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Abstract 

A human tracking system based on the integration of the measurements from an inertial motion 

capture system and a UWB (Ultra-Wide Band) location system has been developed. On the one 

hand, the rotational measurements from the inertial system are used to track precisely all limbs of the 

body of the human. On the other hand, the translational measurements from both systems are 

combined by three different fusion algorithms (a Kalman filter, a particle filter and a combination of 

both) in order to obtain a precise global localization of the human in the environment. Several 

experiments have been performed to compare their accuracy and computational efficiency. 

 

Keywords: Indoor location, Motion Capture, Human-Robot Interaction, Kalman Filter, Particle 

Filter. 

 

1. INTRODUCTION 

In industrial environments where humans and robots share the same workspace, a precise 

localization of each human operator is needed. This localization does not only avoid dangerous 

collisions between humans and robots but it also provides valuable context information for the task 

planners of the robots [1, 2]. Thus, human-robot interaction tasks become more natural and 

unobtrusive because trajectories of the robots are dynamically changed depending on the human 

operators’ movements. 

However, global positioning of the human operator in the workspace is not sufficient for close 

collaborative tasks. In these tasks, a full-body movement registration system is needed in order to 

detect precisely possible collisions between each limb of the human operator and each link of the 

industrial robot. Motion capture systems satisfy this requirement because they are able to track 

precisely the movements of the main limbs of a human being. A motion capture system based on 

inertial sensors has been chosen for the current research because of the advantages of this sensor 

technology [3]: small size, self-containment and no line-of-sight restrictions. Although the relative 

joint rotation measurements obtained from the inertial sensors are very precise, the global position of 
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the human estimated by this system accumulates an important error through time [4]. Thus, an 

additional location system based on UWB pulses has been included in order to obtain more precise 

measurements of the global position of the human operator in the industrial workplace. 

Three novel fusion algorithms based on Bayesian filters have been developed in order to combine 

the position measurements of these two tracking systems. The first algorithm is based on a Kalman 

filter, the second one is based on a particle filter and the third one is based on a combination of a 

Kalman filter and a particle filter. These fusion algorithms modify the standard structure of the 

Bayesian filters in order to adjust them to the features of the measurements of the tracking systems. 

On one hand, position accuracy of the UWB location system is used to correct the error 

accumulation of the inertial motion capture system. On the other hand, the high sampling rate of the 

inertial motion capture system is used to continue the tracking process while the UWB system does 

not supply any measurement. 

2. PREVIOUS WORK ON SENSOR FUSION 

Inertial sensors obtain an estimation of the pose of the objects to which they are attached by 

integrating their measurements. However, this integration process implies the accumulation of a 

small drift which becomes significant after several integration steps [5]. Previous research corrects 

this integration drift by combining the measurements of the inertial sensors with the position 

measurements of other sensors (e.g. GPS, ultrasound, magnetic, cameras, UWB and Wi-Fi). 

Different adaptations of Bayesian filtering techniques [6] (especially, Kalman filters and particle 

filters) have been proposed in order to estimate probabilistically the system’s pose from the noisy 

measurements of the sensors. 

The generic Kalman filter [7] has been adapted in two different ways in order to incorporate 

measurements from different sensors: complementary Kalman filters and Kalman filters with multi-

channel correction steps. Tracking systems based on Complementary Kalman filters [8-10] receive 

as input the differences between the sensors combining the measurements into a common value 

which is applied to the filter. Thereby, they estimate sensor errors instead of direct measurements. 

The other type of Kalman filter adaptations are based on the modification of the correction step of 

the filter in order to incorporate several measurements. In particular, a measurement model for each 

sensor type is defined and applied independently in the correction step of the Kalman filter [11]. 

These correction channels can be weighted according to fuzzy variables which represent the 

reliability of each sensor [12]. Particle filters have also been modified in a similar way and different 

measurement models are defined for each sensor in hybrid tracking systems [13-15]. These 

measurement models are used to update the weights of the particles of these filters during the 

importance factor computation step.  

The first two algorithms which are developed in this research are based on a Kalman filter and a 

particle filter, respectively. These algorithms improve the computational cost of the fusion 

approaches described above by reducing the execution frequency of their internal steps (prediction 



and correction). They perform only one of the steps of the filters depending on the received 

measurement: prediction step for inertial measurements and correction step for UWB measurements. 

