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Abstract Any linear (ordinary or semi-infinite) optimization problem, and
also its dual problem, can be classified as either inconsistent or bounded or
unbounded, giving rise to nine duality states, three of them being precluded
by the weak duality theorem. The remaining six duality states are possible in
linear semi-infinite programming whereas two of them are precluded in linear
programming as a consequence of the existence theorem and the nonhomo-
geneous Farkas Lemma. This paper characterizes the linear programs and
the continuous linear semi-infinite programs whose duality state is preserved
by sufficiently small perturbations of all the data. Moreover, it shows that
almost all linear programs satisfy this stability property.

Keywords linear programming · linear semi-infinite programming · stability

1 Introduction

Any finite linear programming (LP) problem with n ≥ 2 decision variables
can be formulated in canonical form as

P : Min c′x
s.t. a′tx ≥ bt, t ∈ T,
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where T is a finite index set, c and x are vectors in Rn, and at and bt are
the images of t ∈ T by mean of the mappings a : T 7−→ Rn and b : T 7−→ R,
respectively. The dual problem of P is the following LP problem in standard
form:

D : Max
∑
t∈T

λtbt

s.t.
∑
tεT

λtat = c,

λt ≥ 0, t ∈ T.

(1)

Obviously, P and D involve the same data, so that both problems can be
represented by the triple π := (a, b, c).

In LP we are familiar with the four mutually exclusive and collectively
exhaustive duality states that can occur when P and D are classified as either
inconsistent or bounded (i.e., with finite optimal value) or unbounded. The
classification of π into its corresponding duality state is interesting for dif-
ferent reasons. For instance, solving P and D simultaneously can be reduced
to solving the associated primal-dual system,{

a′tx ≥ bt, t ∈ T ;
∑
tεT

λtat = c;λt ≥ 0, t ∈ T ; c′x =
∑
tεT

λtbt

}
,

if and only if both problems are bounded (this is the class of LP problems
which can be solved by means of numerical methods for linear inequality sys-
tems). Moreover, P and D have different optimal values if and only if they are
inconsistent. The first systematic study of the duality states in mathemati-
cal programming appeared in [5] (paper revisited in [23]), where the authors
considered versions for conic programming, convex programming and a par-
ticular class of linear semi-infinite programming (LSIP) problems. This work
was extended to reflexive spaces in [21]. Duality states in semidefinite pro-
gramming were extensively analyzed with computational issues in [35] and
compared with the LSIP counterpart in [25].

If T is an infinite compact Hausdorff topological space and the functions
a and b are continuous on T , then the LSIP problem P is called continuous.
The so-called Haar’s dual problem of P is the extension of D consisting of
taking as space of variables the linear space of all the functions λ : T 7→ R
such that λt = 0 for all t ∈ T except maybe for a finite number of indices.
This space is denoted by R(T ) (the space of generalized finite sequences) and
its positive cone (formed by the non-negative generalized finite sequences)
by R(T )

+ . Thus, the dual problem of P reads

D : Max
∑
t∈T

λtbt

s.t.
∑
tεT

λtat = c, λ ∈ R(T )
+ .

(2)

If |T | < ∞ and we consider T equipped with the discrete topology, then
T is compact Hausdorff and the coefficient functions are trivially continuous.
Moreover, R(T ) = RT , so that the problems in (1) and (2) coincide. For this
reason, we say that both LP and continuous LSIP problems are continuous
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linear optimization problems (assuming implicitly that T is equipped with
the discrete topology when |T | < ∞).

The continuity property of P ensures nice theoretical properties (e.g., in
the duality context), although the boundedness of one of the problems does
not entail their solvability and the coincidence of optimal values, and has
computational implications (e.g., continuity guarantees the convergence of
LSIP discretization algorithms). Among the recent applications of contin-
uous LSIP let us mention that P arises in functional approximation ([12],
[13]), separation ([22]), finance ([24]), Bayesian statistics ([29]) and the de-
sign of telecommunications networks ([11], [28], [34]), whereas D has been
used in robust Bayesian analysis ([6]) and optimization under uncertainty
([1]); another type of dual problem for P closely related to D, whose space
of variables is formed by regular Borel measures, has been used in optimal
control ([32], [33]).

We denote by vP (π) (vD (π)) the optimal value of P (D), defining as
usual vP (π) = +∞ (vD (π) = −∞, respectively) when the corresponding
problem is inconsistent. Since P and D can be either inconsistent (IC) or
bounded (B) or unbounded (UB), crossing both criteria we get at most nine
possible duality states, which are reduced to six by the weak duality theorem:
vD (π) ≤ vP (π). The possible duality states in continuous linear optimization
are enumerated in Diagram 1 (according to the duality theorem, the duality
states 5 and 6 are impossible in LP):

D�P IC B UB
IC 4 5 2
B 6 1

UB 3

Diagram 1

We associate with the given nominal triple π = (a, b, c) the set of per-
turbed triples which are admissible in the sense that they preserve the num-
bers of constraints and variables in P and D as well as the continuity of P .
This set, called space of parameters, is

Π := Rn|T |+|T |+n,

if |T | < ∞, and
Π := C (T )n × C (T )× Rn,

otherwise. Observe that Π only depends on n and T . The perturbations
generating Π could be the consequence of rounding errors or measurement
errors.

This is the first paper analyzing the effect on the duality state of per-
turbing the data. More in detail, our main objective is characterizing those
parameters π = (a, b, c) which are primal-dual stable (relative to the duality
states considered in this paper) in the sense that sufficiently small admissible
perturbations of a, b, and c preserve its duality state. In order to reformulate
this objective in topological terms, we denote by Πi the set of parameters
in the duality state i, i = 1, ..., 6 (e.g., π ∈ Π6 when P is inconsistent and
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D is finite valued). Recall that, in LP, Π5 = Π6 = ∅. The null element
of Π obviously belongs to Π1 and the non-empty sets of {Πi, i = 1, ..., 6}
are (non-convex) cones providing a partition of the space of parameters Π.
Then, defining a suitable topology on Π, we characterize the interior of Πi,
i = 1, ..., 6, in terms of relationships between points and sets in finite dimen-
sional Euclidean spaces. In [36, Proposition 1.5] it is shown that the interior
of Π1 is the class of parameters such that sufficiently small perturbations
provide primal solvable problems. Secondary objectives of the paper are the
characterization of those duality states for which any of its members can be
approached by means of stable parameters (i.e., those Πi such that Πi is
contained in the closure of its interior) and to prove that most perturbations
of the nominal parameter are primal-dual stable.

