
CDROM Proceedings

ISIE 2010

2010 IEEE International

Symposium on Industrial

Electronics

 Palace Hotel Bari

Bari, Italy

04 - 07 July, 2010

Sponsored by

The Institute of Electrical and Electronics Engineers (IEEE)

IEEE Industrial Electronics Society (IES)

Co-sponsored by

IEEE Control Systems Society (CSS)

Society of Instrument and Control Engineers (SICE-Japan)

Politecnico di Bari, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16367393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2010 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

IEEE Catalog Number: CFP10ISI-CDR

ISBN: 978-1-4244-6391-6

2

Application-Driven Co-design of Fault-Tolerant
Industrial Systems

F. Restrepo-Calle∗, A. Martı́nez-Álvarez∗, H. Guzmán-Miranda†, F. R. Palomo† and S. Cuenca-Asensi∗
∗Computer Technology Department, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
†Department of Electrical Engineering, University of Sevilla, Camino de los Descubrimientos, 41092 Sevilla, Spain

Abstract—This paper presents a novel methodology for the
HW/SW co-design of fault tolerant embedded systems that
pursues the mitigation of radiation-induced upset events (which
are a class of Single Event Effects - SEEs) on critical industrial
applications. The proposal combines the flexibility and low cost
of Software Implemented Hardware Fault Tolerance (SIHFT)
techniques with the high reliability of selective hardware repli-
cation. The co-design flow is supported by a hardening platform
that comprises an automatic software hardening environment and
a hardware tool able to emulate Single Event Upsets (SEUs).
As a case study, we selected a soft-micro (PicoBlaze) widely
used in FPGA-based industrial systems, and a fault tolerant
version of the matrix multiplication algorithm was developed.
Using the proposed methodology, the design was guided by the
requirements of the application, leading us to explore several
trade-offs among reliability, performance and cost.

I. INTRODUCTION

Currently, it is a fact that electronic components are more
sensitive to Single or Multiple Event Effects induced by
radiation due to its progressive miniaturization [1] [2]. These
effects can cause catastrophic consequences in critical indus-
trial applications whose operation take place under harsh envi-
ronments where there are present ionizing radiation particles.
Although these radiation-induced upset events are commonly
found in the space environment, they are also present in a
lower measure in the atmospheric environment [3] and even at
ground level [4]. Therefore, fundamental information on min-
imum environmental withstand conditions (including SEEs)
for electronic components has been established by several
technical committees in each industrial field. These documents
define detailed qualification requirements that electronic com-
ponents must meet for its use. Some examples of them are:
for aerospace applications, ESA PSS-01-609 (The Radiation
Design Handbook) [5]; for avionic systems, IEC/TS 62396
(Process Management for Avionics - Atmospheric radiation
effects) [6]; for military systems, MIL-HSBK-817 (System
Development Radiation Hardness Assurance) [7]; etc.

Reliability problems have been mitigated usually using
redundant hardware. Classic designs are based on the full trip-
lication of the internal hierarchical modules [8], despite being
very costly approaches. Some others, more recent techniques
published in the literature [9] propose the selective hardening
of the design, which means that a system needs to detect
which parts of the circuit are more vulnerable or have larger
probability of provoking a catastrophic behavior of the design
itself. However, as mentioned above, electronic components

have become more sensitive to transient faults. Therefore,
during recent years several proposals based on redundant
software have been developed, providing fault detection and
recovery capabilities to applications [10] [11] [12]. These
works are especially motivated by the need for low cost
solutions (using Commercial Off The Shelf - COTS hardware),
ensuring an acceptable level of reliability.

Since most hardening strategies (based on HW or SW redun-
dancy) are designed to be applied in the handling of a wide
set of applications without look after each constraint of the
application, these lead to high costs, increase the development
time and rise the performance and code overheads.

