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Abstract 
 
This work presents a summary of the analytical extension of the classical Ponchon and Savarit 

method for the design of binary distillation columns to ternary systems. For a given feasible 

separation, convergence is almost always guaranteed in calculation times comparable to those 

used by commercial simulation packages. However, in this case the total number of stages and 

the optimal feed location are simultaneously determined. For ternary mixtures it is possible 

graphical representation keeping all the intuitive characteristics of the original method for 

binary mixtures. 

 

The presented approach include the possibility of approximate (with interpolation, correlation 

and intersection methods) or rigorous calculations of mass and energy balances and 

equilibrium relations and the direct calculation of the minimum number of equilibrium stages 

and the optimum feed point location for a specific product separation with a specified reflux 

ratio. The distillate flow rate and the reflux ratio can be optimised in an outer loop providing 

the method a great flexibility. 

 

Keywords: Distillation, tray-type separators, design, Ponchon and Savarit method, 

multicomponent mixtures. 

 
1. Introduction 

 

Distillation is the most important separation technique, even though it is an expensive 

operation in terms of capital and operating costs, and it is likely that distillation continues 

being the most important separation technique for a long time. So, distillation is one of the 

most studied unit operations. 
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From the very early stages of their education, Chemical engineers are able of design 

distillation columns for separating binary mixtures using, for example the classical methods 

of Sorel1 or Ponchon-Savarit2. These methods solve alternatively the mass and energy balance 

(to relate the streams between stages) and the equilibrium equations (to relate the composition 

of the phases in equilibrium at each stage) to obtain the number of trays, the position of the 

feed stages, the composition in all trays, temperature profile and so on. It is a rigorous design 

method!. The great acceptance of these methods for educational purposes is due to the 

graphical approach used for solving the design problem -although a pure numerical approach 

is possible, and it is not difficult to find versions in almost any computational language or 

spreadsheet-. The graphical approach allows the visualization of concepts like the pinch if we 

work under the minimum reflux, the effect of different feed states in the column performance 

or the effect of intermediate heat exchangers, etc. 

 

For mixtures of more than two components the Ponchon-Savarit method is practically not 

used at all. The reasons could be that for mixtures of more than two components the pure 

graphical method is not directly applicable “by hand” calculation loosing the important 

intuitive characteristics of the original method. For mixtures of more than 3 components is not 

possible any graphical representation at all. And the extension of graphical concepts to 

systems of three or more dimensions is not completely intuitive. However the classical 

Ponchon-Savarit method presents some characteristics that made very attractive the extension 

to multicomponent systems: a) Robustness. The convergence for a feasible postulated 

separation is almost always guarantied. b) In each iteration a near optimal design is obtained. 

If for any reason the system does not converge any intermediate design is almost a feasible 

solution. c) The speed of convergence is similar to those in standard simulation packages. d) 

For mixtures of three components it is possible generate three dimensional images similar to 

those for binary mixtures with the corresponding insight about the process we are studying. 

 

The extension of graphical methods for systems of more than two components, and especially 

for systems involving three components (very important for instance in azeotropic separation) 

could be a valuable help for complementing the actual design tools with a robust, intuitive, 

fast, easy to implement and in most cases with graphical information about the process. As 

examples, Lee et al.3, Reyes et al.4 and Marcilla et al.5 have presented an extension of the 
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Ponchon-Savarit method to reactive distillation, minimum reflux ratio calculation and 

quaternary liquid-liquid extractors, respectively. 

 

Additionally, the use of topological analysis has been applied with success in the design of 

unit operations6,7, calculation of distillation boundaries8, and in the simultaneous correlation 

of complex phase equilibria including condensed phases: LL9-14, LS15, LLS16 and LLSh17. 

 

In the rest of paper we present an extension to multicomponent mixtures of the classical 

Ponchon-Savarit method, especial attention is paid to three components mixtures due to the 

physical insight gained by graphical representations. The use of different approximate 

approaches in order to avoid iterations in the equilibrium and mass balance calculations are 

also introduced. Results obtained are compared with conventional rigorous method, showing 

very good agreement. 

 

2. Extension to multicomponent systems of the Ponchon and Savarit method 

 

An extension of the Ponchon-Savarit method to solve the problem of the separation of a 

binary mixture in a complex column was proposed by Marcilla et al18. The extension of this 

procedure to multicomponent mixtures can be easily made if explicit functions for the 

saturated vapor enthalpy, saturated liquid enthalpy and saturated liquid composition of the 

type H=H(yi,T,P), h=h(xi,T,P) and xi=x(yi,T,P) are available. In other case, conventional 

equilibrium calculations must be carried out, or approximate methods can be developed. In 

this work, the two approaches have been developed in the rigorous and approximate methods. 

The enthalpy functions have been generated from fittings of the equilibrium data in all the 

composition range to polynomial functions. These functions have also been combined with 

different suggested interpolation and correlation methods in order to obtain the equilibrium 

compositions at each stage. 

 

Figure 1 shows a sketch of the location of the net flow points ∆k and the graphical solution of 

a simple column for a ternary system, as in the classical Ponchon-Savarit method for binary 

mixtures. Obviously, systems with more than three components cannot be graphically 

represented and the problem must be solved by the use of computational methods. 

Nevertheless, these methods are still based on the same geometrical concepts as those used 

for the binaries in combination with the algorithms that involve the corresponding equations 
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for the equilibrium conditions and mass and enthalpy balances for a general type of complex 

column. This column is divided into k sections, each one having a characteristic net flow rate 

(difference between the streams that cross each other between stages), the changes from one 

section to the following occur whenever a side stream (of mass or heat) is added or removed 

(see Figure 2).∑ −1kF  represents all the feeds entering the column above the zone k of the 

column (with enthalpy F
kH 1−  and composition F

kiz 1, − . ∑ −1kP  represents all the side 

products removed from the column above the zone k (with enthalpy P
kH 1−  and composition 

p
kiz 1, − . The separation between each two adjacent sectors occurs at a feed point, at a side 

product point or at a heat addition or removal point. 

