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Abstract. Trees are a powerful data structure for representing data for
which hierarchical relations can be defined. They have been applied in a
number of fields like image analysis, natural language processing, protein
structure, or music retrieval, to name a few. Procedures for comparing
trees are very relevant in many task where tree representations are in-
volved. The computation of these measures is usually a time consuming
tasks and different authors have proposed algorithms that are able to
compute them in a reasonable time, through approximated versions of
the similarity measure. Other methods require that the trees are fully
labelled for the distance to be computed. In this paper, a new measure is
presented able to deal with trees labelled only at the leaves, that runs in
O(|TA| × |TB |) time. Experiments and comparative results are provided.
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1 Introduction

The computation of a measure of the similarity between two trees is a subject
of interest in very different areas where trees are suitable structures for data
coding. Trees are able to code hierarchical relations in their structure in a natural
way and they have been utilized in many tasks, like text document analysis [8],
protein structure [11], image representation and coding [2], or music retrieval [9],
to name just a few.

Different approaches have been proposed in order to perform this comparison.
Some of them pose a restriction on how the comparison is performed, other
establish valid mappings. While some methods pay more attention to the tree
structure, others do it to the content of the nodes and leaves. Most of them are
designed to work with fully labelled trees.

The method proposed in this paper is designed to work with partially la-
belled trees, more precisely with those labelled only at the leaves. This fact,
places the focus more on the coded content and the relations within its con-
text. One of the fields where this situation is relevant is music comparison and
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retrieval. Trees have been used for this task and a number of representation
and comparison schemes have been applied based on tree edit distances [9] or
probabilistic similarity schemes [3].

In any case, the computation of these measures is usually a time consuming
task and different authors have proposed algorithms that are able to compute
them in a reasonable time [12], through approximated versions of the similarity
measure. In this paper, a new algorithm is presented, able to deal with trees
labelled only at the leaves that runs in O(|TA|× |TB |) time, where |Tx| stand for
the number of nodes in tree Tx.

2 Tree comparison methods

A number of similarity measures for the ordered non-evolutionary trees have
been defined in the literature. Some of them measure the sequence of operations
needed to transform one tree in another one, others look for the longest common
path from the root to a tree node, and there are methods that allow wildcards in
the matching process in the so-called variable-length doesn’t care (VLDC) dis-
tance. Several taxonomies of these measures have been proposed. The interested
reader can look up a hierarchy of tree edit distance measures in [7] and [14], and
a survey in [1].

2.1 Definitions and notations

In this section, the terms and notations that will be used in this paper will be
defined.

Let T = (V,E, L) be a labelled tree formed by a finite non-empty set V of
vertices, a finite set E ⊆ V × V of arcs, and a set L of labels for nodes. Each
node contains a label, possibly empty. The labelling function will be defined by
label : V → L. The empty tree will be denoted as λ, and the empty label as �.

This tree is said to be a labelled rooted tree if there is a distinguished node
r ∈ V , called the root of the tree and denoted by root : T → V such that for all
nodes v ∈ V , there is an only path from root r to node v. All the trees used in
this report are labelled rooted trees, so both terms will be used interchangeably.

The level or depth of a node v ∈ V , denoted by depth: V → N ∪ {0}, is
the length of the unique path from the root node root(T ) to node v. The height
denoted by h: T → N ∪ {0} is defined as h(T ) = maxv∈V {depth(v)}.

Let two nodes v, w ∈ V , v is said to be the parent of w, if (v, w) ∈ E and
depth(w) = depth(v) + 1. The parent of a node will be obtained by the function
par : V → V . The node w is said to be a child of v. Let’s define the function
children: V → 2V as the set of all children of node v. children(v) = {w| par(w) =
v}.

The arity, rank, or outdegree of a node v ∈ V , denoted by rank: V → N∪{0},
is the number of children of a node. rank(v) = | children(v)|. When applied to a
tree T , rank(T ) = maxv∈V {rank(v)}.



A node v ∈ V is said to be a leaf if rank(v) = 0. A boolean function leaf :
V → B is defined to denote it. Similarly, leaves(T ) is the set of nodes of that
tree that have no children: {v ∈ V | leaf(v) = true}.

An ordered tree is a tree where the relative order of its children is fixed for
each node. It allows us to define the function child : N × V → V , such that
childi(v) is just before childj(v) iff i = j − 1, ∀i, j ∈ N.

The postorder numbering of a tree consists of giving the visit order of each
node of the tree following a postorder traversal of the tree. To uniquely identify
nodes in a tree T , lets define T [i] ∈ N as the ith node in a postorder numbering,
beginning from 1.