In this context, we propose the application-driven HW/SW
co-design to achieve a customized fault tolerant version of
the system that met the requirements of the application (fault
coverage level, costs, execution time, memory size, . . .).

The co-design flow is supported by a hardening platform,
which is aimed to develop and evaluate fault tolerant em-
bedded systems. This platform allows an easy design space
exploration, taking advantage of the best of both worlds: the
low cost of the software techniques and the high reliability of
hardware redundancy. It is made up of a software hardening
tool and a hardware SEU emulation tool. The first one is
based on a generic and extensible architecture that allows
handling multiple microprocessor targets and performs au-
tomatic source code transformations at low instruction level
(assembler). The second one, based on FPGAs, permits to
assess several reliability metrics of the overall system and
identify the SEU-critical areas that must be hardened. By
emulating SEUs at hardware level, it is possible to obtain more
accurate results than by using simulation techniques. As the
hardware emulation considers faults in hidden registers such
as those ones in pipeline.

The PicoBlaze soft-micro was selected as test vehicle to
work with. By the software side, a basic application of
matrix multiplication was chosen. Thanks to their simplicity
it was possible to fully understand the problem and to be
prepared to use our tools subsequently to more powerful 32-
bits architectures.

Next section presents the application-driven co-design flow.
Section III describes the hardening platform. Section IV
includes a case study applying the presented methodology.
Section V presents the experiments and their results. Finally,
Section VI concludes the paper and suggests directions for
future research.

978-1-4244-6391-6/10/$26.00 ©2010 IEEE 2005

II. APPLICATION-DRIVEN CO-DESIGN OF FAULT
TOLERANT SYSTEMS

The first step of our design methodology is the derivation
of a set of system requirements from the point of view
of the embedded application. Such requirements can be di-
rectly a system constraint or may target any kind of fault
tolerance metric associated to a specific application. System
constraints generally are related to silicon area, performance,
power consumption and costs; whereas, fault tolerance metrics
are concerned with fault coverage (FC), detection fault rate,
recovery time, overheads, etc. These requirements feed into
the generation of a test bench to guide the co-design of the
system where constraints and fault tolerance metrics motivate
design decisions. The incremental adoption of SIHFT tech-
niques can then determine a set of suitable implementations
of the software side of the system. Following, fault injection
campaigns are performed to evaluate FC and identify critical
system regions. The solution is not necessarily a single point
in the design space but may result in a range of trade-offs.

The proposed co-design flow can be summarized as follows:
1) The specific requirements of the application (constraints

and fault tolerance metrics) are fully defined.
2) Several SIHFT techniques are applied incrementally to

obtain n candidate implementations of the software.
3) Each candidate implementation is evaluated to estimate

its overhead comparing with the original program, in
terms of code and execution time.

4) All solutions that met the maximum overheads specified
are selected to run on the original microprocessor.

5) Using our SEU emulation tool, an overall fault injection
campaign is performed to estimate the FC provided for
each candidate running on the microprocessor system.

6) For the selected ones, an exhaustive fault injection
campaign is carried out in order to identify the SEU-
critical flip-flops that are not protected by the SIHFT
techniques.

7) Hardware redundancy is applied to those identified SEU-
critical flip-flops using different criteria depending on
the reliability requirements of the application.

The result is a set of HW/SW configurations that achieve an
optimized fault tolerant version of the system.

III. HARDENING PLATFORM

The platform that supports the proposed methodology com-
prises two suites of tools that follow the different nature
of the two main steps in the co-design process, a software
hardening development environment and a hardware tool for
the evaluation of the robustness of the whole system.

A. Hardening Development Environment

We propose the use of a generic architecture to implement
the hardening tasks. This architecture is useful to provide a
uniform hardening core compatible with usual microproces-
sors by means of automatic code transformations. Therefore, to
provide all the needed tools to implement and evaluate SIHFT
techniques, we propose the scheme showed in Fig. 1.

...

Arch. 1

Arch. 2

Arch. n-1

Arch. n

Compiler back-ends

...