 

To begin the problem of calculation of the number of trays as in the Ponchon-Savarit method, 

the coordinates of the net flow points representative of each sector, ∆k, must be calculated and 

the equation of the operative lines (representative of the mass and enthalpy balances) must be 

obtained. To do this, the following equations are used: 

Composition of the net flow point ∆k 
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Equation of the operative line (mass and enthalpy balance line) in the enthalpy-composition 

diagram, that relates the saturated vapor leaving stage j in the zone k with the saturated liquid 

leaving stage j+1 in the same sector, and passing through the point representative of ∆k 

(difference between these vapor and liquid streams). 
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where i extends for the different components. 
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To find the analytical solution, two problems must be solved (Reyes et al.19): a) establish a 

procedure to calculate the vapor-liquid equilibrium and to obtain the liquid phase in 

equilibrium with a given vapor phase (or vice versa) in each tray in a rigorous or approximate 

way, and b) to set up a procedure to obtain the intersection point between the operative line 

and the enthalpy-composition surface (in the enthalpy/composition n-dimensional space), also 

in a rigorous or approximate way. 

 

2.1. Procedures to calculate the vapor-liquid equilibrium 

The methods developed in this work fall into two categories: 

a) the rigorous method, where the equilibrium data have been obtained using a given 

equation of state or activity model. We have used the NRTL model. This method 

obviously involves an iterative calculation method wherever an equilibrium composition 

is required. 

b) the approximate methods that allow the determination of the composition in equilibrium 

with any given phase in equilibrium and without any iterative calculation, using: 

b.1) On one hand, interpolation methods on two lattices of equilibrium points in all the 

composition range, generated previously by the rigorous procedure (a regular ordered lattice 

with the points representative of the saturated vapor, as well as the lattice for the points of the 

corresponding saturated liquids, see Figure 3). The interpolation procedures proposed are the 

following: 

- Simple interpolation with distances 

- Interpolation by intercepting lines from the three, four or twelve nearest points. 

- Interpolation from linear fitting of compositions or compositions and enthalpies. 

In Appendix A we describe the interpolation by intercepting parabolic lines from the 

twelve points proposed, the other interpolations proposed can be found in Marcilla et al.20. 

b.2) On the other hand, an empirical correlation of equilibrium data are suggested to 

calculate directly the liquid-vapor equilibrium in an approximate way. The equation proposed 

for the liquid-vapor equilibrium data correlation is the following (although any other 

empirical equation could be used21), and the complete development of this procedure is 

described in Appendix B: 
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This procedure was previously adopted for the rigorous design of multistage extraction5,22.  
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All these approximate procedures to calculate the liquid-vapor equilibrium (interpolation and 

correlation) have the advantage that, despite requiring the previous generation of the 

equilibrium nets, they do not require iterative calculations thus saving calculation time. 

 

2.2. Procedures to calculate the mass and energy balances 

In the Ponchon-Savarit method, the mass and energy balances connect two consecutive trays 

(streams crossing between plates) through the net flow, ∆k, it means that the intersection 

between the operative line shown in Eqn. (3), that connects points k∆  and Lj,k, with the 

surface defined by the points representing the saturated vapor, locate the next vapor Vj+1,k, see 

Figure 1. The procedures proposed in this work to solve this intersection are again of two 

types: i.e., approximate and rigorous methods. The approximate procedures requires a fitting 

of the equilibrium points in each phase to the corresponding enthalpy-composition 

polynomial functions (Eqn. 15) and its intersection with the operative lines (Eqn. 3) allows 

the mass and energy balances to be solved using a simple method, solving the corresponding 

system of equations. This method involves very short calculation times and yields very good 

results. The rigorous method to calculate the mass and energy balances is based on an 

iterative process that calculates the intersection between the rigorous enthalpy/composition 

function Eqn. (18) and the operative lines Eqn. (3). These procedures are described in 

Appendix C and D, respectively. 

 

3. Description of the proposed procedure for the design of a rectification column 

 

In the problem of designing a distillation column, only the percentage of recuperation of the 

heavy and light key components in the distillate and the residue are specified. In this case, it 

must be taken into account that, as opposed to the case of binary mixtures, for a 

multicomponent mixture a specification of this type does not permit calculation of the 

composition of the distillate, and the stage by stage calculation cannot be started unless initial 

estimates are made for the required variables to completely characterize the distillate 

(depending on the number of components). 

 

For a ternary system only one variable must be assumed to fully determine the distillate 

composition and permit the calculation using the specification of the separation between key 
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components in combination with the material balances and the assumed variable. We have 

selected the distillate flow rate (D) as the variable to be optimized to allow the convergence 

between the bottom composition calculated by the overall mass balance (corresponding to the 

assumed distillate flow rate) and the bottom composition calculated (with successive tray by 

tray calculations) as that corresponding to the last tray leaving the column. In order to obtain 

an integer number of trays another variable should be simultaneously optimized. For this case 

we have selected first optimizing D and afterwards varying LD in order to obtain the integer 

number of trays closer to that obtained in the previous step. 

 

To determine the possible range of values of distillate flow D it is necessary to follow 

different steps: 

The material balance for the column permits a range of pairs of values of distillate (D) and 

residue (R) flow rates (and their corresponding compositions) that satisfy the separation of the 

key components desired. Figure 4a shows the position of the two straight lines that represent 

the geometrical location of all possible values of DxD 1  and RxR 3  for a ternary system and for 

a distillation column with a single feed. All these points satisfy the material balances in the 

column, but only one, the one searched, is compatible with the equilibrium tray-by-tray 

calculations. Component 1 has been selected as the light key, and component 3 as the heavy 

key. Straight lines from a point on the line =DxD 1 constant, to the line RxR 3
 = constant, 

represent all the possible mass balances in the column (streams D, F and R must be on a 

straight line), and the αβ and αΙβΙ lines define the extreme pairs of values of D and R. 

 

Figure 5 shows a distillation path defined by the points representative of the liquids leaving 

each tray. When a distillate composition is established, the trajectory of the distillation 

marked by the equilibrium between the phases in each stage (and by the efficiency of trays) is 

fixed, as well as the location of the difference points or net flow points. As can be seen, not all 

the trajectories corresponding to any hypothetical distillation curve end at the point predicted 

by the material balances. 

 

The optimum D flow rate will be the one that minimizes the distance between the point 

representative of the residue (as obtained by the mass balance) and the liquid composition 

exiting from the last calculated tray. In Figure 5, R1cal represents a bottom product from a 

column and R1bal the residue obtained from an overall mass balance. R2cal and R2bal are the 
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corresponding points of another hypothetical column, with a different distillate composition, 

but the same recovery of the key components. The D optimum has been calculated by 

minimization of the objective function defined by Eqn. 5: 

( ) ( )2∑ −=−
i

R
ii

R
ii xxxxd        (5) 

where x(i) is the composition of the liquid phase from the last calculated stage (bottom 

product) and xR(i) is the composition of the bottom product obtained from the overall mass 

balance. 