As most of the works on perturbation theory in continuous LSIP (e.g.,
the classical paper [30]), we measure the size of a perturbation by means
of the metric derived from the norm of the uniform convergence, i.e., given
πi =

(
ai, bi, ci

)
∈ Π, i = 1, 2, we define

d(π1, π2) = max
{∥∥c1 − c2

∥∥
∞ ,max

t∈T

∥∥∥∥(a1
t

b1
t

)
−
(

a2
t

b2
t

)∥∥∥∥
∞

}
. (3)

If T is a compact Hausdorff space, then the Banach space Π can be seen as
a topological subspace of the space of general LSIP problems equipped with
the pseudometric of the uniform convergence (defined, as in [20], by replacing
“max” with “sup” in (3)) or even as a subspace of the space of convex semi-
infinite programming (CSIP) problems equipped with the pseudometric of
the uniform convergence on compact sets defined in [15] (the last two spaces
of parameters are well-defined even when T is not a topological space). The
semicontinuity properties of the primal feasible set, the primal optimal set
and the primal optimal value function vP have been characterized during the
80’s for continuous LSIP ([7], [14], etc.), during the 90’s for general LSIP ([17],
[18], [16], etc.) and during the present decade for CSIP ([26], [15]). Observe
that a sufficient condition for the semicontinuity (in certain sesnse) of one of
the mentioned mappings at a given triple of a certain space of parameters
is also a sufficient condition for the semicontinuity of the restriction of this
mappings to any topological subspace containing that triple, whereas the
situation is the opposite regarding the necessary conditions, i.e., the stability
theory for certain class of problems is not subsumed by the corresponding
theory in a more general framework. Recent works on stability in LSIP deal
with quantitative aspects as the distance to ill-posedness and error bounds in
general LSIP ([9], [10]) and metric regularity in continuous LSIP ([8]), where
the Banach property of the space of right-hand side functions plays a crucial
role.

As a general rule, it is difficult to get dual counterparts for the results
mentioned in the previous paragraph (due to the poor topological proper-
ties of the spaces of dual variables and right-hand side functions in general
LSIP), whereas the situation is more favorable in continuous LSIP. For this
reason, the semicontinuity of the dual feasible set in general LSIP was only
characterized in [19], whereas the characterizations of the semicontinuity of
vD and the dual optimal set are still open problems. Concerning the interior
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of the sets of the dual partition (corresponding to the entries of the three
rows in Diagram 1), which are basic tools in this paper (see Lemma 2), the
interior of the class of triples providing a stable inconsistent dual problem in
continuous LSIP was characterized quite late ([19]), whereas no characteriza-
tion has been obtained up to now for either general LSIP or CSIP (where the
Haar’s dual problem must be replaced by another one, e.g., the Lagrangian
dual of P ).

Let us observe that our approach to primal-dual stability in continu-
ous linear optimization is not intrinsic in the sense that it depends on the
topology defined on Π. For instance, since each triple π = (a, b, c) could be
identified with a couple (C, c) ∈ 2Rn+1 × Rn, where C is a certain closed set
(e.g., either the compact set {(at, bt) , t ∈ T} or the closure of the character-
istic cone of π defined in Section 2), it is possible to consider Π equipped
with the Hausdorff topology, the bounded Hausdorff topology ([3], [2], [31]),
or any other topology on the space of closed sets ([4]). We prefer to use the
topology of the uniform convergence in the parameter space Π first, because
this topology makes sense in practice (so that it has been extensively ana-
lyzed) and second, because the representation of π in 2Rn+1 ×Rn affects the
dual problem, i.e., this approach is only suitable for the stability analysis
of the primal problem (in particular, the stability of the primal feasible set
has been analyzed in [27] taking as C the intersection of the closure of the
characteristic cone of π with the closed unit ball, obtaining results which are
not valid for the topology of the uniform convergence). Similar difficulties
appear if we consider, f.i., bounded Hausdorff topology in the image space of
the different mappings arising from the continuous linear optimization.

The paper is organized as follows: Section 2 contains additional notation
and some basic results to be used later, Section 3 analyzes primal-dual sta-
bility in LP and Section 4 provides similar results in continuous LSIP. We
have split the study of the primal-dual stability depending on the cardinality
of T due to the outstanding advantages of the finite case in comparison with
the infinite one: first, the duality state of a parameter is determined by its
primal and dual feasibility and, second, any perturbation is admissible (pre-
serving continuity under perturbations, in LSIP, requires the use of rather
sophisticated tools).

2 Preliminaries

Let us introduce the necessary notation. 0p denotes the null-vector in Rp, the
j th element of the canonical basis of Rp is ej whereas e = e1 + ... + ep. The
Euclidean and the l∞ (or Chebyshev) norms (in any of the spaces Rp and
C (T )) are represented by ‖.‖ and ‖.‖∞, respectively. Given a non-empy set
X ⊂ Rp, conv X and cone X := R+ conv X denote the convex hull and the
conical convex hull of X, respectively (it is also assumed that cone ∅ = {0p}).
If X is convex, dim X denotes its dimension. From the topological side, if
X is a subset of any topological space, int X, cl X and bd X represent the
interior, the closure and the boundary of X, respectively. Finally, limr should
be interpreted as limr→∞.
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The next result on Chebyshev functional approximation is used frequently
throughout the paper. The proof of part (iii) is an easy exercise when |T | < ∞
(otherwise we need Urisohn’s lemma).