In [16], a similar Kalman-based approach is presented for a human tracking system, which applies 

the prediction step of the filter to the measurements from inertial sensors and the correction step to 

the measurements from other additional sensors. Nevertheless, the algorithm in [16] executes both 

the prediction and correction steps of the filter at each iteration. This fact involves that the additional 

sensors, which are used to correct the inertial drift, must register measurements at a similar sampling 

rate. This limitation is overcome by the algorithms proposed in this paper because one of their main 

advantages is the fusion of measurements from tracking systems with different sampling rates. 

Finally, the third fusion algorithm described in this paper uses both filters (Kalman and particle) in 

order to combine their advantages and obtain more accurate position estimates with a smaller 

computational cost than the stand-alone particle filter. 

3. TRACKING SYSTEM HARDWARE COMPONENTS 

The human tracking system described in this paper is composed of two main devices: an inertial 

motion capture system (GypsyGyro-18 from Animazoo) and a UWB location system (from 

Ubisense).  

The inertial motion capture system is composed of 18 small IMUs (Inertial Measurement Units) 

attached to a lycra suit which is worn by the human operator. Fig. 1.a shows this suit and the location 

of the IMUs over it. Each IMU measures the orientation (roll, pitch and yaw) of the operator’s limb 

to which it is attached by combining the measurements of three MEMS (Micro-Electro-Mechanical 

Systems) gyroscopes, three accelerometers and three magnetometers. These measurements are 

represented in a 3D skeleton structure (see Fig. 1.b). This skeleton represents the human body as a 

hierarchical structure where the motion of each node is relative to the motion of its predecessor 

nodes. The root node of this hierarchy is the hips node and it represents the global position of the 

human in the environment. 



 

(a)                                                                (b) 

Figure 1: Inertial motion capture system: (a) motion capture suit composed by 18 IMUs; (b) 

skeleton structure where the measurements from the suit are applied. 

 

The relative rotations of each node of the skeleton are very precise because they are directly 

obtained from the orientation measurements registered by the IMUs. However, the global translation 

of the hips node is estimated in the controller PC by a footstep extrapolation algorithm which 

accumulates important errors over time (see [4] for a detailed set of experiments which quantify 

these errors). Thus, an additional localization system which provides precise global translation 

measurements is needed. A wireless localization system based on Ultra-Wideband (UWB) pulses 

has been used in the work described in this paper. The human operator carries a small device (tag) 

which sends UWB pulses to four sensors which are situated at fixed positions on the localization 

area. A more precise estimate of the 3D global position of the human is obtained by applying TDOA 

(Time-Difference of Arrival) and AOA (Angle of Arrival) techniques to these UWB pulses. 

4. SENSOR FUSION ALGORITHMS 

4.1 Sensor fusion principles 

The three Bayesian filter algorithms developed in this paper are based on the complementary 

features of the global translation measurements of both tracking systems. On one hand, the 

translation measurements of the inertial motion capture system accumulate substantial errors over 

time while the translation measurements of the UWB system are more precise. Thereby, the 

implemented fusion algorithms use the measurements of the UWB system as ground truth data for 

removing the accumulated errors of the inertial system. On the other hand, the UWB system 



registers measurements with a lower rate (5-9Hz) than the inertial system (30-120Hz). Thus, the 

implemented fusion algorithms use the measurements of the inertial system to estimate the position 

of the skeleton between each pair of UWB measurements. The resulting system from the fusion of 

both tracking systems will have a higher sampling rate and a better accuracy than each system 

separately. 

The developed fusion algorithms adapt a Kalman filter, a particle filter and a combination of a 

Kalman filter and a particle filter in order to consider these complementary features of both tracking 

systems. These algorithms will be exposed in detail in subsequent subsections. Nevertheless, the first 

step to combine global position measurements of both tracking systems is to represent them in the 

same coordinate system. The transformation equations needed to do so are explained next. 

4.2 Coordinate transformation 

The position measurements from the UWB localization system are represented in the frame U  while 

the position measurements from the inertial motion capture system are represented in the frame G  

(see Fig. 2). The frame U  is a static coordinate system which is established according to the fixed 

positions where the UWB sensors are installed. However, the frame G  is dynamic since its origin is 

established in the place where the user initializes the system. The U  frame of the UWB system has 

been selected as the reference coordinate system because it allows comparing easily the position of 

the human operator with the position of static objects (like machinery) in the environment. 

 

 

Figure 2. Coordinate systems of the UWB and the inertial motion capture system. 