 

Therefore, the design procedure suggested involves the following steps: 

 

Step 1. Starting point: specification of the variables: 

• Characteristics of side streams (feeds, side products or heat additions or removals): 

flow rate, composition, enthalpy (thermal state) and code indicating a mass stream or a 

heat stream. The sign of flow indicates a feed or a side product. 

• Pressure in the condenser and in the first tray of the column, and pressure drop by 

stage. 

• Recovery percentage of the light key component (LK) in the distillate and of the heavy 

key (HK) in the residue. 

• If it is the case, Reflux ratio (LD/D). 

• Thermodynamic data for the components of the system (rigorous method) or the 

lattice of equilibrium points and the coefficients of their fittings to polynomial 

functions (approximate methods). 

Step 2. Determination of the range of variation for the distillate flow rate 

Step 3. Select a starting D in the range determined (variable to be optimized). 

Step 4. Calculation of the column. Once a distillate composition has been established, a 

bottom stream composition can be calculated by the mass balances, and the step by step 

calculation initiated, using the flowsheet showed in Figure 6. 

 

The tray by tray calculation procedure starts at the top of column, from the distillate 

composition, which is the same as that of the vapor from the first tray, and calculating the 

liquid in equilibrium with this vapor. To pass to the next tray, it is necessary to solve the mass 

and energy balances. This can be done by connecting the point representative of the liquid 
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with the point representative of the net flow of the corresponding sector of the column ∆k 

(operative line, Eqn. 3) and calculating the intersection of this straight line with the 

equilibrium surface corresponding to the saturated vapor: the intersection point is the vapor 

leaving the next tray. This procedure is repeated until the tray where a side stream k (feed or 

product in its optimum location) is reached, and where the change of sector (and of course of 

net flow point, ∆k+1) is required. 

 

The following criterion was used to test if the condition for the change of sector was reached: 

the last tray (j) in sector k is that verifying Eqn. (6): 

1
/
/

,3,1

,,3,,1 ≤
kCkC

kjkj

xx
xx

       (6) 

where xC refers to the liquid in equilibrium at the point of intersection between the straight 

line that connects ∆k and F
kV  (saturated vapor in equilibrium with the side stream Fk that 

separate sector k from sector k+1) and the saturated liquid surface (Figure 7). 1 and 3 are the 

indexes for light and heavy key components, respectively. The procedure continues, using the 

same criterion, until the residue composition calculated from the overall mass balance is 

reached or exceeded. 

 

If the bottom composition as obtained by material balances is obtained for a stream leaving a 

given stage, the calculation is finished and the number of stages obtained is the solution of the 

design problem. Otherwise, the calculation must be repeated and another distillate 

composition must be selected until total convergence of the end of the distillation trajectory 

(equilibrium stream leaving the last calculated tray) and the bottom composition by overall 

mass balance. 

 

When the side stream Fk is not a saturated vapor or liquid it is necessary to use in the change 

tray (and only in this tray) the net flow point kc∆  corresponding to Fk, see Figure 7. kc∆  is 

the intersection point between the straight line that connects ∆k and F
kV , and the other 

straight line that connects ∆k+1 and F
kL . F

kV  and F
kL  are the liquid and vapor phases in 

equilibrium with the side stream Fk at the column conditions. This equilibrium phases can be 

obtained by whatever distillation flash procedure or by a iterative procedure using any of the 
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previous procedures proposed to calculate the vapor-liquid equilibrium, in order to find the 

corresponding tie line: F
kk

F
k LFV −− . 

 

Figure 8 shows the general flowsheet of the design procedure suggested. We have developed 

three categories of calculation programs to design rectification columns: rigorous program, 

that rigorously solve the mass and energy balances and the equilibrium equations, semi-

rigorous programs, that rigorously solve the equilibrium equations but only approximately 

the enthalpy balances and approximate programs, that approximately solve both enthalpy 

balances and equilibrium equations. 

 

4. Examples 

 

In order to test the validity of the proposed methods, computer programs were prepared, 

according to the previous procedures, and the design of 36 different simple distillation 

columns has been performed, varying the thermal condition of the feed and its composition, 

the nature of the equilibrium (ideal or nonideal), and using equilibrium surfaces with different 

density of points. The methods suggested have been applied to three different ternary 

mixtures: 

a) benzene(1)-ciclohexane(2)-toluene(3) 

b) methanol(1)- acetone(2)-water(3) 

c) methanol(1)- ethyl acetate(2)- water(3) 

 

The distillation columns analyzed are simple, with only one liquid feed, and with a total 

condenser that produces the distillate (D) and the reflux (LD) streams at the bubble point, 

Table 1 shows the characteristics of each problem considered. The methods have been 

compared with the results obtained, for the same cases, by using the simulation program 

proposed by Renon et al26. An excellent agreement has been obtained in all cases and the 

results obtained for the design of the columns are showed in Table 2. In all cases the distances 

between the last calculated tray and the composition of the residue (from an overall mass 

balance) are very low. Several equilibrium lattices have been calculated for the systems, at 

varying composition increments (nets of 66, 231, 861 and 5151 equilibrium points -which 

correspond to mole fractions increments of 0.1, 0.05, 0.025 and 0.001, respectively- have 

been considered). These lattices have been used to test the influence of the composition 
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increment in the lattice (the number of equilibrium points in the lattice) on the accuracy of the 

different interpolation methods, as well as on the intersection of the operating lines with vapor 

surface. 

 

As an example, Figure 9 compare the results obtained (composition profiles obtained for the 

component 1 along the column) from the rigorous design method presented in this work and 

the results from the Renon et al.26 simulation method for cases 1 and 2. As can be seen, the 

results are exactly the same, as expected since both are rigorous methods. It should be noted 

that the proposed procedure presents several advantages over other methods found in 

literature, such as the short calculation time required and its theoretical simplicity as it is 

based on the same geometrical concepts as the Ponchon and Savarit method. 

