
Rapid Prototyping of Radiation-Tolerant Embedded Systems on FPGA

F. Restrepo-Calle∗, A. Martı́nez-Álvarez∗, F.R. Palomo†, H. Guzmán-Miranda†, M.A. Aguirre† and S. Cuenca-Asensi∗
∗Computer Technology Department, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
†Department of Electrical Engineering, University of Sevilla, Camino de los Descubrimientos, 41092 Sevilla, Spain

Abstract—Technological advances of Field Programmable
Gate Array (FPGA) are making that this technology becomes
the most preferred platform for the rapid prototyping of
highly integrated digital systems. In addition, protection of
processor-based systems to mitigate the harmful effects of
radiation-induced upset events is gaining importance while
technology shrinks. In this context, the main contribution of
this work is a novel rapid prototyping approach for the co-
design of dependable embedded systems using FPGA. This
is supported by a hardening platform that allows combining
software-only fault-tolerance techniques with hardware-only
approaches, representing several trade-offs among design con-
straints, reliability and cost. As case study, several radiation-
tolerant embedded systems have been developed based on a
technology-independent version of the Picoblaze processor.

I. INTRODUCTION

In recent years progressive miniaturization of electronic
components has led important advances in microprocessors.
However, this fact has both advantages and disadvantages.
The most meaningful advantage has been the dramatically
increase of microprocessors performance. Although, while
technology shrinks, voltage source level and noise margins
are reduced, causing that electronic devices become less
reliable and microprocessors more susceptible to transient
faults induced by radiation. These intermittent faults do not
provoke a permanent damage, but may result in incorrect
program execution by altering signal transfers or stored
values [1].

Applying redundant hardware has been the usual way
to mitigate reliability problems. This strategy has been
applied from low level structures (ECC, parity bits) to more
complex components like functional units [2], co-processors
[3], etc. In the same way, several approaches have exploited
the multiplicity of hardware blocks available on multi-
threaded/multi-core architectures to implement redundancy
[4], [5]. More recent techniques published in the literature
[6] propose selective hardening of the design, which means
that the system is protected only in the more vulnerable
parts. The hardware approaches provide a very effective
solution for transient faults. However, these techniques are
unfeasible in many cases due to the increased costs involved.

This work was funded by the Ministry of Science and Education in
Spain with the RENASER project (ESP2007-65914-C03-03) and the
Generalitat Valenciana in Spain with the research project ’Aceleración
de algoritmos industriales y de seguridad en entornos crı́ticos mediante
hardware’ (GV/2009/098).

In addition to this, during recent years several proposals
based on redundant software have been developed, pro-
viding both detection and error correction capabilities to
applications. These works are especially motivated by the
need for low cost solutions, ensuring an acceptable level of
reliability [7], [8], [9]. While software-based approaches are
cheaper than hardware-based ones, they cannot achieve the
same performance or reliability, since they have to execute
additional instructions.

Despite the wide number of different hardware-only and
software-only methods, in many cases the optimal solution
is an intermediate point and it is needed to design the
system combining software and hardware aspects (hard-
ware/software co-design). Some recent works have shown
the viability of this hybrid strategy [10], [11].

In this context, it is important to count with suitable
tools which allow designers to easily explore the design
space in order to find the best trade-offs that satisfy the
requirements of a system in terms of performance, reliability,
and hardware cost. In addition, every time designers must
face shorter Time-to-Market, tighter design constraints and
higher reliability goals. Unlike VLSI design, the design
iterations of FPGA based implementations need not be
frozen much earlier in the design cycle. Therefore, there
is a growing use of FPGAs to prototype ASICs as part of
an ASIC verification methodology.

In this paper, FPGAs are used as development and ver-
ification platform in order to produce HW/SW embedded
systems that best meet the design and reliability constraints.
Mitigation techniques are applied to a high abstraction level
so the final deployment platform will be an ASIC or an
FPGA; in the second case, some additional mechanisms,
like configuration scrubbing, have to be taken into account
to protect the configuration memory.