 

The XY planes of the U  and G  frames are parallel to the plane of the floor in the environment. 

Therefore, between them there is only a translation ( ), ,U U U
G G Gx y z  and a rotation about the Z  axis by 

an angle α . Each position measurement ( ), ,G G Gx y z  of the inertial motion capture system can be 

represented in the UWB coordinate system ( ), ,U U Ux y z  by applying the following transformation 

matrix U
GT : 
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The parameter α  in this transformation matrix is a known constant value which represents the 

angle between the Y  axis of both frames. The three coordinates of the translation vector 

( ), ,U U U
G G Gx y z  between frame U  and frame G  are calculated from (1) by substituting two 

corresponding measurements from both systems: 

 ( ) ( )cos sinU U G G
Gx x x yα α= − +  (2) 

 ( ) ( )sin cosU U G G
Gy y x yα α= − −  (3) 

 U U G
Gz z z= −  (4) 

After obtaining the parameters of the transformation matrix U
GT , all the translational 

measurements from the motion capture system will be transformed to the UWB frame by applying 

(1). 

4.3 Kalman filter fusion approach 

Kalman filters are the most widely used technique to implement Bayesian filters. The generic 

Kalman filter algorithm [7] has been modified in order to incorporate sensor measurements from the 

two tracking systems by considering their complementary features: high sampling rate of the inertial 

motion capture system and location precision of the UWB system. 

The state tx  which should be estimated by the Kalman filter developed for the work described in 

this paper is composed by the coordinates ( ), ,p x y z=  of the global position of the human operator 

in the environment (position of the hips node of the skeleton). The prediction step of this Kalman 

filter uses a state evolution model where the estimate of the state ˆtx  is obtained from the current 

measurement of the inertial motion capture system ( )inertialz t  plus a Gaussian noise ( )inertialw t : 

 ( ) ( )ˆt inertial inertialx z t w t= +  (5) 

This model is implemented in the Kalman filter prediction step using the following two equations: 

 ( )ˆt inertialx Az t=  (6) 

 1
T

t tP AP A Q−= +  (7) 

The matrix A  represents the state transition model of (5) and thus it is a 3 3×  identity matrix 

(with ones on the main diagonal and zeros elsewhere) which uses the last measurement from the 

motion capture system as the current state estimate. tP  is the error covariance matrix which 

represents the accuracy of the state estimate ˆtx . Q  is the 3 3×  covariance matrix of the error 

( )inertialw t  of the inertial motion capture system. It is a diagonal matrix whose terms represent the 



variance of the position errors of the inertial system. The terms of this matrix are adjusted 

experimentally from a representative group of experiments so that the errors of the final state 

estimates are minimum. 

The correction step of the filter is based on an observation model where the measurements from 

the UWB system ( )ˆuwbz t  are approximated by the last state estimate of the prediction step 1ˆtx −  plus 

a Gaussian noise ( )uwbw t : 

 ( ) ( )1ˆˆuwb t uwbz t x w t−= +  (8) 

This observation model is implemented in the Kalman filter correction step using the following 

three equations: 

 ( )1 1
T T

t t tK P H HP H R− −= +  (9) 

 ( )( )1 1ˆ ˆ ˆt t t uwb tx x K z t Hx− −= + −  (10) 

 ( ) 1t t tP I K H P−= −  (11) 

Position measurements from the UWB system are used as observations ( )uwbz t  in this step in 

order to correct the predicted position 1ˆtx − calculated from the motion capture system. The matrix H  

represents the measurement model of (8) and it is a 3 3×  identity matrix (with ones on the main 

diagonal and zeros elsewhere) because UWB measurements have the same dimension as the state. 

R  is the 3 3×  covariance matrix of the error ( )uwbw t  of the UWB system. It is a diagonal matrix 

whose terms represent the variance of the position errors of the UWB system. The terms of this 

matrix are adjusted experimentally from a representative group of experiments so that the errors of 

the final state estimates are minimum. 

These prediction and correction steps of the Kalman filter are implemented by the algorithm 

shown in Table 1. The main advantage of this algorithm over previous sensor fusion techniques 

based on Kalman filtering is that only one step of the algorithm (prediction or correction) is executed 

each time a measurement is obtained. The prediction step ((6), (7)) is executed when a measurement 

from the inertial motion capture system is received (line 9 of Table 1) while the correction step ((9)-

(11)) is executed when UWB measurements are received (line 12 of Table 1). Thereby, the 

execution time of the algorithm is smaller than other fusion algorithms based on the Kalman filter 

([8-12]) which complete both filter steps at each iteration. 