 

For the next discussion, the results obtained by the rigorous method proposed are used to test 

the validity of approximate and semi-rigorous methods. As an example, Figure 10a-b. shows 

the comparison between the results obtained for cases 1 and 3 by the approximate method, 

using a network with 66 points and the interpolation by intercepting lines from the twelve 

nearest points (to solve the equilibrium eqns.) and the intersection procedure with linear 

fitting of enthalpies (to solve the mass and energy balances) and the results obtained by the 

rigorous method. As can be seen in the figure, the interpolation procedure allows very 

coincident results. The results obtained for all the cases analyzed lead to similar conclusions. 

 

 To determine the effect of the density of points of the equilibrium net in the accuracy 

of the interpolation, Figure 10b-c shows the comparison between the results obtained for 

column 3 by the approximate methods, using again the interpolation by intercepting lines 

from the twelve nearest points and lattices with different number of points (increment in 

composition in mole fraction of 0.1, and 0.025, corresponding to lattices with 66 and 861 

points, respectively). As can be observed, the agreement is excellent even for the less dense 

net. Similar results are obtained for the rest of components in both phases. Nevertheless, and 

as expected, it has been proved that the agreement increases as the density of points increases, 

and is always better for ideal systems than for nonideal systems. The distortion of the surfaces 

introduced by the equilibrium logically results in a loss of accuracy of the equations used to 

describe these surfaces. Nevertheless, the results could be improved by actualizing such 

equations to the different zones. This is an important conclusion because it allows a 
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multicomponent complex distillation column to be calculated in short time, as with shortcut 

methods, but with an accuracy close to that provided by rigorous methods. 

 

Figure 11 shows results for column 1 and 2, respectively, when comparing the approximate 

method using the proposed correlation (Eqn. 4) to calculate the liquid-vapor equilibrium and 

intersection with fitting of enthalpies (Eqns. 15 to 17) and the rigorous method. The method 

in this case again yields excellent results. 

 

The results obtained by the application of semirigorous methods to the examples obviously 

show the same influence of the spacing of the network: accuracy is greater when the number 

of points increases. 

 

5. Conclusions 

 

A direct design method has been suggested and applied to various cases of ternary mixtures 

with very satisfactory results. These procedures range from the approximate methods to a 

rigorous method, and are based on very simple geometrical concepts. The method has the 

following characteristics: 

1. It is a design method very robust. The convergence, if the postulated separation is 

feasible, is almost always guarantied. 

2. The method has the same conceptual simplicity as the Ponchon-Savarit method, and 

consequently it is very easily understood and intuitive. 

3. At each iteration, a near optimal design is obtained with their distillate and residue flows 

and composition, optimum feed stage location as well as the number of stages for the 

specified separation. 

4. With the approximate procedures, the iterations inherent to solve the equilibrium are 

eliminated by substitution by different types of interpolation or correlation between the points 

of the equilibrium surfaces. On the other hand, the resolution of the mass and energy balances 

is very simple by the calculation of the intersection between an operative line and a solubility 

surface (in the space of c dimensions, where c is the number of components). 
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List of symbols 
A, B, C, D, E coefficients of a fitting of the equilibrium surfaces 
a(m), b(m), c(m) coefficients of quadratic fitting in the interpolation method 
ai, bi, ci, di, ei, fi equilibrium correlation parameters of the model proposed 
C constant used in the variable change that permits to include in the 

correlation the binary and ternary equilibrium data 
Component 1 light key component 
Component 3 heavy key component 
D distillate flow or point representative of the distillate in the diagrams 
D(1), D(2) possible distillates according to the separation specified 
D(m, n) distance between P(m, n) and Po 
D’(m, n) distance between P’(m, n) and Po’ 
D( R

ii xx − ) euclidean distance 

F feed flow or point representative of the feed in the diagrams 
H enthalpy of a vapour stream 
Hj,k enthalpy of a vapour stream leaving tray j in sector k 
HD enthalpy of the vapour leaving the top of the column 
H enthalpy of a liquid stream 
hj+1,k enthalpy of a liquid stream leaving tray j+1 in sector k 
hD enthalpy of the distillate (liquid) 
HF

k-1 enthalpy of the feed between sectors k-1 and k 
HP

k-1 enthalpy of the side product between sectors k-1 and k 
HK heavy key component 
 i. index referring to a component 
j. index referring to a tray 
k. index for a sector of a distillation tower 
Ki equilibrium constant for component i 
LD reflux flow 
LF

k saturated vapour in equilibrium with the feed Fk 
Lj+1, k liquid stream leaving a tray j + 1 in the sector k 
LK light key component 
Lv liquid-vapour mixture 
Mk enthalpy of the net flow point 
M, n index referring to relative positions of the nearest points for the 

interpolation method 
Ov overheated vapour 
P(m, n) point on the surface of the saturated liquid, nearest to Po, with 
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composition yi,j,k,(m, n) 
Po point representative of the  saturated liquid whose vapour in equilibrium 

must be obtained, with composition yi, j, k 
Po’ point representative of the saturated vapour in equilibrium with Po, with 

composition xi, j, k 
P’(m, n) representative points of the saturated vapour in equilibrium with p(m, n), 

with composition xi, j, k(m, n) 
Q

D heat duty in the condenser 

R residue flow or point representative of the residue in the diagrams 
R1bal, R2bal possible residue points obtained from an overall mass balance 
R1cal, R2cal possible residue points obtained from a tray-to-tray calculation (liquid 

streams from the last tray) 
r. index referring to equilibrium surface (saturated vapour or liquid) 
sl saturated liquid 
sv saturated vapour 
ul undercooled liquid 
VF

k–1 saturated vapour in equilibrium with the feed Fk-1 
Vj, k: vapour stream leaving a tray j in the sector k 
xi composition of component i in a liquid stream 
xi, j, k composition of component i in the liquid stream leaving stage j of sector k
xi,j,k(m, n) composition of liquid P’(m,n). The indexes i, j, k are those corresponding 

to the point Po 
xC

i, k composition of component i in the saturated liquid in the intersection 
between saturated liquid surface and the straight-line ∆k-∆C 

xD
i composition of component i in the distillate 

xF
i composition in component i in the saturated liquid in equilibrium with the 

feed 
xR

i composition of constituent i in the residue 
yi composition of component i in a vapour stream 
yi, j, k composition of component i in the vapour stream leaving stage j of sector 

k 
yi,j,k(m, n) composition of vapour P(m,n). The indexes i, j, k are those corresponding 

to the point Po 
zF

k-1 composition of the feed between sectors k-1 and k 
zP

k-1 composition of the side product between sectors k-1 and k 
ΣFk-1 sum of all feeds entering above sector k in a complex column 
ΣPk-1 sum of all products leaving the column above sector k 
ΣQE

k-1 sum of all heat removed above sector k in a complex column 
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ΣQF
k-1 sum of all heat inputs above sector k in a complex column 