A forest is a disjoint union of trees, and an ordered forest has the property
that its components follow an order being this way a sequence of trees that will
be denoted as T +. The operation T [childi(T ).. childj(T )] is the set composed
by the children of T from positions i to j, both included, and it forms a forest.
For abbreviating the notation, T [i..j] will be used in the sequel to denote this
operation.

Tree Edit Distance. The classical edit distance between two trees is the min-
imal cost to transform one input tree into an output one by edit operations. An
edit operation over two trees TA = (V,E, L) and TB = (V �, E�, L�) is any of the
following:

– relabel the label l of a node v ∈ V by the label l� of another node w ∈ V �,
denoted by (v, w) (Fig. 1a).

– deletion of a non-root node v ∈ V , denoted by (v, λ), consists of deleting it,
making the children of v become the children of par(v), just in the position
that was occupied by v, preserving this way the left to right ordering of
leaves (Fig. 1b).

– insertion of a non-root node w ∈ V �, denoted by denoted by (λ,w). Given a
sequence wi · · ·wj of subtrees of a common parent w, the insertion of node
w� makes those wi · · ·wj subtrees children of w�, and w� child of w (Fig. 1c).
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Fig. 1: Tree edit operations (from [5]).

To each operation, a so-called edit cost ct : V × V � → R is assigned based on
that of the edit cost of the symbols at labels, c : L × L → R that depends on
the given application. Therefore, ct(a, b) denotes the cost of applying the edit
operation (v, w) where v is an input node and w is an output node. If v = λ, the
operation denotes an insertion, if w = λ the operation is a deletion. Note that
the operation (λ, λ) is not allowed.



Definition 21 An edit script et = et1 · · · etn is a sequence of edit operations
eti = (ai, bi) ∈ (V ∪ {λ}) × (V ∪ {λ}) allowing the transformation of a tree X

into a tree Y . The cost of an edit script πt(et) is the sum of the costs of the edit
operations involved in the script: π(et) =

�n
i=1 ct(eti).

Definition 22 Let St(X,Y ) be the set of all the scripts that enable the emission
of Y given X, the edit distance between X and Y is defined by: dt(X,Y ) =
minet∈St(X,Y )π(et).

2.2 Review of tree edit distances

The first author to give a solution to the general tree edit problem was Tai [13],
proposing an algorithm with time complexity O(|TA| × |TB | × depth(TA)2 ×
depth(TB)2), where |Ti| denotes the number of nodes in tree Ti. This algorithm
was improved by Shasha and Zhang [15] giving a dynamic programming al-
gorithm with time complexity O(|TA| × |TB | × min(depth(TA), | leaves(TA)|) ×
min(depth(TB), | leaves(TB)|)).

The alignment distance is a restricted version of the edit distance based on
forcing the application of all insertions before any deletions. Hence, the edit
distance is always lower or equal than the optimal alignment [1]. It seems that
alignment charges more for the structural dissimilarity at the top levels of the
trees than at the lower levels, whereas edit treats all the levels the same [6]. In
that work, an algorithm to solve the problem in O(|TA| × |TB | × (rank(TA) +
rank(TB))2) time and O(|TA| × |TB | × (rank(TA) + rank(TB))) space is given.

Another interesting variant of the edit distance was introduced by Selkow [12],
where deletions and insertions are constrained to leaves. Thus, in order to delete
an inner node, all its descendants must be deleted before. This algorithm has its
strength in its low temporal cost O(|TA| × |TB |).

Finally, the bottom-up distance between two non-empty rooted trees TA and
TB and is equal to 1−f/max(|TA|, |TB |), where f is the size of a largest common
forest of TA and TB [14] . Valiente [14] reported a time complexity O(|TA|+|TB |).
However, this complexity is actually O(|TA| × |TB | × log (TA + TB)), because in
the original paper the computing of the bottom-up mapping is not included in
the complexity calculation 1.

2.3 Proposed partially labelled tree comparison algorithm

The presented similarity measures between trees are designed to work with fully
labelled trees. In order to apply those algorithms to trees labelled only at leaves,
the non-labelled inner nodes can be assigned a special label “empty”. However
it is expected that they don’t work as well as they do with fully labelled trees.

1 The nested loop in the mapping function (lines from 3 to 12 of the algorithm included
in [14]) that traverses in level-order all the nodes of both trees leads to O(|TA| ×
|TB | × log (TA + TB)), where the logarithm corresponds to the map operations on a
(|TA|+ |TB |) size map inside the double loop.



In order to overcome this situation two approaches are possible. The first one
consists of labelling all nodes using any bottom-up propagation scheme based on
the application domain specific knowledge . The main drawback to that option is
that any intermediate process might add noise to the resulting trees. The second
approach is the definition of a similarity function designed just to compare those
partially labelled trees.