Compiler front-ends

Generic

Instruction

Flow Hardened

source

code

Arch. 1

Generic Architecture

HardenerArch. 2

Arch. n-1

Arch. n

Simulator

Hardened

Generic

Instruction

Flow
Original

source

code

Fig. 1. Hardening Development Environment

The compiler front-ends take the original source code from
a supported architecture, perform lexical, syntactical and se-
mantic analyses, and finally generate a Generic Instruction
Flow (GenInsFlow) as output. This flow represents a high level
abstraction of a program that allows a platform independent
implementation of the hardening routines (in the hardener).
After the hardening process, the hardener produces a hardened
GenInsFlow, which is taken by the selected compiler back-end
to generate the hardened source code for the selected spe-
cific architecture. The hardening environment includes several
functionalities that are common to the state-of-the-art SIHFT
techniques: insertion of code, compile-time transformations,
control flow analysis, management of architecture’s resources,
etc.

As better results are reported when low level instruction
redundancy is applied, the hardening environment is conceived
to perform code transformations at low level (assembler).

Using this scheme, the environment is prepared to take
a code written for a supported architecture, perform its
compilation and generic hardening, and finally, generate the
output of the hardened source code targeting the same original
architecture or to a different one by means of the back-ends.

Moreover, it is worth to mention that the software tools
which comprise the hardening development environment are
multiplatform, and have been successfully tested in Debian
GNU/Linux (Kernel 2.6.30) and Windows XP SP3/Vista.

1) Generic Architecture: We took into account three top-
ics to develop the generic architecture: generic instructions,
memory management and control flow graph.

a) Generic Instruction: The generic architecture is de-
fined by means of generic instructions. Each generic instruc-
tion is composed of the following fields.

Address. Memory address where the instruction has been
assembled by the compiler front-end.

Mnemonic. Original mnemonic of the instruction.
Generic Operator List. Generic operators present at the

instruction. Each operator is a member of the list and each one
has three fields, they are: operator type, addressing mode and
real name. The Operator Type defines the kind of operator,
such as: Register, Literal, Address or Flag. The Addressing
Mode can be: Absolute, Register Indirect, Immediate Literal,
among others. Finally, the Real Name is the operator’s original
name.

Affected Generic Flag List. Generic flags affected by the
execution of the instruction. Each generic flag is composed
of a type and a name. The Generic Flag Type can be: Zero,

2006

Carry, Interrupt Enable, etc. The Real Name is the original
flag name of the target architecture.

Instruction Type. This is used to classify the instructions. It
is very important because the hardening process depends on
this type. For example, it is different to handle an arithmetic
instruction and a control flow instruction during hardening.
Some of the supported types are: interrupt, directive, control
flow, arithmetic, logic, storage, input/output and shift/rotate.

Tool Message. This is a log the environment tools use to
register events.

b) Memory Management: A common task for the SIHFT
techniques is the insertion of instructions into the original
code during compilation time. Therefore, it is necessary to
supply the following memory management means within the
hardener tool: identification of the memory map, extraction
of the code sections and memory map update. The following
three possibilities were developed to update the memory map:
dilation, displacement and reallocation.

Dilation. When one or more instructions are inserted into
a memory section, it grows and the affected instructions
addresses should be reassigned.

Displacement. If some instructions are inserted into a previ-
ous memory section, it is possible having an overlapping with
the following section. Then this section must be completely
moved, updating all its instructions addresses.

Reallocation. If there is a memory overflow caused by
previous instructions insertions, then it is needed to perform
a complete reallocation of all memory sections. During this
process, free memory space among memory sections is fully
used. This situation may happen because of the reduced
memory size in embedded systems.

c) Control Flow Graph: The generic architecture allows
identifying the control flow graph from a given GenInsFlow.
This graph is the key for most SIHFT techniques.