 

Greek characters 
Α, Β, Φ and α, β, φ Parameters of the logarithmic equation used to correlate the liquid-

vapour and the liquid-liquid equilibrium data, respectively 
α, α’, β, β’ limits for the possible R·xR(3) and D·xD(1) values 
∆k net flow point corresponding to the sector k 
∆C net flow point corresponding to the feed zone 
δi, k composition of the net flow point of sector k 
λ λ λ λ( ), ( ), ( ), ( ):i j k l  Normalised coordinates of the searched phase (vapour phase in the L-

V equilibrium and organic phase in L-L equilibrium) 
η η η η( ), ( ), ( ), ( ):i j k l  Normalised coordinates of the known  phase (liquid phase in the L-V 

equilibrium and aqueous phase in L-L equilibrium) 
 
References 
[1] Sorel, E. La rectification de l'alcohol; Gautier-Villais et fills: Paris, 1893. 
[2] Ponchon, M. Graphical study of distillation. Tech. Modern. 1921, 13, 20. 
[3] Lee, J.W., S. Hauan, K.M. Lien, and A.W. Westerberg, A Graphical Method for 

Designing Reactive Distillation Columns: I. the Ponchon-Savarit Method, Proc. of the 
Royal Society A: Mathematical, Physical & Engineering Sciences, 2000 Vol. 456(2000), 
1953 –1964. 

[4] J.A. Reyes, A. Gómez and A. Marcilla. Graphical concepts to orient the Minimum 
Reflux Ratio Calculation on Ternary Mixtures Distillation. Ind. Eng. Chem. Res. 2000. 
39, 3912-3919. 

[5] Marcilla, A.; Gómez, A.; Reyes, J.A.; Olaya, M.M. New method for quaternary systems 
liquid-liquid extraction tray to tray design. Ind. Eng. Chem. Res. 1990; 38(8): 3083-
3095. 

[6] Gómez A., Ruiz F., Marcilla A., Reyes J., Menargues S. Diseño de la separación de 
mezclas ternarias (I). Conceptos gráficos del equilibrio entre fases. Ingeniería Química 
2001; 377: 219-229. 

[7] Gómez A., Ruiz F., Marcilla A., Reyes J., Menargues S. Diseño de la separación de 
mezclas ternarias (II). Aplicación de conceptos gráficos a la separación de mezclas 
azeotrópicas. Ingeniería Química 2001; 379: 253-262. 

[8] Reyes-Labarta, J.A., Caballero, J.A., Marcilla, A. Numerical Determination of 
Distillation Boundaries for Multicomponent Homogeneous and Heterogeneous 
Azeotropic Systems. Computer Aided Chemical Engineering 2010; 28: 643-648 
(European Symposium of Computer Aided Process Engineering-20). 



from Juan A. Reyes-Labarta Doctoral Thesis. Department of Chemical Engineering, University of Alicante (Spain) 
ISBN: 84-699-5991-3 (http://www.cervantesvirtual.com/FichaObra.html?Ref=4845) 

 

16/34 

[9] Marcilla, A.; Olaya, M.M.; Serrano, M.D.; Reyes-Labarta, J.A. Methods for improving 
models for condensed phase equilibrium calculations. Fluid Phase Equilib. 2010; 
296(1): 15-24. 

[10] Marcilla, A; Olaya, M.; Serrano M.D.; Reyes-Labarta, J.A. Aspects to be considered for 
the development of a correlation algorithm for condensed phase equilibrium data for 
ternary systems. Ind. Eng. Chem. Res. 2010; in press. 

[11] Reyes-Labarta J.A, Olaya M., Velasco R., Serrano M.D., Marcilla A. Correlation of the 
liquid-liquid equilibrium data for specific ternary systems with one or two partially 
miscible binary subsystems. Fluid Phase Equilib. 2009; 278: 9-14. 

[12] Marcilla, A.; Olaya, M.M.; Serrano, M.D.; Velasco, R.; Reyes-Labarta J.A. Gibbs 
energy based procedure for the correlation of type 3 Ternary systems including a three 
liquid phases region. Fluid Phase Equilib. 2009; 281(1): 87-95. 

[13] Olaya, M.M.; Reyes-Labarta, J.A.; Velasco, R.; Ibarra, I.; Marcilla, A. Modelling liquid-
liquid equilibria for island type ternary systems. Fluid Phase Equilib. 2008; 265: 184-
191. 

[14] Olaya, M.M; Ibarra, I.; Reyes-Labarta, JA.; Serrano, M.D.; Marcilla, A. Computing 
liquid-liquid phase equilibria: an exercise for understanding the nature of false solutions 
and how to avid them. Chem. Eng. Educ. 2007; 41(3): 218-224. 

[15] Reyes, J.A.; Conesa, J.A.; Marcilla, A.; Olaya, M.M. Solid-liquid equilibrium 
thermodinamics: checking stability in multiphase systems using Gibbs Energy Function. 
Ind. Eng. Chem. Res. 2001; 40: 902-907. 

[16] Olaya, M.M.; Marcilla, A.; Serrano, M.D.; Botella, A.; Reyes-Labarta, J.A. 
Simultaneous correlation of liquid−liquid, liquid−solid, and liquid−liquid−solid 
equilibrium data for water + organic Solvent + salt ternary systems. Anhydrous solid 
phase. Ind. Eng. Chem. Res. 2007; 46: 7030-7037. 

[17] Marcilla, A.; Reyes-Labarta, J.A.; Olaya, M.M.; Serrano M.D. Simultaneous correlation 
of liquid-liquid, liquid-solid, and liquid-liquid-solid equilibrium data for water + organic 
solvent + salt ternary systems: hydrated solid phase formation. Ind. Eng. Chem. Res. 
2008; 47: 2100-2108. 

[18] Marcilla, A, Ruiz, F. and Gómez, A. Graphically found trays and minimum reflux for 
complex binary distillation for real Systems. Latin American Applied Research, 1995, 
25, 87-96. 

[19] Reyes Labarta, J.A.; Diseño de Columnas de Rectificación y Extracción 
Multicomponente. Cálculo del Reflujo Mínimo. Ph.D. Dissertation, University of 
Alicante, 1998 (http://www.cervantesvirtual.com/FichaObra.html?Ref=4845). 