The partially labelled tree comparison algorithm sp is based on the assumption
that the similarity value between a labelled leaf and a non-labelled inner node
should be the average of chances of finding that leaf in the descendants of that
inner node. Fig. 2a shows the simplest case of having two leaf trees: sp(TA, TB) =
δ(x, y), where δ(x, y) = 1 ⇐⇒ x = y, and 0 elsewhere. For comparing the trees
shown in Fig. 2b, the chances of finding the label x in TB are computed as
sp(TA, TB) = (δ(x, y) + δ(x, z))/2. If instead of being a label, y were another
tree, the function should be computed recursively. Finally, when none of the
trees is composed by a single leaf (Fig. 2c), the similarity of the ordered forests
wx and yz can be computed like an edit distance between sequences wx and yz

where each symbol is a tree.
This similarity method omits the accounting of the insertion or deletion of

nodes and just measures the chance of finding coincident labels, giving more
importance to the information hierarchically contained in the tree than to the
tree structure.

TA x TB y

(a)

TA x TB y z

(b)

TA w x TB y z

(c)
Fig. 2: Similarity function sp representative cases

Being designed for working with partially labelled trees, however, we can
slightly adapt the original idea to work also with fully labelled trees. The case
of comparing a leaf to a non-leaf tree (Fig. 3a), is computed as sp(TA, TB) =
(δ(x, b) + δ(x, y) + δ(x, z))/3. Likewise, the similarity sp(TA, TB) between two
fully labelled trees (Fig. 3b) is computed as the edit distance between sequences
wx and yz, where each symbol is a tree, plus the similarity between labels a and
b.

TA x TB b

y z

(a)

TA a

w x

TB b

y z

(b)
Fig. 3: Similarity function sp working on fully labelled trees.

Let sp : T ×T → R be a similarity function between trees and sfp : T + ×T +

be a similarity function between forests. Let us also use rlabel : T → L that
returns the label of the root of the tree, and Rm as an abbreviation for rank(Tm).
The similarity between two trees, fully or partially labelled, is defined as:



Definition 23

(i) sp(TA, TB) =




δ(rlabel(TA), rlabel(TB)) : if leaf(TA) ∧ leaf(TB) (1)
δ(rlabel(TA),rlabel(TB))+

�RB
j=1 sp(TA,childj(TB))

1+RB
: if leaf(TA) ∧ ¬ leaf(TB) (2)

δ(rlabel(TA),rlabel(TB))+
�RA

i=1 sp(childi(TA),TB)
1+RA

: if ¬ leaf(TA) ∧ leaf(TB) (3)
δ(rlabel(TA),rlabel(TB))+sfp(TA,TB)

max(RA,RB)+1 : otherwise (4)

(ii) sfp(λ, λ) = 0

(iii) sfp(i..i
�
, λ) = sfp(i..i

� − 1, λ)

(iv) sfp(λ, j..j
�) = sfp(λ, j..j

� − 1)

(v) sfp(i..i
�
, j..j

�) =

max






sfp(i..i� − 1, j..j�)

sfp(i..i�, j..j� − 1)

sfp(i..i� − 1, j..j� − 1) + sp(TA[i�], TB [j�])

The simplest situation in Fig. 2a is solved by case (i)-(1). Cases (i)-(2) and
(i)-(3) solve the problems depicted in Fig. 2b and 3a. Finally, (i)-(4) computes
the similarity for Fig. 3b. After comparing the roots, the ordered forests com-
posed by the tree children (Fig. 2c) are compared with the similarity function
between forests sfp in the the indirect recurrence (ii) to (v).

Complexity of the partial edit distance. In order to calculate the time
complexity of sp and sfp, the functions T s and T sf will be used respectively. In
both cases the size of the problem is the number of nodes of the compared trees:
(|TA|, |TB |).

T s(|TA|, |TB |) =






1 : if |TA| = 1 ∧ |TB | = 1

RB × T s(|TA|, |TB |/ rank(TB)) : if |TA| = 1 ∧ |TB | > 1

RA × T s(|TA|/ rank(TA), |TB |) : if |TA| > 1 ∧ |TB | = 1

T sf (|TA|, |TB |) : if |TA| > 1 ∧ |TB | > 1

The function sfp can be solved using a dynamic programming scheme as the
used for any edit distance. On a classical edit distance, where the substitution
cost has constant complexity, given the problem size (|TA|, |TB |), the complexity
is O(|TA| × |TB |) because its implementation is a simple double loop traversing
a |TA| × |TB | matrix. However, in our case, in each step of that iteration, the sp

is called. Under these assumptions, the temporal complexity of the algorithm is
obtained:
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Fig. 4: A short melody sample and its representation as a tree.