The control flow graph is represented by a directed graph.
In order to build it, first we must identify the program’s
basic blocks. A basic block is a group of instructions that
are executed sequentially, without any jump instruction nor
function call, excepting possibly the last instruction. Also, a
basic block does not contain instructions being the destination
of a call or jump instruction, excepting the first instruction.
Each basic block represents a node in the graph. The control
flow changes are represented in the graph as links among the
nodes. Fig. 2 shows an example of a control flow graph.

Additionally, as it was proposed by Reis et al. [13], only
the store instructions ultimately send data out of the logical
domain of redundant execution. Then it is necessary to perform
special verification before the execution of these instructions.

Node 1

Node 4

Node 3Node 2

Node 5

Node 1: {I1, I2, I3, I4, I5}

Node 2: {I6, I7, I8}

Node 3: {I9, I10}

Node 4: {I11, I12, I13}

Node 5: {I14}

Fig. 2. Control Flow Graph

Therefore, in this paper we propose that the nodes (basic
blocks) of the control flow graph should be subdivided into
subnodes after each store instruction (Fig. 3).

Node 1

I1: ______

I2: ______

I3: STORE

I4: ______

I5: ______

Node 1

I1: ______

I2: ______

I3: STORE

I4: ______

I5: ______

Subnode 1

Subnode 2

Fig. 3. Subnodes

2) Generic Hardening Core:
a) Hardener: This tool receives the GenInsFlow from the

compiler front-ends. Then, according to the options selected
by the user, it applies the hardening routines. Finally, a new
hardened GenInsFlow is produced, which is re-targeted to one
of the supported architectures by one of the back-ends. The
most important hardening options are:
--method. Selects the SIHFT technique to be applied.
--mcpu. Target microprocessor to generate the output.
--replicationRegisterLevel. Defines the register

redundancy level, such as: 0 - minimum redundancy level, for
example in the instruction ADD s0, s1 only the register
s0 is copied; 1 - every register has a copy, for example in the
instruction showed above, registers s0 and s1 will be copied.
--replicationTimes. Defines the number of copies

of each redundant instruction (0 - none, 1 - duplicate, 2 -
triplicate).
--voter. Used to define voter and recovery routines.
--NOlookAheadAvailableRegs. Disable the ad-

vanced registers search. This is an optimization that consists
of finding available registers for replication purposes looking
forward than the current node along the control flow graph.

b) Instruction Set Simulator — ISS: This tool simulates
the GenInsFlow. It presents information about the state of the
resources of the architecture during and after the simulation
process.

Likewise, the ISS allows verifying if the functionality of
the hardened programs matches the original non-hardened
programs functionality. This is possible by means of the
check-hardening option that use information stored in
the source code through a compiler pragma to know which
the expected results are.

After the simulation process, the ISS presents a brief sum-
mary to inform the code and execution time overheads of the
applied hardening technique. Also, it performs a characteriza-
tion of the simulated programs, informing the percentage of
executed instructions by its type: arithmetic, logical, control
flow, etc.

B. SEU Emulation Tool — FT-Unshades

The FT-Unshades system, described in [14], is a FPGA-
based platform for the study of digital circuit reliability against
radiation-induced soft errors. SEU affecting the circuit are
emulated by inducing bit-flips in the circuit under study, by
means of partial reconfiguration.

2007

The system is composed of a FPGA emulation board and
a suite of software tools for design preparation, testing of the
emulated design, and analysis of the test results. The main
software of the suite is the FT-Unshades Test aNalysis Tools
(TNT) program, which manages the communications with
the board, the partial reconfiguration and the test campaign
execution.

In the original version of FT-Unshades, two instances of
the circuit or module under test (MUT) are instantiated in
the implemented design: Target and Gold. Faults are injected
over the Target instance, whereas the Gold instance remains
unchanged for comparison purposes.