[20] Marcilla, A., Gómez, A. and Reyes, J.A. New Method for Designing Distillation 
Columns of Multicomponent Mixtures. Latin American Applied Research, 1997, 27(1-
2), 51-60. 



Resume of the Extension of the Ponchon and Savarit Method for Designing Ternary Rectification Columns 

17/34 

[21] Marcilla A., Reyes-Labarta J.A., Velasco R., Serrano M.D., Olaya M.M. Explicit 
equation to calculate the liquid-vapour equilibrium for ternary azeotropic and non 
azetropic systems. VIII Iberoamerican Conference on Phase Equilibria and Fluid 
Properties for Process Design. EQUIFASE’09 Book of abstracts 2009b: 87 
(http://hdl.handle.net/10045/14276). 

[22] Reyes-Labarta, J.A. and Grossmann I.E.; Disjunctive optimisation Design Models for 
Complex Liquid-Liquid Multistage Extractors. 2001. AIChE J. 47(10) 2243-2252. 

[23] Foucher E.R.; Doherty M.F. and Malone M.F. Automatic Screening of Entrainers for 
Homogeneous Azeotropic Distillation. Ind. Eng. Chem. Res., 1991, 30, 760-772. 

[24] Safrit B.T. and Westerberg A.W. Algorithm for Generating the Distillation Regions for 
Azeotropic Multicomponent Mixtures. Ind. Eng. Chem. Res., 1997, 36, 1827-1840. 

[25] Stichlmair J.G. and Herguijuela J.R. Separation Regions and Processes of Zeotropic and 
Azeotropic Ternary Distillation. AIChE J., 1992, 38, 10, 1523-1535. 

[26] Renon, H.; Asselineau, L.; Cohen, G. et Raimbault, C. Calcul sur ordinateur des 
équilibres liquide-vapeur et liquide-liquide. Publications de l'Institut Français du 
Pétrole, Collection "Science et Technique du Pétrole. 1971, nº 17. 

 



from Juan A. Reyes-Labarta Doctoral Thesis. Department of Chemical Engineering, University of Alicante (Spain) 
ISBN: 84-699-5991-3 (http://www.cervantesvirtual.com/FichaObra.html?Ref=4845) 

 

18/34 

Appendix A. The approximate procedure proposed to calculate the vapour-liquid 
equilibrium using interpolations. 
 
This procedure has the following steps: 
 
a) Find the twelve nearest points, P(m, n) of composition yi,j,k(m, n), to the point Po of 

composition yi,j,k to be interpolated (in the ordered lattice of saturated vapour). The index m 
refers to each one of the four series of points in Figure A1, the index n refers to each of the 
three points of the 4 series mentioned above. The three indexes (i, j, k) correspond to the co-
ordinates of the point to be interpolated, i being related to the component, j to the tray and k to 
the sector. As can be seen in Figure A2 the twelve selected points can adopt different figures 
around the point to be interpolated, depending on the position of this point in the grid. 
 
b) Determine the corresponding points in the conjugated net, P’(m, n) of composition xi, j, k 
(m, n), in  equilibrium with the twelve P(m,n). 
 
c) Set the origin of each series of points (i.e., the points: xi, j, k (m, 1) and yi, j, k (m, 1)) and 
calculate the distance of each point of each series to its corresponding origin: 
Origin net: 

( )∑
=

−=
3

1

2
,,,, )1,(),(),(

i
kjikji mynmynmd      (7) 

Destination net: 

( )∑
=

−=
3

1

2
,,,, )1,(),(),('

i
kjikji mxnmxnmd      (8) 

 
d) These distances to the respective origin are fitted for each one of the m  series to 
parabolas of the type: 

)m(c)n,m(d)·m(b)n,m(d)·m(a)n,m('d ++= 2    (9) 

 
where a(m), b(m) and c(m) are the fitting coefficients: Thus for each sequence (m = 1, 2, 3, 4) 
a system of three equations (each equation corresponding to each one of the three points (n=1, 
2, 3) of the series) with three unknowns that must be solved to obtain the coefficients of each 
parabola m (m = 1, 2, 3, 4): 

)m(c),m(b),m(a

)m(c),m(d)·m(b),m(d)·m(a),m('d

)m(c),m(d)·m(b),m(d)·m(a),m('d
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e) Once the coefficients of the 4 parabolas have been obtained, the points P(m,5) of the 
Figure 12 must be obtained: the point P(1,5) is calculated as the intersection between the lines 
passing through the points P(1,2) and P(1,3) and the line passing through Po is parallel to the 
line passing through P(1,3) and P(2,3). The rest of the points are obtained in a similar way. 
 
In order to calculate the corresponding compositions in equilibrium with these four points 
P(m,5), i.e., the four P’(m, 5) points, it is necessary: 
 
• To calculate their corresponding distances, d’(m, 5), in the destination net using the 

parabolas and distances previously calculated in the origin net. 
 
• Once the distances d’(m, 5) have been calculated, the points P’(m, 5) are located using the 

lever rule between the points P’(m, 1), P’(m, 5) and P’(m, n), for 1<m<4 and 2<n<4. Thus, 
for instance, in order to determine the coordinates of the point P’(1,5) the following 
equation is applied: 

 
)3,1('
)5,1('

)3,1()1,1(
)5,1()1,1(

,,,,

,,,,

d
d

xx
xx

kjikji

kjikji =
−

−
     (11) 

 and: 

 ( ))3,1()1,1(
)3,1('
)5,1(')1,1()5,1( ,,,,,,,, kjikjikjikji xx

d
dxx −⋅−=   (12) 

 
The coordinates of the rest of the points, P’(2,5), P’(3,5), P’(4,5), are obtained in a similar 
way. Finally, the point P’o, which is the result sought for, is obtained as the intersection 
between the two straight lines P’(1,5)-P’(2,5) and P’(3,5)-P’(4,5), as shown in Figure A1. 
This method with twelve points provides very accurate results, even for nets with low density 
of equilibrium points. 
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Appendix B. The approximate procedure proposed to calculate the vapour-liquid 
equilibrium using empirical correlation. 
 
The equation proposed for the liquid –vapour equilibrium data correlation is: 
 

2
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 )l(),k(),j(),i( ηηηη  are the normalised coordinates of a known initial equilibrium 

point (liquid phase): 
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C =  Constant used in the variable change that permits to include in the correlation the binary 
and ternary equilibrium data. 
 

