
Rn satisfying the following condition: if zi 2 0+Fi for all i 2 I and

X
i2I
zi = 0n

then zi 2 linFi for all i 2 I: Then
X
i2I
Fi is M-decomposable.

Proof. Let fCi; i 2 Ig be a family of compact convex sets such that Fi =
Ci+0

+Fi for all i 2 I: Then
X
i2I
Fi =

X
i2I
Ci+

X
i2I
0+F; where

X
i2I
Ci is a compact

convex set whereas
X
i2I
0+F is a closed convex cone by [17, Corollary 9.1.3].

�

Finally, the intersection of M-decomposable sets is not necessarily M-decomposable,
as the next example shows.

Example 24 Let F = fx 2 R3 : x23 � x21 + x22; x3 � 0g (the ice-cream cone in
R3) and Fi = F +

�
0; (�1)i+1 ; 0

�
; i.e.,

Fi =
�
x 2 R3 : x23 � x21 +

�
x2 + (�1)i

�2
; x3 � 0

�
;
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with 0+Fi = F; i = 1; 2: The intersection of both M-decomposable sets, F1\F2;
has extreme points (e.g., (0; 0; 1)) and its recession cone is 0+ (F1 \ F2) = F:
In fact, F1 \ F2 is the epigraph of the convex function f : R2 �! R such that

f (x1; x2) =

8><>:
q
x21 + (x2 � 1)2; if x2 < 0q
x21 + (x2 + 1)

2; if x2 � 0:

On the other hand, given z 2 bd (F1 \ F2) (i.e., the graph of f); z � F is the
hypograph of the concave function gz : R2 �! R such that

gz (x1; x2) = f (z1; z2)�
q
(x1 � z1)2 + (x2 � z2)2:

Observe that gz (x1; x2) � f (x1; x2) for all (x1; x2) 2 R2 and the equality holds
at the points (z1; z2) and

(ez1; ez2) :=
8><>:
�

z1
1�z2 ; 0

�
; if z2 < 0�

z1
1+z2

; 0
�
; if z2 � 0:

De�ning ez := (ez1; ez2; f (ez1; ez2)) ; we have
(z � F ) \ (F1 \ F2) =

8><>: [
ez; z] ; if z2 6= 0
fzg ; if z2 = 0;

and, by Theorem 19, we get

M (F1 \ F2) =
n
x 2 R3 : x23 = x21 + 1; x2 = 0; x3 � 0

o
;

which is unbounded. Hence F1 \ F2 is not M-decomposable.
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