Our prototyping approach is supported by a hardening
platform that is made up of two suites of tools: a software de-
velopment environment aimed to implement, automatically
apply and evaluate software-only fault tolerant techniques
[12]; and a FPGA-based fault emulation tool called FTUn-
shades [13] that permits to assess several reliability metrics.

As case study for validating our approach, we have
studied the hardening of several embedded applications
based on the PicoBlaze soft-microprocessor [14]. By the
software side, the SWIFT-R technique [15] has been imple-
mented and automatically applied to several benchmarks;

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.71

330

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.71

326

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.71

326

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16367391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

whereas on the hardware side, using a RTL implementation
(technology-independent) of the Picoblaze soft-micro, five
different versions have been developed varying the hardware
redundancy level. Different trade-offs among code overhead,
performance, fault coverage and cost have been represented.

II. FAULT MODEL AND TERMINOLOGY

In this paper we will focus on the well known Single Event
Upset fault model. In this SEU fault model, only one bit-
flip of a storage cell occurs throughout the execution of the
program. This effect is caused by the ionization provoked by
an incident charged particle. Despite its simplicity, the SEU
fault model is widely used in the fault tolerance community
to model real faults because it closely matches the real fault
behavior [9].

In order to evaluate the reliability of the system, we
classify the injected faults according to their effect on the
expected program behavior as it was proposed by Reis et
al. [15]. If the fault provokes that the program completes
its execution, but does not produce the expected output, this
fault is called Silent Data Corruption — SDC. If the program
completes its execution and produces the expected output,
the fault is categorized as unnecessary for Architecturally
Correct Execution — unACE. Finally, if the fault causes
the program to abnormally finish its execution or to remain
forever into an infinite loop, we categorize this fault as
Hang. Note that SDC and Hang are both undesirable effects
(categorized together as ACE faults).

In addition, it is worth noting that software-based tech-
niques necessary introduce redundancy, and this causes two
important facts to take into account. Firstly, these techniques
increase the execution time of the programs; therefore,
probability of fault occurrence is higher than for the non-
hardened program whose execution time is smaller. Sec-
ondly, redundancy increases the number of bits present on
the system, increasing the number of bits that are susceptible
to fault. Therefore, the fault coverage offered by a specific
hardening strategy is directly related with the percentage of
unACE faults and the execution time overhead.

III. PLATFORM FOR THE RAPID PROTOTYPING OF
DEPENDABLE EMBEDDED SYSTEMS

A. Software Development Environment

The proposed infrastructure establishes a complete
software-hardening development environment allowing the
design and implementation of software-based techniques to
be automatically applied into programs. The infrastructure
is made up of a multi-target compiler supporting several
common hardening routines (Hardener), an Instruction Set
Simulator (Simulator), and several compiler front-ends and
back-ends. Fig. 1 shows the general scheme.

Among various advantages of our proposal we highlight
that it is based on a Microprocessor Generic Architecture
providing a uniform hardening core that allows to design

...

Arch. 1

Arch. 2

Arch. n-1

Arch. n

Compiler back-ends

...

Compiler front-ends

Generic

Instruction

Flow

(GIF)

Hardened

source

code

Arch. 1

HardenerArch. 2

Arch. n-1

Arch. n

Hardened

Generic

Instruction

Flow

(HGIF)

Original

source

code

Simulator

Generic Hardening Core

(GH-Core)

Figure 1. Software-hardening development environment

and implement different hardening techniques in a platform
independent way. The automatic generation of hardened
code is guided by instruction-level code transformation rules.

A compiler front-end takes the original source code from
a supported target, performs lexical, syntactical and semantic
analyses, and finally generates a Generic Instruction Flow
(GIF) as output. This flow represents an intermediate high
level abstraction of a program that allows a platform inde-
pendent implementation of the hardening routines (within
the Generic Hardening Core). After the hardening process,
the Hardener produces a Hardened-GIF (HGIF) which is
then re-targeted to a supported processor.

Using this scheme, the hardening infrastructure is also
flexible in the sense that is possible to process a code written
for a supported architecture and generate protected code
targeting to the same original architecture or to different
one by means of the several back-ends.