Lemma 1 Let T be a compact Hausdorff space, x ∈ Rn and x ∈ C (T )n.
Then the following statements hold:
(i) If x ∈ int cone {x (t) , t ∈ T}, then there exists ε > 0 such that y ∈
int cone {y (t) , t ∈ T} for all y ∈ Rn and y ∈ C (T )n such that ‖y − x‖∞ < ε
and ‖y − x‖∞ < ε.
(ii) If 0n 6= x /∈ int cone {x (t) , t ∈ T}, then for all ε > 0 there exists
y ∈ C (T )n such that x /∈ cone {y (t) , t ∈ T} and ‖y − x‖∞ < ε.
(iii) If 0n 6= x ∈ cone {x (t) , t ∈ T} and |T | ≥ n, then for all ε > 0 there
exists y ∈ C (T )n such that x ∈ int cone {y (t) , t ∈ T} and ‖y − x‖∞ < ε.
(iv) If x ∈ conv {x (t) , t ∈ T} and |T | ≥ n + 1, then for all ε > 0 there exists
y ∈ C (T )n such that x ∈ int cone {y (t) , t ∈ T} and ‖y − x‖∞ < ε.

Proof (i) It is a straightforward consequence of [17, Lemma 4.2].
(ii) By the separation theorem and the supporting hyperplane theorem,

applied to x and cl cone {x (t) , t ∈ T}, there exists d ∈ Rn\ {0n} such that
d′x ≤ 0 and d′x (t) ≥ 0 for all t ∈ T .

Let y := x + εd
2‖d‖∞

∈ C (T )n. Obviously, ‖y − x‖∞ < ε. Assume that

x ∈ cone {y (t) , t ∈ T}. Then we can write x =
∑
t∈T

λty (t), λ ∈ R(T )
+ . Since

we assume x 6= 0n,
∑
t∈T

λt > 0 and so,

d′x =
∑
t∈T

λtd
′y (t) =

∑
t∈T

λtd
′
(

x (t) +
εd

2 ‖d‖∞

)
≥

(∑
t∈T

λt

)
ε ‖d‖2

2 ‖d‖∞
> 0,

in contradiction with d′x ≤ 0.
(iii) First we prove the existence of z ∈ C (T )n such that ‖z − x‖∞ < ε

2 ,
dim span {z (t) , t ∈ T} = n and x ∈ cone {z (t) , t ∈ T}.

By Carathéodory’s theorem for cones, we can write x =
m∑

i=1

λix (ti), ti ∈ T

and λi ≥ 0, i = 1, ...,m, and {x (ti) , i = 1, ...,m} linearly independent. If m =
n we can choose z := x. Otherwise take n−m elements tm+1, ..., tn arbitrarily
in T\ {t1, ..., tm} (we are assuming that |T | ≥ n). We define ui := 0n, i =
1, ...,m. If x (tm+1) /∈ span {x (ti) , i = 1, ...,m}, we define um+1 := 0n. Other-
wise, we choose um+1 ∈ Rn such that {x (ti) , i = 1, ...,m;x (tm+1) + um+1}
is linearly independent and ‖um+1‖∞ < ε

2n . By induction, we can select
ui ∈ Rn, i = m + 1, ..., n, such that {x (ti) + ui, i = 1, ..., n} is a basis of Rn

and ‖ui‖∞ < ε
2n , i = 1, ..., n. By Urisohn’s lemma there exist continuous

functions pi : T → [0, 1], i = 1, ..., n, such that

pi (tj) =
{

1, if j = i,
0, otherwise,



Primal-dual stability in continuous linear optimization 7

for each i, j = 1, ..., n. It is easy to see that z (t) := x (t)+
n∑

i=1

pi (t) ui satisfies

all the requirements. If x ∈ int cone {z (t) , t ∈ T}, we have finished. So we
assume that x ∈ bd cone {z (t) , t ∈ T}.

Now we perturb the function z in order to get another function y ∈ C (T )n

such that ‖y − x‖∞ < ε and x ∈ int cone {y (t) , t ∈ T} .
Since dim cone {z (t) , t ∈ T} = n and x ∈ bd cone {z (t) , t ∈ T}, by the

accessibility lemma, there exists a sequence {vr}∞r=1 ⊂ int cone {z (t) , t ∈ T}
such that limrv

r = x 6= 0n. Obviously, x 6= vr for all r and we can assume also
that vr 6= 0n for all r. Given r ∈ N, let gr be an orthogonal transformation
in Rn such that

gr

(
x

‖x‖

)
=

vr

‖vr‖
(4)

and

‖gr (u)− u‖ ≤
∥∥∥∥ vr

‖vr‖
− x

‖x‖

∥∥∥∥ (5)

for all u ∈ Rn such that ‖u‖ = 1 (a natural choice for gr is the rotation in
the plane span {x, vr} such that (4) holds, and the identity on the orthogonal
subspace). Since

gr (x) =
‖x‖
‖vr‖

vr ∈ int cone {z (t) , t ∈ T} ,

we have
x ∈ int cone

{
g−1

r [z (t)] , t ∈ T
}

, r = 1, 2, ...

Let In be the identity mapping in Rn and let k := max {‖z (t)‖ , t ∈ T}.
Given t ∈ T , (5) yields∥∥g−1

r [z (t)]− z (t)
∥∥
∞ ≤

∥∥g−1
r [z (t)]− z (t)

∥∥ = ‖z (t)− gr [z (t)]‖
≤ ‖In − gr‖ ‖z (t)‖ ≤ k

∥∥∥ vr

‖vr‖ −
x
‖x‖

∥∥∥ .
(6)

Since limr

∥∥∥ vr

‖vr‖ −
x
‖x‖

∥∥∥ = 0, there exists r0 ∈ N such that∥∥g−1
r0

[z (t)]− z (t)
∥∥
∞ <

ε

2
for all t ∈ T.

Finally, it is easy to see that the composite function y := g−1
r0

◦ z satisfies
all the requirements.