This algorithm reduces the drawbacks of both tracking systems by combining their 

complementary features. On one hand, the error accumulated by the inertial motion capture system is 

removed after each correction step execution because the transformation matrix U
GT  is re-calculated 

(line 6 of Table 1) with the last state estimate obtained from a UWB measurement. This new matrix 

U
GT  is used in the following prediction step executions in order to represent the inertial system 

measurements in the UWB coordinate system (line 8 of Table 1) and thus the drift of previous 

inertial measurements is corrected. On the other hand, the low sampling rate of the UWB 



measurements does not reduce the latency of the system because the inertial system measurements 

registered between each pair of UWB measurements are used in the prediction step in order to obtain 

an estimate of the system’s state (line 9 of Table 1). Thereby, this algorithm provides state estimates 

with a high sampling rate which is suitable to track quick human movements. 

 

Table 1: Fusion algorithm based on Kalman filter. 

01: Initialize filter parameters: 1, , , , ,A H P Q R α  

02: Initialize U
GT  with the first two measurements [Eq. (2)-(4)] 

03: for each sensor measurement ( )z t  

04:  if ( )z t  is from the inertial system [ ( )inertialz t ] 

05:    if ( 1)z t −  is from UWB system 

06:      Recalculate U
GT  with ( )inertialz t  and 1tx −  [Eq. (2)-(4)] 

07:    end if 

08:    Transform ( )inertialz t  from frame G  to frame U  [Eq. (1)] 

09:    [ ] ( )( )1, KalmanPrediction , , ,t t inertial tx P A Q z t P−=  

10:    Store tx  as state estimate for time t  

11:  else if ( )z t  is from UWB system { ( )uwbz t } 

12:    [ ] ( )( )1 1, KalmanCorrection , , , ,t t t uwb tx P H R x z t P− −=  

13:    Store tx  as state estimate for time t  

14:  end if 

15: end for 

 

4.4 Particle filter fusion approach 

Another widespread technique for implementing Bayesian filters is the particle filter. In this 

paper, a fusion algorithm derived from a particle filter algorithm with a Sampling Importance 

Resampling (SIR) scheme [17] has been developed in order to compare it with the Kalman filter 

approach. 

For the application presented here, the prediction step of the SIR particle filter obtains a set tS  of 

n  particles [ ]i
tx  from the state transition distribution, which is modeled by adding a random 

Gaussian noise iw  of zero mean and covariance matrix Q  to the position measurement from the 

motion capture system ( )inertialz t  (see Equation 12). The covariance matrix Q  represents the error 

covariance of the motion capture system and its terms are computed as explained in the previous 

section. 



 ( ) ( ){ }[ ] 0, ; 1, ,i
t t inertial i iS x z t w w N Q i n= = + =   (12) 

The Gaussian error iw  in (12) is obtained from the Cholesky decomposition C  of the covariance 

matrix TQ C C=  and a normally distributed random vector ( )0,Z N I : 

 ( ) ( )w = ⋅ ⋅ = 0, 0,T T
i C Z N C C N Q  (13) 

In the importance factor calculation step, the weights [ ]i
tw  of the particles are computed from the 

measurement model ( )( )[ ]
1

i
uwb tp z t x − . This probability is calculated as a multivariate normal 

distribution ( )( ),uwbN z t R  with the UWB measurement ( )uwbz t  as mean and R  as covariance 

matrix. This normal distribution is evaluated for each particle [ ]
1

i
tx −  of the prediction step (12). The 

covariance matrix R  represents the error covariance of the UWB system and its terms are computed 

as explained in the previous section. Finally, the weights of all the particles will be normalized to 

ensure that they sum up to one. 
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Sequential Importance Sampling (SIS) filters are only composed of these two steps. However, in 

many cases, after some iterations of these filters, only a few particles have non-zero importance 

weights. This problem is called weight degeneracy or sample impoverishment. The resampling step 

reduces this problem by defining a new particle set where state estimates with high weights are 

represented by several particles while state estimates with low weights are removed. The resampling 

algorithm draws with replacement n  particles from the initial particle set tS . The probability of 

drawing each particle is given by its importance factor. In this paper the ‘systematic resampling’ 

algorithm presented in [18] has been used because it has a reduced computational complexity [19]. 