The system has been extended for the study of microproces-
sor architectures. An exhaustive description of this extension
can be found in [15]. Instead of two instances of the MUT
(Gold and Target), the implemented design has just one
instance of the MUT (Target), and the Golden instance is
substituted by a Smart Table (see Fig. 4). This is needed
because the typical cycle-by-cycle comparison would classify
as output error the effect of faults that could be corrected if
the Target microprocessor was given more processing time.
The exact additional time, measured in clock cycles, which
the affected microprocessor needs to output the correct value
is called recovery time.

The Smart Table is an automaton which implements the
relaxed time restrictions needed for the fault injection testing
of microprocessors that implement SIHFT techniques.

The Smart Table can be configured in emulation-time (this
is, after synthesis, implementation and FPGA programming).
First, the Smart Table must be configured with the outputs
of a Golden Run of the Target microprocessor. This means a
whole emulation of the circuit processing workload is done,
but without injecting any bit-flips. When being configured
during a Golden Run, the Smart Table not only memorizes
the sequence of the correct outputs, but also the time (in clock
cycles) where the outputs change.

After filling the Smart Table with the [expectedOutput,
expectedCycle] duplets, the most important parameter the user
must configure is the critical recovery time (Tcrit), which is
the maximum recovery time allowed for the microprocessor.
This means that if the microprocessor outputs the correct
value in expectedCycle + Tcrit cycles, the fault is classified as
producing no damage. But if expectedCycle + Tcrit + 1 clock
cycles have passed and the microprocessor has not output any

Target MUT

COUNTER

COUNTER

SMART
CONTROLLER

Inputs

Outputs

COMP

Fig. 4. FT-Unshades implementation approach using Smart Table

value yet, the Smart Table classifies the fault as producing
timeout. Note that, since the emulation stops at this moment,
timeout can mean either that the program execution has frozen,
or that the damage is so bad that the hardening technique
cannot recover the correct values after Tcrit + 1. Since we
want to relax the time restrictions of the test, but we want
the output data sequence to be correct, if the microprocessor
outputs a wrong value (Output != expectedOutput) before
expectedCycle + Tcrit + 1, the fault is classified as producing
output damage.

IV. CASE STUDY

As a case study, it is presented the co-design of a hardened
version of the matrix multiplication algorithm in the PicoBlaze
soft-micro [16].

A. PicoBlaze

This is an 8 bit soft-micro widely used in FPGA-based
embedded systems. It supports the following main features:
16 byte-wide general-purpose data registers, 1K instructions
of programmable on-chip program store, Byte-wide Arithmetic
Logic Unit (ALU) with CARRY and ZERO indicator flags and
64-byte internal scratchpad RAM.

In order to transform PicoBlaze code with our software
hardening environment, a compiler front-end and back-end
were developed.

The PicoBlaze front-end for takes the original KCPSM3
source code, performs lexical, syntactical and semantic anal-
yses, and finally generates a GenInsFlow as output. This
is a multiplatform compiler front-end that provides a very
accurate error localization, compared with any other PicoBlaze
compilers (including the official KCPSM3 compiler).

After the hardening process (performed by the hardener),
it is produced a hardened GenInsFlow, which is taken by the
developed compiler back-end for PicoBlaze, transforming the
flow back to the KCPSM3 syntax.

B. SIHFT Fault Tolerance Techniques

Since matrix multiplication algorithm is highly comprised
of arithmetic and logic instructions, several SIHFT techniques
(detection and recover) aimed to protect those instruction types
were implemented. These techniques are based on the well
known Triple Modular Redundancy (TMR) approach.

First implemented strategy (TMR1) can be summarized as
follows.

1) Identification of nodes (basic blocks) and subnodes in
the program.

2) Build the control flow graph of the program.
3) Triplication of the operation.
4) Insertion of majority voters and recovery procedures for

protected registers at the following points: just before
the last instruction of each node/subnode and also, just
before any instruction being the destination of a jump
or function call.