(iv) Assume x ∈ conv {x (t) , t ∈ T} and |T | ≥ n + 1. Let ε > 0. Since(
x
1

)
∈ cone

{(
x (t)

1

)
, t ∈ T

}
,

by statement (iii) there exists (y, f) ∈ C (T )n+1 such that ‖(y, f)− (x, 1)‖∞ <
ε and (

x
1

)
∈ int cone

{(
y (t)
f (t)

)
, t ∈ T

}
,

so that x ∈ int cone {y (t) , t ∈ T} and ‖y − x‖∞ < ε.
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Next we recall some basic results (most of them valid for general LSIP)
we need on continuous linear optimization (all the proofs can be found in
[16]). We associate with π = (a, b, c) the feasible (optimal) sets of D and P ,
which are denoted by Λ and F (Λ∗ and F ∗, respectively), the first and second
moment cones of π, M := cone {at, t ∈ T} and N := cone {(at, bt) , t ∈ T},
and the characteristic cone, K := N +R+ {(0n,−1)}. If π satisfies the Slater
condition, i.e., there exists x ∈ Rn such that a′tx > bt for all t ∈ T , then N
is closed. Moreover, if P is consistent and N is closed, then K is closed too.
If D is consistent and K is closed, then D is solvable. The existence theorem
establishes that P is consistent if and only if (0n, 1) /∈ cl N . In such a case,
the non-homogeneous Farkas lemma establishes that the inequality c′x ≥ d
holds for all x ∈ F if and only if (c, d) ∈ cl K.

From now on, the perturbations of the nominal triple π will be distin-
guished by means of upperscripts, and the same (either as subscripts or
as superscripts) applies for their corresponding objects: πr = (ar, br, cr),
Dr, Pr, Λr, Fr, and so on. We denote by

ΠP
c =

{
π1 ∈ Π | F1 6= ∅

}
and ΠD

c =
{
π1 ∈ Π | Λ1 6= ∅

}
the classes of parameters providing primal and dual consistent problems.
The last result in this section characterizes the primal and the dual stability
of π relative to the dichotomy consistent-inconsistent. Obviously, π ∈ ΠP

c

(π ∈ ΠD
c ) if and only if (0n, 1) /∈ cl N (c ∈ M , respectively).

Lemma 2 The following statements are true:
(i) π ∈ intΠP

c if and only if P satisfies the Slater condition if and only if
0n+1 /∈ conv {(at, bt) , t ∈ T}.
(ii) π ∈ int

(
Π\ΠP

c

)
if and only if (0n, 1) ∈ intN.

(iii) π ∈ intΠD
c if and only if c ∈ intM.

(iv) π ∈ int
(
Π\ΠD

c

)
if and only if there exists y ∈ Rn such that c′y < 0 and

a′ty > 0 for all t ∈ T.

Proof (i) It is [17, Theorem 3.1] and [37, Theorem 3.2].
(ii) It follows from [17, Theorems 6.3 and 6.4].
(iii) It follows from [19, Theorem 5].
(iv) It is [19, Theorem 10].

Other characterizations of π ∈ intΠP
c and π ∈ int

(
Π\ΠP

c

)
can be found

in [9], where explicit formulae for the distance from π to the corresponding
boundary are also given.

3 Primal-dual stability in linear programming

Let Π be the space of parameters corresponding to a given triple π := (a, b, c)
such that |T | < ∞ and n ≥ 2. Under these assumptions Π5 = Π6 = ∅ and
the associated moment cones, M and N , are polyhedral (and so closed), so
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that the four possible duality states for π are characterized in Diagram 2 by
means of the associated moment cones.

(0n, 1) ∈ N (0n, 1) /∈ N

c /∈ M Π4 Π2

c ∈ M Π3 Π1

Diagram 2

Theorem 1 The following statements are true:
(i) π ∈ intΠ1 if and only if Slater condition holds and c ∈ intM. Moreover,
intΠ1 is dense in Π1 if and only if |T | ≥ n.
(ii) π ∈ intΠ2 if and only if there exists y ∈ Rn such that c′y < 0 and
a′ty > 0 for all t ∈ T. Moreover, intΠ2 is dense in Π2.
(iii) π ∈ intΠ3 if and only if (0n, 1) ∈ intN. Moreover, intΠ3 is dense in
Π3 if and only if |T | ≥ n + 1.
(iv) int Π4 = ∅.
(v) The primal-dual stable parameters form an open and dense subset of Π.

Proof (i) Since Π1 = ΠP
c ∩ΠD

c , intΠ1 =
(
int ΠP

c

)
∩
(
int ΠD

c

)
and the first

statement follows from Lemma 2, parts (i) and (iii).
The density of intΠ1 in Π1 entails intΠ1 6= ∅. If π1 =

(
a1, b1, c1

)
∈ intΠ1,

we have c1 ∈ intM1 and this is only possible if |T | ≥ n. The converse
statement is a particular case of [36, Theorem 1.8].

(ii) Since Π2 = ΠP
C ∩ ΠD

IC , intΠ2 =
(
intΠP

C

)
∩
(
intΠD

IC

)
and the con-

clusion follows from statements (i) and (iv) in Lemma 2, taking into account
that a′ty > 0 for all t ∈ T implies the Slater condition. In fact, if 0n+1 /∈
conv {(at, bt) , t ∈ T} we can write 0n+1 =

∑
tεT

λt (at, bt) for some λ ∈ R(T )
+

such that
∑
tεT

λt = 1. Then, multiplying by (y, 0) we get 0 =
∑
tεT

λt (a′ty) > 0

(contradiction).
Now let π∞ = (a∞, b∞, c∞) ∈ Π2. Select an arbitrary x ∈ F∞. By Dia-

gram 2, we have c∞ /∈ M∞, which is a closed convex cone. By the separation
theorem, there exists d ∈ Rn such that d′c∞ < 0 and d′z ≥ 0 for all z ∈ M∞.
For r ∈ N we define ar

t = a∞t + d
r and br

t = b∞t + d′x−1
r for all t ∈ T,

and cr = c∞. Obviously, the sequence {πr}∞r=1 such that πr := (ar, br, cr)
converges to π∞. Moreover, d′ar

t = d′a∞t + ‖d‖2
r > 0 for all t ∈ T , and

d′cr = d′c∞ < 0. Then {πr}∞r=1 ⊂ intΠ2. Thus intΠ2 is dense in Π2.
(iii) In LP, we have Π3 =

(
Π\ΠP

c

)
∩ ΠD

c and the conclusion follows
again from Lemma 2, statements (ii) and (iii) (observe that (0n, 1) ∈ int N
guarantees M = Rn).