)l(),k(),j(),i( λλλλ  are the normalised coordinates of the equilibrium point searched 

(vapour phase): 
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ai, bi, ci, di... are the correlation parameters which depend on the nature of the system and on 
temperature, but are independent on the composition. 
 
Obviously, using only one equation as Eqn. (4) the composition of a phase from the known 
composition conjugated phase can not be calculated. Therefore, to obtain the composition and 
the enthalpy of a phase in equilibrium with given known phase, it is necessary to combine (n) 
equations of this type (different and complementary) for a system of n components. When the 
correlation parameters have been calculated, it is possible to calculate the composition of the 
conjugated phase in equilibrium with another phase of known composition considering that 
the parameters Α, Β and Φ are constant for each type of equation (4). 
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Appendix C. Approximate methods to calculate the mass and energy balances 
 
The approximate procedures proposed in this work require a fitting of the equilibrium points 
in each phase to the corresponding enthalpy-composition polynomial functions, as shown in 
Eqn. (15): 

 121+221 2 =+⋅+⋅⋅+ ⋅⋅ He)(zd)(zc))(z(b))(z(a    (15) 

 
where z can be x or y and H can be h or H depending on the phase. This equation represents 
parabolic surfaces, and its intersection with the operative lines (Eqn. 3) allows the mass and 
energy balances to be solved using a simple method, solving the system of equations. This 
method involves very short calculation times and yields very good results. 
 
The solution for the enthalpy of this intersection point is of the type shown in Eqn. (16): 

02 =+⋅+⋅ ChBhA         (16) 
 

and there are two possible solutions, but only one with a physical sense. The correct solution 
is selected by comparison with the average value of equilibrium enthalpy. 
 
Another procedure that allows better results than that previously described is to find the three 
nearest points from the intersection point and afterwards obtain a linear fitting of their 
enthalpies versus their compositions (Eqn. 17): 

)(xc)(xc)(xch 321 321 ⋅⋅⋅ ++=       (17) 

 
The coefficients of this fitting, in combination with the composition of the intersection point 
previously calculated, allow the procurement of a new enthalpy value, that once substituted in 
the Eqn. (3) of the operative line, allows a better estimate. This composition can be 
considered as definitive, or used in Eqn. (17) in an iterative process to find the best value of 
the intersection. Generally, after two or three iterations, the values are very stable. 
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Appendix D. Rigorous method to calculate the mass and energy balances 
 
This method is based on an iterative process that calculates, in a rigorous way, the intersection 
between the rigorous enthalpy/composition function Eqn. (18) and the operative lines Eqn. 
(3), by solving the corresponding system of equations. 
 

),,,,( PTyxKfh iiii =        (18) 

 
The system of equations must be solved by an iterative procedure. In this case the problem 
has been solved by the procedure shown in Figure D1: calculation begins at an equilibrium 
point P1, near to intersection point; its enthalpy h1 allows the calculation of (by Eqn. 3) the 
composition of a point P2, with the same enthalpy as P1, but not in the equilibrium surface. A 
rigorous calculation with the composition of P2, allows P3 to be obtained, on the equilibrium 

surface with the same composition but different enthalpy. This point is used for the next 
iteration. This process continues until the difference between the two consecutive values of 
enthalpy is less than a small quantity previously fixed. 
 
This procedure is, obviously slower than the approximate methods, but yields the most 
accurate results. 
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Figure Captions: 
Figure 1. Graphical representation of the Ponchon-Savarit method for a ternary mixture. 
Figure 2. General complex distillation column. 
Figure 3. Lattices of equilibrium points for the nonideal system methanol-ethyl acetate-water. 
Figure 4. Determination of the possible distillate and bottom streams locations for a specified 
separation. 
Figure 5. Different distillation paths depending on the distillate flow rate for a given 
percentage separation. 
Figure 6. Flowsheet of proposed program for calculation of a rectification column. 
Figure 7. Location of the net flow point ∆c(k) 
Figure 8. Flowsheet of the program to calculate a rectification column optimizing the 
distillate flow rate. 
Figure 9. Comparison between the composition profiles obtained for component 1 in the 
liquid phase, by the rigorous design method proposed in present work (g) and by the Renon et 
al.52 (∆) simulation method, for cases 1 and 2. 
Figure 10. Comparison between the rigorous design method (g) and the approximate method 
(∆) using a network with 66 (a-b) and 861 (c) points and the interpolation by intercepting 
lines from the 12 nearest points and the intersection procedure proposed, for cases 1 (a) and 3 
(b-c). 
Figure 11. Results for column 1 and 2, comparing the approximate method (∆) using the 
proposed correlation (Eqn. 14) and intersection with fitting of entalphies (Eqns. 15 to 17) and 
the rigorous method (g). 
Figure A1. Possible location of the twelve nearest points to the point of interpolation (Po). 
Figure A2. Intercepting lines for interpolation with twelve points. Location of the 
interpolated point (P’o). 
Figure D1. Sketch of the iterative calculation to determine the intersection point between an 
operative line and the enthalpy-composition surface 
 
Table Titles: 
Table 1. Different cases used to illustrate the proposed procedures for the distillation column 
design method. All cases work with a reflux ratio=2 (lv: liquid-vapor mixture, ov: overheated 
vapour, sl: saturated liquid, sv: saturated vapor, ul: undercooled liquid). 
Table 2. Results of the rigorous design method column design method. All cases work with a 
reflux ratio=2. 
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Figure1. Graphical representation of the Ponchon-Savarit method for a ternary mixture. 

 

 
Figure 2. Generalized distillation column. 
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Figure 3. Lattices of equilibrium points for the non-ideal system methanol-ethyl acetate-

water. 
 

  
Figure 4. Determination of the possible distillate and bottom streams locations for a specified 

separation. 
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Figure 5. Distance to be minimized between the residue obtained with the overall mass 
balance and calculated as the last tray in the distillation column. 
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Figure 6. Flowsheet of the proposed program for calculation of a rectification column. 
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Figure 7. Location of the net flow point ∆c(k) 
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Figure 8. Flowsheet of the program to calculate a rectification column optimising the 
distillate flow rate. 
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a) b)  
 

Figure 9. Comparison between the composition profiles obtained for component 1 in the 
liquid phase, by the rigorous design method proposed in present work (g) and by the Renon et 

al.13 simulation method (∆), for cases 1 (a) and 2 (b). 
 