5) During the hardening process, majority voters and re-
covery procedures are dynamically injected when there

2008

are not enough available registers to replicate. By means
of this, registers copies will be released to continue with
the hardening process.

Second implemented strategy (TMR2) consists in detect and
correct faults in the program data by computing the values
twice and recomputing a third time if a discrepancy between
the first two values occurs.

Fig. 5 shows an example of the hardening of a simple
program (KCPSM3 syntax) using TMR1 and TMR2 applied
to arithmetic instructions.

add s0, 3F

store s0, 10

load S1, s0 ; Copy

load S2, s0 ; Copy

add s0, 3F

add S1, 3F ; Redundant

add S2, 3F ; Redundant

compare S0, S1 ; Voter

jump Z, 008 ; Voter

load S0, S2 ; Recovery

store s0, 10

load S1, s0 ; Copy

load S2, s0 ; Copy

add s0, 3F

add S1, 3F ; Redundant

compare S0, S1 ; Voter

jump Z, 008 ; Voter

add S2, 3F ; Redundant

load S0, S2 ; Recovery

store s0, 10

TMR1 TMR2

Original version

Fig. 5. Hardened program using TMR1 and TMR2 applied to arithmetic
instructions

For the remaining of the paper, we will call arithTMR1 to
the technique used when the first hardening strategy (TMR1)
is applied to arithmetic instructions. When applied to logic
instructions, it will be named logicTMR1. So, if it is applied
to both arithmetic and logic instructions, it will be named
arithTMR1+logicTMR1. This naming scheme also applies
when using the second hardening strategy (TMR2).

V. EXPERIMENTS AND RESULTS

Firstly, the requirements of the application must be defined
in terms of performance constraints and reliability metrics.
For instance, when it is considered an application whose time
response is critical, the maximum execution time overhead has
to be defined as appropriate, whereas other applications could
be more restrictive in other aspects as reliability.

The original version of the matrix multiplication (mmult)
algorithm was written using the KCPSM3 syntax. The
original program can be automatically transformed, us-
ing the hardening environment, by applying six SIHFT
techniques (arithTMR1, arithTMR2, logicTMR, logicTMR2,
arithTMR1+logicTMR1, arithTMR2+logicTMR2). The func-
tionality of each hardened version is checked using the ISS,
assuring that it is equivalent to the original non-hardened
program functionality. After this, using the ISS as well, the
code and execution time overheads can be obtained for each
hardened version comparing them with the original program.
Table I presents results for mmult.

TABLE I
CODE AND EXECUTION TIME OVERHEADS FOR mmult

Program: mmult Code overhead Execution time overhead
arithTMR1 ×2.30 ×2.92
arithTMR2 ×2.01 ×2.60
logicTMR1 ×2.30 ×1.33
logicTMR2 ×2.01 ×1.28
arithTMR1+logicTMR1 ×3.61 ×3.26
arithTMR2+logicTMR2 ×3.03 ×2.88

The overheads analyses can motivate important design de-
cisions, e.g. as the arithTMR1+logicTMR1 approach causes
unsuitable overheads for a particular application of the mmult
algorithm, this hardened version could be discarded for further
analyses.

In order to continue with the process, it is necessary to
implement the hardware of the system to be tested within the
FT-Unshades SEU emulation tool. After this, a fault injection
campaign is prepared and executed for the whole system. In
our case study, the hardware was implemented with the official
Xilinx PicoBlaze netlist and it was designed a test campaign
with following features:

• The emulated design is RTL-equivalent to the final hard-
ware.

• Random injection of SEU in a target bit chosen from all
sixteen 8-bit registers (from s0 to sF) and flags (zero and
carry).

• Total number of injected SEUs: 13.000 (one per run).
• The clock cycle for the SEU injection was randomly

selected from all the workload duration.
• Tcrit was defined as 10 clock cycles, giving to the

microprocessor 10 more clock cycles than the usual time
usual to recover the system to a fault-free state.