The density of int Π3 in Π3 entails intΠ3 6= ∅. If π1 =
(
a1, b1, c1

)
∈

intΠ3, we have (0n, 1) ∈ intN1 and so, |T | ≥ n + 1. Conversely, assume that
|T | ≥ n + 1. Let π∞ = (a∞, b∞, c∞) ∈ Π3. Since

(0n, 1) ∈ N∞ = cone {(a∞t , b∞t ) , t ∈ T} ,

given r = 1, 2, ..., by Lemma 1(iii), there exists a set {(ar
t , b

r
t ) , t ∈ T} ⊂ Rn+1

such that ∥∥∥∥(a∞t
b∞t

)
−
(

ar
t

br
t

)∥∥∥∥
∞

<
1
r
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and
(0n, 1) ∈ int cone {(ar

t , b
r
t ) , t ∈ T} .

Defining cr = c∞ and πr = (ar, br, cr) for all r = 1, 2, ..., we have
limr πr = π∞ and {πr}∞r=1 ⊂ int Π3.

(iv) First we assume π = (a, b, c) ∈ intΠ4. By Lemma 2, statements (ii)
and (iv), (0n, 1) ∈ intN and there exists y ∈ Rn such that c′y < 0 and
a′ty > 0 for all t ∈ T. Let λ ∈ R(T )

+ be such that(
0n

1

)
=
∑
tεT

λt

(
at

bt

)
. (7)

Since
∑
tεT

λtbt = 1,
∑
tεT

λt > 0. Multiplying by y both members of the equation∑
tεT

λtat = 0n (derived from (7)) we get
∑
tεT

λt (a′ty) = 0, but this is impossible.

Consequently, intΠ4 = ∅.
(v) Let Ω be the class of primal-dual stable parameters. From the proof

of statements (i)-(iv),

Ω =

 int Π2, if |T | < n,
(int Π1) ∪ (int Π2) , if |T | = n,
(int Π1) ∪ (int Π2) ∪ (int Π3) , if |T | > n,

so that Ω is open. Finally we prove the density of Ω in Π through a discussion
based on the cardinality of T .

(a) Let |T | < n. Since Ω = intΠ2 is dense in Π2, we have just to prove
that Π1 ∪Π3 ∪Π4 ⊂ cl Π2.

If π∞ = (a∞, b∞, c∞) ∈ Π1, we have by Diagram 2, (0n, 1) /∈ N∞ and
c∞ ∈ M∞. Since dim M∞ ≤ |T | < n, c∞ ∈ bd M∞ and there exists a
sequence {cr}∞r=1 ⊂ Rn such that cr /∈ M∞ and ‖cr − c∞‖∞ < 1

r , r = 1, 2, ...
Defining πr := (a∞, b∞, cr) ∈ Π, we have (0n, 1) /∈ Nr = N∞ and cr /∈ Mr =
M∞, so that πr ∈ Π2, r = 1, 2, ... Then π∞ = limr πr, so that Π1 ⊂ cl Π2.

Alternatively, if π∞ ∈ Π3 ∪ Π4, then (0n, 1) ∈ N∞, with dim N∞ ≤
|T | < n. By Lemma 1(ii), there exists (ar, br) ∈ C (T )n+1 such that (0n, 1)
/∈ cone {(ar

t , b
r
t ) , t ∈ T} and ‖(ar, br)− (a∞, b∞)‖∞ < 1

r , r = 1, 2, ... Defining
πr := (ar, br, c∞) ∈ Π, we have (0n, 1) /∈ Nr, i.e., πr ∈ Π1 ∪ Π2 ⊂ cl Π2,
r = 1, 2, ... Thus Π3 ∪Π4 ⊂ cl Π2.

(b) Let |T | = n. Since Ω = (int Π1) ∪ (int Π2) is dense in Π1 ∪ Π2,
we have just to prove that Π3 ∪ Π4 ⊂ cl (Π1 ∪Π2). In fact, given π∞ =
(a∞, b∞, c∞) ∈ Π3 ∪Π4, we have (0n, 1) ∈ N∞, with dim N∞ ≤ |T | < n + 1.
The rest of the proof is as in the second case of (a).

(c) Now we assume |T | ≥ n + 1. Since Ω =
3⋃

i=1

intΠi, and intΠi is dense

in Πi, i = 1, 2, 3, it is sufficient to show that Π4 ⊂ cl

(
3⋃

i=1

Πi

)
, but this is a

consequence of intΠ4 = ∅.
The proof is complete.
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Statement (v) in Theorem 1 means that the set of primal-dual unstable
parameters is small in a topological sense (and so Π4 is also small). The next
example shows that an element of Π4 can be approached by primal-dual
stable parameters of the three remaining duality states.

Example 1 Let |T | ≥ n+1 and let t1, ..., tn+1 be different elements of T . Let
π = (a, b, c) ∈ Π be such that

at :=
{

0n, t 6= tn+1,
e1, t = tn+1,

bt :=
{

1, t 6= tn+1,
0, t = tn+1,

and c = e. Since (0n, 1) ∈ N and c /∈ M, π ∈ Π4. We give three sequences
of the form πr = (ar, b, c), r = 1, 2, ..., such that limr πr = π, each of the
sequences contained in a different set intΠi, i = 1, 2, 3. We define ar

t in the
three cases as follows:

(i)


ei

r , t = ti, i = 1, ..., n,
e1, t = tn+1,
e
r , otherwise.

(ii)
{

e1
r , t 6= tn+1,
e1, t = tn+1.

(iii)


− e

r , t = t1,
ei

r , t = t2, ..., tn,
e1, t = tn+1,
0n, otherwise.

We get the conclusion from Theorem 1, taking into account that:
Case (i): 2re is a Slater element for πr and cr = e ∈ intMr = int Rn

+;
Case (ii): 2re is a Slater element for πr and yr := (1,− (r + 1) , ...,− (r + 1)) ∈
Rn satisfies c′yr = 1 − (n− 1) (r + 1) < 0, and (ar

t )
′
yr = 1

r > 0 if t 6= tn+1

and (ar
t )
′
yr = 1 otherwise; and

Case (iii): 1
n+1

(
− e

r
1

)
+ 1

n+1

n∑
i=2

(
ei

r
1

)
+ 1

r(n+1)

(
e1

0

)
= n

n+1

(
0n

1

)
, so that

(0n, 1) ∈ intNr.