Considering hardening purposes, as it was suggested by
Reis et al. [16], we propose to classify in a special way
those instructions whose function imply to cross the borders
of the Sphere of Replication (SoR) [17]. The SoR is the
logic domain of redundant execution. Therefore, when an
instruction causes that some data enter inside the SoR (e.g.
reading an input port, loading a value into a register or
reading a value from memory), we will classify it as inSoR;
and consequently when an instruction provokes data goes
out from the SoR (e.g. writing on an output port, storing a
value into the memory), we will classify it as outSoR.

Note that the boundaries of the SoR, and consequently
the coverage of the protection, could change according to
the implemented technique. For instance, in EDDI [8] the
memory subsystem is inside of the SoR, so the instructions
responsible to perform read/write operations over the mem-
ory do not cause that any data cross the SoR borders. In the
same way, if the memory subsystem is considered outside of
the SoR, those instructions reading from memory or writing
into memory are causing some data to cross through the
sphere frontiers and must be handled in a special way.

The identification of the Control Flow Graph (CFG) and
the insertion of instructions into the source code during com-
pilation time are the keys for software-based techniques [7],
[8], [15]. In this way, our tool also provides the necessary
functionalities to suitably perform Memory Management and
analyses to the program’s CFG.

331327327

Regarding the memory management, the Hardener is able
to: identify the memory map, extract memory sections, and
perform modifications over them. In addition, similarly to
other approaches, it is assumed that the code being hardened
does not exploit dynamic memory allocation, i.e. every data
structures are defined statically at compilation time. This is
not a significant limitation for developers of embedded appli-
cations, which sometimes are forced to code standards that
already avoid dynamic memory usage [18]. The following
three possibilities are supported to keep updated the memory
map: dilation, displacement and reallocation.

Dilation. When one or more instructions are inserted
during compilation time into a memory section, this section
grows and some of the instructions addresses inside this
memory section should be reassigned.

Displacement. If dilation provokes that two or more
memory sections share some addresses, which is an illegal
situation, then the section must be completely moved and
all its instructions addresses updated.

Reallocation. If there is a memory overflow caused by pre-
vious instructions insertions, then it is needed to perform a
complete reallocation of the complete memory map. During
this process, free memory space among memory sections is
fully used. This situation may happen because of the typical
reduced memory size in embedded systems.

On the other hand, the Microprocessor Generic Archi-
tecture allows the identification of the CFG from a given
GIF. The CFG is represented by a directed graph, where
each node is defined by a basic block of the program. A
basic block is a group of instructions that are executed
sequentially, without any jump instruction or function call,
excepting possibly the last instruction. Also, a basic block
does not contain instructions being the destination of a
call or jump instruction, excepting the first instruction. The
control flow changes are represented in the graph as links
among nodes.

In addition, when an instruction sends data outside of
the SoR, it may provoke an unrecoverable error if that data
is corrupted. In this way, it would be desirable to perform
a verification of the data’s correctness before it leaves the
sphere. Therefore, in this paper we propose that the nodes
(basic blocks) of the CFG should be subdivided into sub-
nodes after each instruction classified as outSoR.

The Generic Hardening Core has two main components:
the Hardener and the ISS. The Hardener is comprised of
an Application Programming Interface (API) of hardening
routines typical from software-based techniques algorithms.
Developing new hardening algorithms is a task significantly
easier by using this API.

The available options in the Hardener able the designer
to decide which technique will be applied, which is the
replication level to be used in redundant instructions (i.e.
duplication, triplication), which is the preferred recovery
procedure to use (i.e. among different implementations of

majority voters, in case of recovery techniques, or routines
to be applied when a fault is detected). In this way, the Hard-
ener offers a complete control to the user for configuring the
protection strategy.

The ISS assists the designer in the implementation of new
software-based techniques. It allows to perform different
analyses on the GIF and HGIF to check the correctness of
the hardening process, and also offers useful information
to aid the designer in the co-design process: time and
space overheads, and fault-coverage estimations. In order to
evaluate the reliability provided by the applied techniques,
the ISS is able to inject SEUs during the simulation by
means of bit-flips into the registers file bits. However, these
reliability results are preliminary estimations, because they
do not consider micro-architectural details of the target.
This information is obtained by means of a hardware SEU-
emulation tool included in our hardening platform.