Table II shows the FC results obtained for each version
of the system, including the non-hardened one. Results have
been classified according to the effects caused in the program
due to injected fault as: correct results, when despite the fault,
the expected results are obtained; incorrect results, either when
wrong results are obtained due to the fault or if the fault causes
an infinite loop in the execution of the program.

FC results jointly with overheads results must be taken
into account in the next decisions about system design. As
it can be seen, the combination of arith and logic versions
does not produce a better coverage than each approach by its
self. It could be possible that the system constraints and fault
tolerance minimums were already fulfilled by some SIHFT
version; otherwise hardware redundancy must be applied. For
example, if execution time is critical, the logicTMR2 approach
can be selected for further fault coverage improvements. On
the contrary, if code size is a restriction, arithTMR2 and
logicTMR2 could be selected. In our case, logicTMR1 was
selected because it offers the highest FC and acceptable
overheads.

Afterwards, it must to be prepared an exhaustive fault
injection campaign for the chosen approach(es). This time the

TABLE II
FC RESULTS FOR EACH SIHFT TECHNIQUE

mmult Correct results Incorrect results
original 73.14% 26.86%
arithTMR1 90.15% 9.85%
arithTMR2 91.09% 8.91%
logicTMR1 92.27% 7.73%
logicTMR2 89.64% 10.36%
arithTMR1+logicTMR1 90.68% 9.32%
arithTMR2+logicTMR2 91.10% 8.90%

2009

test campaign was performed emulating 100 SEUs for each
bit from the target (sixteen 8-bit registers and flags), one SEU
per run in a randomly selected clock cycle. Notice that this
experiment is a really exhaustive test campaign because all
possible memory cells are tested in 100 different times. The
majority of the injection campaigns related in the literature
usually performs SEU injections in the order of 102 from all
the architecture registers, whereas we injected in the order
of 103 for the defined target. Focusing in the logicTMR1
approach, the Fig. 6 presents the percentage of failure behavior
caused by the target bits (flip-flops) when a SEU had affected
them.

0

5

10

15

20

25

30

35

40

45

50

P
e

rc
e

n
ta

g
e

 o
f
fa

ilu
re

 b
e

h
a

v
io

r
w

h
e

n
 S

E
U

 i
n

je
c
te

d
 [
%

]

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sA sB sC sD sE sF Flag
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Z C

s0

B
it
 0

B
it
 1

B
it
 2

B
it
 3

B
it
 4

B
it
 5

B
it
 6

B
it
 7

Threshold

Fig. 6. SEU-critical flip-flops on target for logicTMR1

These results are useful to identify the SEU-critical bits in
the system, that are not protected by the SIHFT technique and
should be hardened using hardware redundancy. It is worth
mention that hardware redundancy has a minimum associated
cost of ×3, 2 (triplication of resources plus voter). Therefore,
if there is a cost area constraint and it is not possible to apply
hardware redundancy to all of the SEU-critical identified flip-
flops, they must to be prioritized according to which one has
a higher probability to provoke an undesired behavior of the
system. For instance, the selected flip-flops will be those ones
whose failure percentage is above a predefined threshold (in
this case 15%).

Finally, after applying the hardware redundancy to the
selected flip-flops, it is expected to end up with a HW/SW
system configuration (or more) that satisfies the reliability
requirements of the studied application.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new methodology for
the co-design of fault tolerant industrial systems affected by
radiation-induced upset events. It is based on a guided co-
design flow that able the designer to apply hardware and
software hardening methods obtaining the best trade-off taking
into account the requirements of a specific application (cost,
performance, overheads, FC level, . . .). This methodology is
supported by a hardening platform that allows a quick space
design exploration to reach the requirements. The platform

comprises a SIHFT development environment and a hardware
SEU emulation tool. In order to confirm the feasibility of our
proposal, a case study has been considered to the hardening of
matrix multiplication algorithm in the PicoBlaze soft-micro.