4 Primal-dual stability in continuous LSIP

Let Π be the space of parameters corresponding to a given triple π := (a, b, c)
such that T is an infinite compact Hausdorff topological space and n ≥ 2.
The next two lemmas provide the LSIP counterpart of Diagram 2, allowing
us the classification of π in terms of the associated moment cones.

Lemma 3 Let π ∈ ΠP
c . Then vP (π) 6= −∞ if and only if

({c} × R) ∩ cl N 6= ∅. (8)

Proof vP (π) 6= −∞ if and only if there exists α ∈ R such that c′x ≥ α for
all x ∈ F , i.e., (c, α) ∈ cl K.

If (8) holds, then there exists α ∈ R such that (c, α) ∈ cl N ⊂ cl K.

Conversely, assume that (c, α) ∈ cl K. Then there exist {λr}∞r=1 ⊂ R(T )
+

and {γr}∞r=1 ⊂ R+ such that(
c
α

)
= lim

r

{∑
t∈T

λr
t

(
at

bt

)
+ γr

(
0n

−1

)}
. (9)
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If {γr}∞r=1 is unbounded we can assume that limr γr = +∞, with γr > 0,

r = 1, 2, ... From (9) we get c = limr

(∑
t∈T

λr
tat

)
, so that

lim
r

(∑
t∈T

(γr)−1
λr

tat

)
= 0n. (10)

Now we define αr :=

(∑
t∈T

λr
t bt

)
− γr, r = 1, 2, ... From (9), limr αr = α.

Then limr (γr)−1
αr = 0, so that

lim
r

(∑
t∈T

(γr)−1
λr

t bt

)
= 1. (11)

From (10) and (11) we get (0n, 1) ∈ cl N , in contradiction with π ∈ ΠP
c .

Thus {γr}∞r=1 is bounded and so it contains a convergent subsequence.
We can assume that limr γr = γ ∈ R+. Since limr γr (0n,−1) = (0n,−γ), (9)
yields (

c
α + γ

)
= lim

r

{∑
t∈T

λr
t

(
at

bt

)}
∈ cl N,

and so (8) holds.

Corollary 1 (i) π ∈ Π2 if and only if (0n, 1) /∈ cl N and ({c} × R)∩ cl N =
∅.
(ii) π ∈ Π5 if and only if c /∈ M , (0n, 1) /∈ cl N and ({c} × R) ∩ cl N 6= ∅.

Proof It is straightforward consequence of Lemma 3.

Lemma 4 Let π ∈ ΠD
c . Then vD (π) 6= +∞ if and only if

{c} × R *K=N + R+ {(0n,−1)} . (12)

Proof It is immediate consequence of the geometric interpretation of D:
vD (π) = sup {α | (c, α) ∈ N} .

Corollary 2 (i) π ∈ Π3 if and only if {c} × R ⊂N + R+ {(0n,−1)} .
(ii) π ∈ Π6 if and only if (0n, 1) ∈ cl N, c ∈ M and {c} × R *N +
R+ {(0n,−1)} .

Proof (i) The direct statement is an immediate consequence of Lemma 4
(observe that {c} × R ⊂N + R+ {(0n,−1)} ensures that r−1 (c, r) ∈ N , for
all r = 1, 2, ..., so that (0n, 1) ∈ cl N). Conversely, assume {c} × R ⊂K.
Obviously, c ∈ M and Lemma 4 yields π ∈ Π3.

(ii) It is also a straightforward consequence of Lemma 4.
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As a consequence of statement (ii) in Corollary 2, if π ∈ Π6 then (0n, 1) /∈
N and so N is non-closed. In fact, (0n, 1) ∈ N and c ∈ M imply the existence
of α ∈ R such that (c, γ) ∈ N for all γ ≥ α, so that {c} × R ⊂K.

Diagram 3 summarizes the characterization of the duality states Πi, i =
1, ..., 6, in terms of M and N . There e(j) stands for the negation of statement
(j).

(0n, 1) ∈ cl N
(0n, 1) /∈ cl N

(8) e(8)
c /∈ M Π4 Π5 Π2

c ∈ M
(12)
e(12)

Π6

Π3
Π1

Diagram 3

The next example shows that Πi 6= ∅, i = 4, 5, 6, provided the compact
set T is infinite.

Example 2 In the proof of [19, Theorem 6.4(iii)] we have shown the existence
of a sequence of non-repeated indices {tr}∞r=1 ⊂ T , and a scalar mapping
ϕ ∈ C (T ) such that ϕ (tr) = 21−r, r = 1, 2, .., and 0 ≤ ϕ (t) ≤ 1 for all t ∈ T.
Then π1 :=

(
ϕ, 0n−1, ϕ

2, e2

)
∈ Π4 because (0n, 1) ∈ cl N1 and c1 /∈ M1,

π2 :=
(
ϕ, ϕ2, 0n−1, e1

)
∈ Π5, by Corollary 1, and π3 :=

(
ϕ, 0n−1, ϕ

1
2 , 0n

)
∈

Π6, by Corollary 2.

Theorem 2 The following statements are true:
(i) π ∈ intΠ1 if and only if Slater condition holds and c ∈ intM. Moreover,
intΠ1 is dense in Π1.
(ii) π ∈ intΠ2 if and only if there exists y ∈ Rn such that

c′y < 0 and a′ty > 0 for all t ∈ T. (13)

Moreover, intΠ2 is dense in Π2.
(iii) π ∈ intΠ3 if and only if (0n, 1) ∈ intN. Moreover, intΠ3 is dense in
Π3.
(iv) int Πi = ∅, i = 4, 5, 6.
(v) The class of primal-dual stable parameters is an open and dense subset
of Π.