B. SEU-Emulation Tool: FTUnshades

The FTUnshades system, described in [19], is a FPGA-
based platform for the study of digital circuit reliability
against radiation-induced transient faults. SEU affecting the
circuit are emulated by inducing bit-flips in the circuit under
study, by means of partial reconfiguration.

The system is composed of a FPGA emulation board and
a suite of software tools for design preparation, testing of the
emulated design, and analysis of the test results. The main
software of the suite is the FTUnshades Test aNalysis Tool
(TNT), which manages the communications with the board,
the partial reconfiguration and the campaign execution.

In the original version of FTUnshades, two instances of
the circuit or module under test (MUT) are instantiated in
the implemented design: Target and Gold. Faults are injected
over the Target instance, whereas the Gold instance remains
unchanged for comparison purposes.

The system has been extended for the study of micro-
processor architectures. An exhaustive description of this
extension can be found in [13]. Instead of two instances of
the MUT (Gold and Target), the implemented design has just
one instance of the MUT (Target), and the Golden instance
is substituted by a Smart Table. This is needed because the
typical cycle-by-cycle comparison would classify as output
error the effect of faults that could be corrected if the Target
microprocessor was given more processing time. The exact
additional time, measured in clock cycles, which the affected
microprocessor needs to output the correct value is called
recovery time.

The Smart Table is an automaton which implements
the relaxed time restrictions needed for the fault injection
testing of microprocessors that implement software-based
techniques. The Smart Table can be configured in emulation-
time (this is, after synthesis, implementation and FPGA pro-
gramming). First, the Smart Table must be configured with
the outputs of a Golden Run of the Target microprocessor.

332328328

This means a whole emulation of the circuit processing
workload is done, but without injecting any bit-flips. When
being configured during a Golden Run, the Smart Table not
only memorizes the sequence of the correct outputs, but also
the time (in clock cycles) where the outputs change.

After filling the Smart Table with the [expectedOutput, ex-
pectedCycle] duplets, the most important parameter the user
must configure is the critical recovery time (Tcrit), which is
the maximum recovery time allowed for the microprocessor.
This means that if the microprocessor outputs the correct
value in expectedCycle + Tcrit cycles, the fault is classified
as producing no damage. But if expectedCycle + Tcrit +
1 clock cycles have passed and the microprocessor has not
output any value yet, the Smart Table classifies the fault
as producing timeout. Note that, since the emulation stops
at this moment, timeout can mean either that the program
execution has frozen, or that the damage is so bad that the
hardening technique cannot recover the correct values after
Tcrit + 1. Since we want to relax the time restrictions of
the test, but we want the output data sequence to be correct,
if the microprocessor outputs a wrong value (Output !=
expectedOutput) before expectedCycle + Tcrit + 1, the fault
is classified as producing output damage.

IV. CASE STUDY

In order to validate our proposal, we have designed and
evaluated several prototypes of radiation-tolerant embedded
systems based on the PicoBlaze microprocessor.

Picoblaze is an 8 bit soft-micro widely used in FPGA-
based embedded systems. In this work, a technology-
independent version of PicoBlaze has been developed (RTL
PicoBlaze) that allows to validate the proposal for both,
ASIC and FPGA. This version is cycle accurate and RTL
equivalent to the original PicoBlaze-3 version of the micro. It
supports the following main features: 16 byte-wide general-
purpose data registers, 1K instructions of programmable on-
chip program store, byte-wide Arithmetic Logic Unit (ALU)
with CARRY and ZERO indicator flags and 64-byte internal
scratchpad RAM.

The benchmark software suite used in the experiments
is made up of the following test programs: bubble sort
(bub), scalar division (div), Fibonacci (fib), greatest common
divisor (gcd), matrix addition (madd), matrix multiplication
(mmult), scalar multiplication (mult) and exponentiation
(pow).

Every test program was hardened applying the SWIFT-R
technique. This is an overall method aimed to recover faults
from the data section, mainly related with the register file
of the micro. Our implementation of this method can be
explained as follows.