The SIHFT development environment will be extended for
being used with more advanced microprocessors to take advan-
tage of the generic architecture which the generic hardening
core is based on.

ACKNOWLEDGMENT

This work makes part of RENASER project
(ESP2007-65914-C03-03) funded by the 2007 Research
National Plan of the Ministry of Science and Education
in which context this work has been possible. The work
presented here has been carried out thanks to the support of the
research projects ’Aceleración de algoritmos industriales y de
seguridad en entornos crı́ticos mediante hardware: Aplicación
al sector calzado’ (GV/2009/098) (Generalitat Valenciana)
and ’Aceleración hardware de algoritmos industriales para el
sector calzado’ (GRE08-P11) (University of Alicante).

REFERENCES

[1] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Trans. on Device and Materials Reliability, vol. 5,
no. 3, pp. 305–316, Sept 2005.

[2] P. Shivakumar, et al, “Modeling the effect of technology trends on the
soft error rate of combinational logic,” in Int. Conf. on Dependable
Systems and Networks, 2002, pp. 389–398.

[3] R. Edwards, et al., “Technical standard for atmospheric radiation single
event effects (SEE) on avionics electronics,” in IEEE Radiation Effects
Data Workshop (REDW), 2004, Proc. Paper, pp. 1–5.

[4] R. Baumann, “Soft errors in commercial semiconductor technology:
Overview and scaling trends,” IEEE 2002 Reliability Physics Tutorial
Notes, Reliability Fundamentals, p. 121, April 2002.

[5] ESA, “The Radiation Design Handbook ESA PSS-01-609,” European
Space Agency, Tech. Rep., 1993.

[6] IEC, “IEC/TS 62396-1,” International Electrotechnical Commission,
Tech. Rep., March 2006.

[7] DoD, “MIL-HDBK-817, Military Handbook System Develop Radiation
Hardness Assurance,” Department of Defense. USA, Tech. Rep., 1994.

[8] H. H. Amer and R. M. Daoud, “Fault-secure multidetector fire protection
system for trains,” Instrumentation and Measurement, IEEE Transac-
tions on, vol. 56, no. 3, pp. 770–777, June 2007.

[9] P. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular
redundancy (stmr) based single-event upset (seu) tolerant synthesis for
fpgas,” Nuclear Science, IEEE Transactions on, vol. 51, no. 5, Oct. 2004.

[10] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by
duplicated instructions in super-scalar processors,” IEEE Transactions
on Reliability, vol. 51, no. 1, 2002.

[11] M. Rebaudengo, M. S. Reorda, and M. Violante, “A new software-based
technique for low-cost Fault-Tolerant application,” Annual Reliability
and Maintainability Symposium, 2003 Proceedings, pp. 25–28, 2003.

[12] G. A. Reis, J. Chang, and D. I. August, “Automatic instruction-level
software-only recovery,” IEEE Micro, vol. 27, no. 1, pp. 36–47, 2007.

[13] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: software implemented fault tolerance,” CGO 2005: Int Sym-
posium on Code Generation and Optimization, pp. 243–254, 2005.

[14] J. Napoles, H. Guzman, M. Aguirre, J. Tombs, F. Munoz, V. Baena,
A. Torralba, and L. Franquelo, “Radiation environment emulation for
VLSI designs A low cost platform based on xilinx FPGAs,” in IEEE
International Symposium on Industrial Electronics, ISIE 2007, 2007.

[15] H. Guzman-Miranda, M. Aguirre, and J. Tombs, “Noninvasive fault clas-
sification, robustness and recovery time measurement in microprocessor-
type architectures subjected to radiation-induced errors,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 58, no. 5, May 2009.

[16] K. Chapman, PicoBlaze KCPSM3. 8-bit Micro Controller for Spartan-3,
Virtex-II and Virtex-II Pro. Xilinx Ltd., 2003, October 2003.

2010