Proof (i) The proof is the same as in Theorem 1(i).
(ii) Since Π2 ⊂ ΠP

c ∩
(
Π\ΠD

c

)
, the direct statement of the first part

is the same as in Theorem 1(ii). For the converse statement we assume the
existence of y ∈ Rn satisfying (13), which implies the Slater condition. Since
(13), for the same vector y, defines an open subset of Π by the continuity
assumption, there exists ε > 0 such that π1 :=

(
a1, b1, c1

)
∈ Π also satisfies

(13) if d
(
π1, π

)
< ε. Recall that the Slater condition of π1 guarantees that

N1 is closed and π1 ∈ ΠP
c .

If
({

c1
}
× R

)
∩N1 6= ∅, there exists α ∈ R and λ ∈ R(T )

+ such that(
c1

α

)
=
∑
t∈T

λt

(
a1

t

b1
t

)
. (14)
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Multiplying both members of (14) by (y, 0), we get the following contra-
diction:

0 >
(
c1
)′

y =
∑
t∈T

λt

(
a1

t

)′
y ≥ 0.

Consequently, π1 violates (8) and so vP
(
π1
)

= −∞, i.e., π1 ∈ Π2. Hence
π ∈ intΠ2.

The proof of the density of intΠ2 in Π2 is also similar to the corresponding
part of Theorem 1(ii). The only difficulty comes from the fact that M∞ could
be non-closed. Nevertheless, since c∞ /∈ M∞, in the worst case c∞ ∈ bd M∞
and so there exists a sequence {cr}∞r=1 ⊂ Rn\ cl M∞ such that limr cr = c∞.
For each r ∈ N there exists dr ∈ Rn such that ‖dr‖ = 1, (cr)′ dr < 0 and
(a∞t )′ dr ≥ 0 for all t ∈ T . Replacing d with dr in the definition of πr ∈ Π,
we get the same conclusion with the same argument.

(iii) First we prove that π ∈ intΠ3 ensures

({c} × R) ∪ {(0n, 1)}⊂ intK. (15)

Assume that (15) fails. Since Π3 ⊂ Π\ΠP
c , (0n, 1)∈ intN ⊂ intK ac-

cording to Lemma 2(ii). Then we must have {c} × R * intK. Moreover, by
Corollary 2, {c} × R ⊂K. Thus there exists α ∈ R such that (c, α) ∈ bd K.
By the supporting hyperplane theorem for cones there exists (d, γ) ∈ Rn+1\
{0n+1} such that

(d, γ)
(

c
α

)
= 0 (16)

and

(d, γ)
(

x
xn+1

)
≥ 0 for all

(
x

xn+1

)
∈ K. (17)

From (17) we get

a′td + γbt ≥ 0, for all t ∈ T, and γ ≤ 0. (18)

According to (18) two cases can arise.
If γ < 0 then −γ−1d ∈ F and so π ∈ ΠP

c , contradicting π ∈ intΠ3.
Hence γ = 0, so that d 6= 0n and c′d = 0, by (16).
Consider the sequence πr :=

(
a, b, c− d

r

)
, r = 1, 2, ... If πr ∈ Π3 then,

by Corollary 2,
(
c− d

r , 0
)
∈ Kr = K and, by (17), we get the following

contradiction: 0 ≤ d′
(
c− d

r

)
= −‖d‖2

r < 0.

Thus {πr}∞r=1 ⊂ Π\Π3 and limr πr = π, in contradiction with π ∈ intΠ3.
Conversely, assume that π satisfies (15). Observe that we can write K =

cone
{

(at, bt) , t ∈ T̃
}

, where T̃ = T ∪{s} is a compact Hausdorff topological

space, s is an isolated point of T̃ , (as, bs) = (0n,−1) and (a, b) ∈ C
(
T̃
)n+1

.
Since {(c, 0) , (0n, 1)}⊂ intK, by Lemma 1(i), there exists ε > 0 such that{(

c1, 0
)
, (0n, 1)

}
⊂ intK1 for all π1 ∈ Π such that d

(
π1, π

)
< ε. For such

a parameter π1 we have ± (0n, 1) ∈ K1 and
(
c1, 0

)
∈K1, and this entails{

c1
}
× R ⊂K1, i.e., π1 ∈ Π3. Hence π ∈ intΠ3 by Corollary 2.
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It remains to be proved that (15) is equivalent to (0n, 1) ∈ intN.
If (15) holds, π ∈ Π3 ⊂ Π\ΠP

c , so that (0n, 1) ∈ cl N. If (0n, 1) /∈ intN ,
then (0n, 1) ∈ bdN and there exists a supporting hyperplane to N at (0n, 1)
which turns out to be also supporting hyperplane to K at (0n, 1), so that
(0n, 1) ∈ bdK in contradiction with (15).

Now we assume that (0n, 1) ∈ int N . Since limρ→+∞

(
c
ρ , 1
)

= (0n, 1) ∈

intN ,
(

c
ρ , 1
)
∈ intN for ρ big enough such that α < ρ. In such a case,

(c, ρ) ∈ intN and we have(
c
α

)
=
(

c
ρ

)
+ (ρ− α)

(
0n

−1

)
∈ intN + (ρ− α)

(
0n

−1

)
⊂ int K,

because int N ⊂ intK and (0n,−1) is a recession direction of K. Hence
{c} × R ⊂ intK. Then (15) holds.

The proof of the second statement in (iii) is the same as in Theorem 1,
observing that the mappings (ar, br) : T → Rn+1 can be chosen continuous
on T according to Lemma 1(iii).

(iv) The proof of int Π4 = ∅ is the same as in Theorem 1. Next we prove
that int Π5 = int Π6 = ∅.

Assume π ∈ intΠ5. Then π ∈ intΠP
c and the Slater condition holds, so

that N is closed. Then Corollary 1 yields ({c} × R) ∩N 6= ∅ and so, c ∈ M .
This contradicts π ∈ Π5. Hence, int Π5 = ∅.

Finally, assume π ∈ intΠ6. Since Π6 ⊂ Π\ΠP
c , we have (0n, 1)∈ int N

by Lemma 2(ii). On the other hand, since Π6 ⊂ ΠD
c , we have c ∈ M so that

there exists α ∈ R such that (c, α) ∈ N . Given γ ∈ R two cases are possible:
If γ ≤ α, then (

c
γ

)
=
(

c
α

)
+ (α− γ)

(
0n

−1

)
∈ K.