1) Identification of nodes and sub-nodes of the program
and building its CFG.

2) Data triplication the first time that any data comes into
the SoR (i.e. after inSoR instructions). In this case,

only the register file is considered as included into the
SoR, whereas the memory subsystem is not because it
is assumed that memory already has its own protection
mechanism [15]. Therefore, for every instruction clas-
sified as inSoR (read input ports, read from memory,
load a value into a register), two additional copies will
be created, just by means of copying the register values
without repeating memory or ports accesses.

3) Triplication of instructions that perform any data oper-
ation (e.g. arithmetic, logic, shift/rotate instructions).

4) Check the consistency of the data involved on the
following instructions (by inserting majority voters
and recovery procedures before execute them): outSoR
instructions, e.g. store into a memory position or write
into an output port; and those instructions located
just before a conditional branch. This verification is
necessary because these instructions affect the flags, so
if a register value is corrupted, resultant flag might be
erroneous too, provoking an erroneous branch some-
where in the CFG.

5) Redundant registers only can be released in the fol-
lowing situations: if the register is not used anymore
in the program, or if next time the register is used is
overwritten. Note this latter condition imply a detailed
analysis to the CFG to avoid consistency loss.

Fig. 2 shows the code and execution time overheads
offered by the ISS after applying SWIFT-R to each test
program. These results are normalized with a baseline built
with the non-hardened version. In this case, the geometric
mean (calculated across all benchmarks) of the normalized
code overheads is ×3.05, and the execution time overhead
is ×2.70.

On the hardware side, the fault tolerant co-design strat-
egy was complemented by incrementally hardening the
microprocessor resources that still were unprotected after
the applied software protection for the register file. The
microprocessor was hardened by manually applying Triple
Modular Redundancy (TMR) to different subsets of micro-
architectural registers. Five versions were developed:

• P0: non-hardened RTL Picoblaze.

1,0

1,5

2,0

2,5

3,0

3,5

bub div fib gcd madd mmult mult pow GeoMean

N
o

rm
a

liz
e

d
 O

ve
rh

e
a

d
s

Code Overhead Execution Time Overhead

Figure 2. Normalized code and execution time overheads for SWIFT-R

333329329

70%

75%

80%

85%

90%

95%

100%

O H O H

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

bub div fib gcd madd mmult mult pow Average

Pe
rc

en
ta

ge
 [%

]

unACE SDC Hang

Figure 3. Fault classification percentages for every test program (non-hardened (O) and SWIFT-R (H)) running on each processor version (P0 to P3)

• P1: microprocessor with hardware redundancy for Pro-
gram Counter (PC), Flags and Stack Pointer (SP).

• P2: microprocessor with hardware redundancy for all
registers in the pipeline.

• P3: microprocessor with hardware redundancy for PC,
Flags, SP, and Pipeline.

• P4: full protected, i.e. microprocessor with hardware
redundancy for Register file, PC, Flags, SP, and
Pipeline.

The following experimental setup has been configured to
assess the reliability offered by the designed prototypes. For
each test program in the benchmark, non-hardened (O) and
hardened (H), and for each approach of the microprocessor
(P0 to P4), a fault injection campaign has been executed
in the FTUnshades. Every fault injection campaign makes
selective attacks on the microprocessor register sets: register
file (128 bits - 65.0% of the target size), PC (10 bits -
5.1% of the target size), Flags (2 bits - 1.0% of the target
size), SP (5 bits - 2.5% of the target size), pipeline (52
bits - 26.4% of the target size). Moreover, for each one
of these register sets, 5000 SEUs (one per execution) have
been emulated in a randomly selected clock cycle from all
the workload duration. A critical time (Tcrit) of 1023 clock
cycles has been chosen for these experiments. Finally, results
were classified as described in Section II as unACE, SDC,
and Hang. Fig 3 presents the fault classification percentages
obtained for each prototype (note that these results have been
obtained calculating the weighted average of the results from
the selective attacks to the internal microprocessor register
sets, assuming the same fault probability for all bits on
target).