 
 

a) b)  
 

c)  
 

Figure 10. Comparison between the rigorous design method (g) and the approximate method 
(∆) using a network with 66 (a-b) and 861 (c) points and the interpolation by intercepting 

lines from the 12 nearest points and the intersection procedure proposed, for cases 1 (a) and 3 
(b-c). 
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Figure 11. Results for column 1 and 2, comparing the approximate method (∆) using the 
proposed correlation (Eqn. 14) and intersection with fitting of entalphies (Eqns. 15 to 17) and 

the rigorous method (g). 
 

 
 
 

a) b)  
 

Figure A1. Possible location of the twelve nearest points to the point of interpolation (Po). 
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a)  
 
 

b)   c)  
 

Figure A2. Intercepting lines for interpolation with twelve points. Location of the 
interpolated point (P’o). 

 
 

 
 
 
 

Figure D1. Sketch of the iterative calculation to determine the intersection point between an 
operative line and the enthalpy-composition surface 
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Table 1. Different cases used to illustrate the proposed procedures for the distillation column 
design method. All cases work with a reflux ratio=2 (lv: liquid-vapor mixture, ov: overheated 

vapour, sl: saturated liquid, sv: saturated vapor, ul: undercooled liquid). 
 

Cas
e 

Mixture Mole fraction 
of (1) (zF(1)) 

Mole 
fraction of 
(3) (zF(3)) 

Enthalpy hF 
(kcal/mol) 

Recovery 
percent (1) 

Recovery 
percent (3) 

1 a 0.60 0.394 3244 (sl) 97.3 97.4 
2 a 0.50 0.30 3255 (sl) 97.4 98.2 
3 a 0.18 0.50 3661 (sl) 97.3 97.4 
4 a 0.70 0.12 2971 (sl) 97.3 97.4 
5 a 0.30 0.30 3383 (sl) 97.3 97.4 
6 a 0.394 0.60 3593 (sl) 90.0 90.0 
7 a 0.10 0.30 3480 (sl) 97.3 97.4 
8 a 0.50 0.40 3337 (sl) 97.3 97.4 
9 a 0.40 0.40 3415 (sl) 97.3 97.4 
10 a 0.40 0.40 3415 (sl) 90.0 90.0 
11 a 0.50 0.30 3255 (sl) 97.0 97.0 
12 b 0.55 0.30 1544 (sl) 96.9 97.6 
13 b 0.30 0.50 1497 (sl) 97.0 94.0 
14 b 0.25 0.35 1595 (sl) 96.9 97.6 
15 b 0.55 0.15 1577 (sl) 96.9 97.6 
16 a 0.60 0.394 2000 (ul) 97.3 97.4 
17 a 0.60 0.394 7000 (lv) 97.3 97.4 
18 a 0.60 0.394 11017 (sv) 97.3 97.4 
19 a 0.60 0.394 12000 (ov) 97.3 97.4 
20 a 0.50 0.30 2900 (ul) 97.4 98.2 
21 a 0.50 0.30 7000 (lv) 97.4 98.2 
22 a 0.50 0.30 10846 (sv) 97.4 98.2 
23 a 0.50 0.30 12000 (ov) 97.4 98.2 
24 b 0.55 0.30 1000 (ul) 97.4 98.2 
25 b 0.55 0.30 7000 (lv) 97.4 98.2 
26 b 0.55 0.30 10387 (sv) 97.4 98.2 
27 b 0.55 0.30 11000 (ov) 97.4 98.2 
28 b 0.40 0.40 1785 (sl) 90.0 90.0 
29 c 0.55 0.30 1727 (sl) 93.0 91.0 
30 c 0.30 0.65 1520 (sl) 90.0 90.0 
31 c 0.60 0.30 1653 (sl) 96.0 96.0 
32 c 0.40 0.50 1614 (sl) 97.3 97.4 
33 c 0.70 0.20 1668 (sl) 97.3 97.4 
34 c 0.65 0.15 1825 (sl) 97.3 97.4 
35 c 0.35 0.50 1683 (sl) 97.3 97.4 
36 c 0.45 0.40 1708 (sl) 96.0 96.0 
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Table 2. Results of the rigorous design method column design method. All cases work with a 
reflux ratio=2. 

 
Case Optimum D 

mol/h 
d(xRcolumn-
xRbalance) 

No. Stages 
(Optimum location feed) 

1 60.0 0.00147 13.21 (6-7) 
2 69.0 0.00027 11.98 (6-7) 
3 50.5 0.00102 14.89 (7-8) 
4 86.4 0.01709 10.24 (6-7) 
5 69.8 0.01957 11.73 (6-7) 
6 42.0 0.01333 9.02 (4-5) 
7 69.4 0.00100 14.17 (8-9) 
8 59.5 0.00190 12.79 (7-8) 
9 59.7 0.00225 12.39 (6-7) 
10 58.6 0.00251 7.10 (3-4) 
11 69.2 0.00153 11.27 (6-7) 
12 69.0 0.00013 8.00 (6-7) 
13 52.1 0.00403 5.60 (3-4) 
14 65.0 0.00320 7.79 (5-6) 
15 83.6 0.00587 8.67 (5-6) 
16 59.9 0.01281 4.80 (4-5) 
17 68.8 0.00860 5.36 (4-5) 
18 38.5 0.02657 3.67 (2-3) 
19 68.8 0.00353 7.22 (5-6) 
20 50.2 0.00436 7.83 (6-7) 
21 78.6 0.00494 8.82 (6-7) 
22 83.6 0.00506 9.57 (6-7) 
23 50.3 0.00184 7.98 (6-7) 
24 59.8 0.00187 6.96 (5-6) 
25 60.0 0.00064 12.95 (6-7) 
26 60.0 0.00231 14.84 (8-9) 
27 60.0 0.00405 23.46 (13-14) 
28 60.0 0.00084 12.95 (8-9) 
29 69.0 0.00015 11.93 (5-6) 
30 69.0 0.00124 12.79 (7-8) 
31 69.0 0.00236 14.05 (9-10) 
32 69.0 0.00223 15.84 (10-11) 
33 69.0 0.00012 8.00 (5-6) 
34 69.0 0.00416 8.25 (6-7) 
35 69.0 0.0117 8.59 (7-8) 
36 69.0 0.00515 8.63 (7-8) 

 
 