Alternatively, if γ > α, then(
c
γ

)
=
(

c
α

)
+ (γ − α)

(
0n

1

)
∈ N ⊂ K.

In both cases (c, γ) ∈ K. Since π satisfies {c}×R ⊂K, π ∈ Π3 by Corollary
2, which contradicts π ∈ intΠ6.

(v) We must prove that the set of primal-dual stable parameters Ω :=
3⋃

i=1

int Πi (which is obviously open) is dense in Π. According to (i)-(iv), it is

sufficient to prove that int

(
6⋃

i=4

Πi

)
= ∅.

First we prove that int (Π5 ∪Π6) = ∅.
Assume the contrary, i.e., V := int (Π5 ∪Π6) 6= ∅. According to statement

(iv), since V is open and V ⊂ Π5 ∪Π6 we must have V ∩Π5 6= ∅ 6= V ∩Π6.
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Let π1 :=
(
a1, b1, c1

)
∈ V ∩ Π6 and let ε > 0 be such that π2 ∈ V if

d
(
π2, π1

)
< ε. We prove now the existence of π2 =

(
a2, b2, c2

)
∈ V such that

c1 ∈ intM2 discussing two possible cases.
Let c1 = 0n. Since π1 ∈ Π6, by Corollary 2, {0n} × R *K1 and so

(0n, 1) ∈ (cl K1) \K1 because (0n,−1) ∈ K1 and (0n, 1) ∈ cl K1. Since
(0n, 1) ∈ cl N1 and N1 ⊂ K1, we have (0n, 1) ∈ (cl N1) \N1, so that N1

is non-closed and 0n+1 ∈ conv
{(

a1
t

b1
t

)
, t ∈ T

}
. By Lemma 1(iv) there

exists
(
a2, b2

)
∈ C (T )n+1 such that 0n+1 ∈ int cone

{(
a2

t

b2
t

)
, t ∈ T

}
and∥∥(a2, b2

)
−
(
a1, b1

)∥∥
∞ < ε. Then c1 = 0n ∈ int cone

{
a2

t , t ∈ T
}

and so
π2 :=

(
a2, b2, c1

)
∈ V .

Alternatively, ssume that c1 6= 0n. Since c1 ∈ M1 = cone
{
a1

t , t ∈ T
}
,

by Lemma 1(iii) there exists a2 ∈ C (T )n such that
∥∥a2 − a1

∥∥
∞ < ε and

c1 ∈ int M2 = int cone
{
a2

t , t ∈ T
}
. Obviously, π2 :=

(
a2, b1, c1

)
∈ V .

On the other hand, by Lemma1(i), there exists δ > 0 such that c3 ∈
int cone

{
a3

t , t ∈ T
}

for all c3 ∈ Rn and a3 ∈ C (T )n such that
∥∥c3 − c1

∥∥
∞ < δ

and
∥∥a3 − a2

∥∥
∞ < δ. Then we have c3 ∈ intM3 for all parameter π3 :=(

a3, b3, c3
)
∈ Π such that d

(
π3, π2

)
< δ. Consider the open set

U :=
{
π3 ∈ V | d

(
π3, π2

)
< δ
}

.

Since V is open and π2 ∈ V , U 6= ∅. Moreover, if π3 ∈ U , then c3 ∈ intM3

and so π3 /∈ Π5. On the other hand, π3 ∈ V ⊂ Π5 ∪Π6, so that necessarily
π3 ∈ Π6. We have shown that U ⊂ Π6, so that int Π6 6= ∅ in contradiction
with (iv).

We complete the proof showing that int (Π4 ∪Π5 ∪Π6) = ∅.
We assume again the contrary. Let W := int (Π4 ∪Π5 ∪Π6) 6= ∅. If

W ∩Π4 = ∅, we must have W ⊂ Π5 ∪Π6 because W ⊂ Π4 ∪Π5 ∪Π6. Since
this contradicts int (Π5 ∪Π6) = ∅, we have W ∩Π4 6= ∅.

Let π1 :=
(
a1, b1, c1

)
∈ W ∩ Π4. Then (0n, 1)∈ cl N1 and there exists

ε > 0 such that d
(
π2, π1

)
< ε entails π2 ∈ W. Two cases are possible:

If 0n+1 /∈ conv
{(

a1
t , b

1
t

)
, t ∈ T

}
, the cone N1 is closed and (0n, 1)∈N1.

We take then π2 := π1.
Otherwise, we can write

0n+1 =
∑
t∈T

λt

(
a1

t

b1
t

)
,
∑
t∈T

λt = 1, λ ∈ R(T )
+ . (19)

Then we consider π2 :=
(
a1, b1 + ε

2 , c1
)
∈ Π. Since d

(
π2, π1

)
= ε

2 , π2 ∈
W. From (19) we get

ε

2

(
0n

1

)
=
∑
t∈T

λt

(
a1

t

b1
t + ε

2

)
∈ N2,

so that (0n, 1)∈N2.
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In both cases π2 ∈ W and (0n, 1)∈N2. Let δ > 0 be such that π3 ∈ W if
d
(
π3, π2

)
< δ. By Lemma 1(iii) there exists a continuous mapping

(
a3, b3

)
:

T → Rn+1 such that∥∥(a3, b3
)
−
(
a2, b2

)∥∥
∞ < δ and (0n, 1) ∈ int conv

{(
a3

t , b
3
t

)
, t ∈ T

}
.

Defining π3 :=
(
a3, b3, c1

)
∈ Π, we have π3 ∈ W and (0n, 1)∈ intN3. By

Lemma 1(i) there exists a neighborhood of π3, say V , V ⊂ W , such that
(0n, 1)∈ intN4 for all π4 ∈ V . In such a case π4 ∈ W ⊂ Π5∪Π6 and π4 /∈ Π5

so that π4 ∈ Π6. We have shown that V ⊂ Π6, which contradicts (iv).
The proof is complete.
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