Note that the SWIFT-R technique offers a considerable
reliability increment, even in the non-hardened hardware
(in average, up to 95.88% unACE faults), which is higher
than the reliability of every hardware-hardened approach
using the non-hardened program. Results for the P4 micro
approach are not presented in Fig. 3 because 100% of
the injected faults were classified as unACE, as expected.

Furthermore, notice that combining SWIFT-R with hardware
protection in only few critical registers, such as PC, Flags,
and SP (P1 version), reliability increases markedly (in
average, up to 97.18% unACE faults).

Although the reliability is higher combining software-
hardened programs with hardware-redundant approaches
(for instance, up to 97.77% unACE faults for the P3 micro),
the costs are also higher and this is an important restriction
that must be considered, jointly with design constraints and
reliability requirements. In order to obtain an estimation of
the area cost, every version of the micro was synthetized
using Xilinx XST v10.1, and the results expressed in terms
of: Flip/Flops and Latches, primitives (mux, luts, etc.), and
RAM (distributed and block ram). Fig 4, on the one hand,
shows the hardware cost of each approach normalized with
a baseline built with the non-hardened RTL Picoblaze (P0);
on the other hand, it also depicts, in a secondary axis, the
percentage of unACE faults obtained for the non-hardened
and SWIFT-R test programs (in average). This figure permits
to see at a glance, how reliability and costs are affected by
every studied hardware approach.

It is worth noting that hardware cost increases consider-
ably when registers in pipeline are hardened (P2 and P3),

88,0

89,5

91,0

92,5

94,0

95,5

97,0

98,5

100,0

1,00

1,25

1,50

1,75

2,00

2,25

2,50

2,75

3,00

P0 P1 P2 P3 P4

un
A

CE
 f

au
lt

s
pe

rc
en

ta
ge

 [%
]

N
or

m
al

iz
ed

 h
ar

dw
ar

e
co

st

Microprocessor approaches

Normalized Xilinx primitives cost Normalized FlipFlops/Latches cost

Normalized RAMS cost % unACE faults for non-hardened programs

% unACE faults for SWIFT-R programs

Figure 4. Normalized hardware cost and percentage of unACE faults per
microprocessor approach

334330330

whereas reliability only improves slightly in these cases,
or even decreases if compared with cheaper approaches
(P2+SWIFT-R). In case of P4, high hardware costs could
result unsuitable for many applications, although its relia-
bility is 100%.

Finally, obtained results (overheads, reliability and hard-
ware costs) able the designer to decide which HW/SW
configuration best meet the requirements of each specific
application. For instance, for this case study might result as
a suitable configuration those prototypes with the micropro-
cessor with hardened PC, Flags, and SP (P1) and SWIFT-
R programs, because these prototypes offer a high level of
reliability (97.18% of unACE faults) with acceptable costs
(low hardware costs, ×2.70 execution time overhead, and
×3.05 source code overhead). In some other applications,
for example, if SWIFT-R performance degradation exceeds
required, it might be preferable applying another lightweight
technique for the software, and incrementing protection and
cost on the hardware side.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a rapid prototyping approach for
the design of radiation-tolerant embedded systems using
FPGA. This approach is supported by a flexible harden-
ing platform, which facilitates the representation of several
trade-offs among design constraints, reliability, performance,
cost, etc. This rapid prototyping strategy allows designers to
easily explore the design space between hardware-only and
software-only fault-tolerance techniques. The advantages of
the resultant hybrid HW/SW implementations are illustrated
by means of a case study. In this context, several robust
embedded systems based on a RTL implementation of the
PicoBlaze soft-micro have been developed. As a result, this
new strategy suggests the implementation of automatic co–
hardening tasks within the presented platform and opens up
interesting new boundaries in design space exploration. As
future work, the hardening development environment will be
extended to support 32-bit soft-core microprocessors, such
as MicroBlaze and LEON3.

REFERENCES

[1] R. Baumann, “Radiation-induced soft errors in advanced
semiconductor technologies,” IEEE Trans. on Device and
Materials Reliability, vol. 5, no. 3, pp. 305–316, Sept 2005.