T s(|TA|, |TB |) = c+ T sf (|TA| − 1, |TB | − 1)

T sf (|TA|, |TB |) =
RA�

i=1

RB�

j=1

T s(
|TA|
RA

,
|TB |
RB

) = RA ×RB × T s(
|TA|
RA

,
|TB |
RB

)

and it can be shown that this time is O(|TA| × |TB |).

3 Experiments

The experiments are devised to assess the suitability of the proposed algorithm
working with both partially and fully labelled tree corpora, and compare it with
classical tree comparison algorithms.

In the selected case study, the main goal is to identify a melody from a set of
all the different variations played by the musicians. In our experiments, we use
tree representations of monophonic music pieces [10] (Fig. 4c). The node labels
are symbols from a pitch description alphabet Σp. In this paper, the interval
modulo 12 from the tonic of the song is utilized as pitch descriptor (Fig. 4a):
Σp = {p | 0 ≤ p ≤ 11} ∪ {−1}, where −1 is used to encode rests. For measuring
the similarity between the melody and each of the variations, the different tree
comparison algorithms have been used.

Initially, only leaf nodes are labelled. Then, in order to reduce tree sizes and
improve performing times, a pruning operation at level l can be applied that
propagates bottom-up leaf labels until getting all leaves at level l or less labelled.
For deciding which label to propagate, a melodic analysis [4] is applied to decide
which notes are more important and then are more suitable to be promoted.
Optionally, if we want to label all nodes in the tree, the same propagation method
must be followed until reaching the root.

Corpora. In our experiments, we used a corpus consisting of a set of 420 mono-
phonic 8-12 bar incipits of 20 worldwide well known tunes of different musical
genres 2. For each song, a canonic version was created by writing the score in a

2 The MIDI data set is available upon request to the authors.



musical notation application and exported to MIDI and MP3 format. The MP3
files were given to three amateur and two professional musicians who listened
to the songs (mainly to identify the part of the tune to be played) and played
with MIDI controllers the same tune several times with different embellishments
and capturing performance errors. This way, for each of the 20 original scores,
20 different variations have been built.

Melody classification accuracy. The experiments have been performed us-
ing a query / candidates scheme, i.e., given a corpus, for each song the query
prototype is compared to all the scores in the dataset. The similarity values are
considered as distances and, following a nearest neighbor (NN) rule, the class of
the file closest to the query will be taken as the retrieved song. This answer is
correct if it corresponds to the same song of the query. Any other situation is
considered as an error.

The success rate is measured as the ratio of correct answers to all the queries.
Running times are measured in milliseconds taking into account only the test
phase, leaving aside the construction of the representations that may be done
off-line. All experiments have been performed using a MacBook Pro machine
with 4 Gb RAM and 2 Intel(R) Core 2 Duo(R) CPU running at 2.26GHz, with
a Java virtual machine 1.6.

Results. The experiments have been performed feeding all algorithms with
several versions of the trees that have been pruned from level l = 1 to l = 6
(which is the maximum depth found in the corpus). For each pruning level the
average number of nodes has been extracted to be used as x-axis in the plots.
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Fig. 5: Success rates of proposed method compared to classical tree edit distances.

The results plotted in Fig. 5a show that the proposed algorithm behaves the
best for not-pruned trees or l = 6 (see results for x > 350). For pruned trees, it
behaves also the best in average.

When working with fully labelled trees (see Fig. 5b), the success rates of
the proposed method are comparable to the success rates of the Selkow and



the Alignment distance. The plot in Fig. 6a shows the theoretical evolution
of computing times of the main tree edit distance algorithms given their time
complexity, and Fig. 6b describes the actual processing times of those distances
in our experiments. The actual times confirm the prediction from the theoretical
complexities, being our proposed algorithm the second faster one.
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Fig. 6: Time processing evolution of algorithm.

Thus, it seems that the proposed similarity is suitable for its purpose, being
able to compare successfully both trees labelled only at leaves and fully labelled
trees better than the other methods in terms of trade-off between time and
success rate.

4 Conclusions

In this paper a new similarity tree algorithm has been introduced for working
with trees labelled only at the leaves. It has been applied to a real application:
the similarity computation between monophonic symbolic music pieces encoded
with both partially and fully labelled trees. The application has been tested
using the proposed algorithm and classical tree similarity algorithms from the
literature. From the results, it seems that the proposed algorithm outperforms
the other ones in a trade-off among computing time and success rates.

In the future the algorithm must be applied to other applications that require
this kind of measure to compare trees. Currently we are applying the same
methodology to bigger corpora encoded with different pitch encodings and other
propagation schemes, being the partial results obtained as good as those shown
in this paper.
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