[2] T. Austin, “DIVA: A reliable substrate for deep submicron
microarchitecture design,” in 32nd Annual Int Symp on Mi-
croarchitecture, 1999, pp. 196–207, israel, Nov 16-18, 1999.

[3] A. Mahmood and E. McCluskey, “Concurrent error-detection
using watchdog processors - a survey,” IEEE Transactions on
Computers, vol. 37, no. 2, pp. 160–174, FEB 1988.

[4] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design
and evaluation of Redundant Multithreading alternatives,” in
29th Annual Int Symp on Comp Arch, 2002, pp. 99–110.

[5] M. Gomaa, C. Scarbrough, T. Vjaykumar, and I. Pomeranz,
“Transient-fault recovery for chip multiprocessors,” IEEE
MICRO, vol. 23, no. 6, pp. 76–83, Nov-Dec 2003.

[6] P. Samudrala, J. Ramos, and S. Katkoori, “Selective triple
modular redundancy (stmr) based single-event upset (seu)
tolerant synthesis for fpgas,” IEEE Transactions on Nuclear
Science, vol. 51, no. 5, Oct. 2004.

[7] N. Oh, P. Shirvani, and E. J. McCluskey, “Control-flow check-
ing by software signatures,” IEEE Transactions on Reliability,
vol. 51, no. 1, 2002.

[8] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection
by duplicated instructions in super-scalar processors,” IEEE
Transactions on Reliability, vol. 51, no. 1, 2002.

[9] M. Rebaudengo, M. S. Reorda, M. Violante, and M. Torchi-
ano, “A source-to-source compiler for generating dependable
software,” 1st IEEE Int Workshop on Source Code Analysis
and Manipulation, pp. 33–42, 2001.

[10] G. Reis, J. Chang, N. Vachharajani, S. Mukherjee, R. Rangan,
and D. August, “Design and evaluation of hybrid fault-
detection systems,” in 32nd Int Symp on Comp Arch, 2005,
pp. 148–159.

[11] P. Bernardi, L. Bolzani, M. Rebaudengo, M. Reorda, F. Var-
gas, and M. Violante, “A new hybrid fault detection technique
for systems-on-a-chip,” IEEE Tran on Comp, vol. 55, no. 2,
pp. 185–198, Feb 2006.

[12] F. Restrepo-Calle, A. Martı́nez-Álvarez, S. Cuenca-Asensi,
F. Palomo, and M. Aguirre, “Hardening development environ-
ment for embedded systems,” 2010, 2nd HiPEAC Workshop
on Design for Reliability DFR10. Italy, Jan 25-27, 2010.

[13] H. Guzman-Miranda, M. Aguirre, and J. Tombs, “Noninva-
sive fault classification, robustness and recovery time mea-
surement in microprocessor-type architectures subjected to
radiation-induced errors,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 58, no. 5, May 2009.

[14] K. Chapman, PicoBlaze KCPSM3. 8-bit Micro Controller for
Spartan-3, Virtex-II and Virtex-II Pro. Xilinx Ltd., 2003.

[15] G. A. Reis, J. Chang, and D. I. August, “Auto-
matic instruction-level software-only recovery,” IEEE Micro,
vol. 27, no. 1, pp. 36–47, 2007.

[16] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. Au-
gust, “SWIFT: software implemented fault tolerance,” CGO
Int Symp on Code Gen and Opt, pp. 243–254, 2005.

[17] S. Reinhardt and S. Mukherjee, “Transient fault detection
via simultaneous multithreading,” in 27th Int Symp on Comp
Arch, 2000, Proceedings Paper, pp. 25–36.

[18] MISRA, MISRA-C:2004 Guidelines for the use of the C
language in critical systems. Motor Industry Software
Reliability Association, 2004.

[19] J. Napoles, H. Guzman, M. Aguirre, J. Tombs, F. Munoz,
V. Baena, A. Torralba, and L. Franquelo, “Radiation envi-
ronment emulation for VLSI designs A low cost platform
based on xilinx FPGAs,” in IEEE International Symposium
on Industrial Electronics, ISIE 2007, 2007.

335331331