The implemented algorithm is described in detail in Table 2. It has a very similar structure to the 

Kalman filter algorithm (Table 1): Motion capture measurements are used in the prediction step (line 

9 of Table 2) and UWB measurements are used in the importance factor calculation step (line 12 of 

Table 2). The importance factor and resampling steps will only be executed with the frequency of 

UWB measurements. Thereby, the execution time of the algorithm is reduced with regard to 

previously developed particle filter algorithms ([13], [15]), which have different particle weighing 

channels for each sensor and have always to perform the weighing and resampling steps. Just after 

registering a UWB measurement, the transformation matrix U
GT  is recalculated (line 6 of Table 2) in 

order to correct the error accumulated by the previous measurements and remove it from the 

following state estimates. 

 

 



Table 2: Fusion algorithm based on Particle filter. 

01: Initialize filter parameters: , , ,n Q R α  

02: Initialize U
GT  with the first two measurements [Eq. (2)-(4)] 

03: for each sensor measurement ( )z t  

04:  if ( )z t  is from the inertial system [ ( )inertialz t ] 

05:    if ( 1)z t −  is from UWB system 

06:      Recalculate U
GT  with ( )inertialz t  and 1tx −  [Eq. (2)-(4)] 

07:    end if 

08:    Transform ( )inertialz t  from frame G  to frame U  [Eq. (1)] 

09:    ( )( )PF_Prediction ,t inertialS z t Q=  

10:    Calculate state estimate tx  as mean of all particles tS  

11:  else if ( )z t  is from UWB system [ ( )uwbz t ] 

12:    ( )( )1PF_ImportanceFactor , ,t t uwbW S z t R−=  

13:    ( )1PF_SystematicResampling ,t t tS S W−=  

14:    Calculate state estimate tx  as mean of all particles tS  

15:  end if 

16: end for 

 

4.5 Kalman-particle filter combination approach 

The third approach implemented in this paper relies on combining the previous two Bayesian 

techniques: Kalman filter and particle filter. The Kalman filter is applied to measurements from the 

inertial motion capture system while the SIR particle filter is applied to UWB measurements. 

Previous state estimates 1ˆtx −  are used in the prediction steps of these filters in order to interchange 

measurements between them and thus correct each other’s errors.  

The state evolution model of the prediction step in the Kalman filter is based on the previous state 

estimate 1ˆtx −  plus a Gaussian noise ( )KFw t  with zero mean and covariance KFQ  (which represents 

the dispersion of the difference between the current position and the previous one): 

 ( )1ˆ ˆt t KFx x w t−
−= +  (15) 

This prediction step is implemented by the following equations (where A  is a 3 3× identity 

matrix): 

 1ˆ ˆt tx Ax−
−=  (16) 

 1
T

t t KFP AP A Q−
−= +  (17) 



The observation model of the correction step in the Kalman filter approximates the measurements 

of the inertial motion capture system from the state estimate of the prediction step ˆtx−  plus a 

Gaussian noise ( )inertialw t  with zero mean and covariance KFR  (which is equal to the covariance 

matrix Q  of the Kalman filter in section 4.3): 

 ( ) ( )ˆˆinertial t inertialz t x w t−= +  (18) 

This observation model is implemented in the Kalman filter correction step using the following 

three equations (where H  is a 3 3×  identity matrix and ( )inertialz t  is the motion capture system 

measurement): 

 ( )T T
t t t KFK P H HP H R− −= +  (19) 

 ( )( )ˆ ˆ ˆt t t inertial tx x K z t Hx− −= + −  (20) 

 ( )t t tP I K H P−= −  (21) 

Each time a UWB measurement is registered, the SIR particle filter is executed. In the prediction 

step of this particle filter, a set tS  of n  particles [ ]i
tx  is obtained by adding a random Gaussian noise 

[ ]i
PFw  with zero mean and covariance PFQ  to the state estimate 1ˆtx −  obtained with the Kalman filter 

from the previous inertial measurement: 

 ( ){ }[ ] [ ] [ ]
1 0, ; 1, ,i i i

t t t PF PF PFS x x w w N Q i n−= = + =   (22) 

The importance factor calculation and resampling steps of this particle filter are implemented in a 

similar way to the previous particle filter algorithm described in section 4.4. The weights [ ]i
tw  of the 

particles computed in the prediction step are obtained from a multivariate normal distribution 

( )( ),uwb PFN z t R  while the resampling step is implemented by a systematic resampling approach 

[18]. The covariance matrix PFR  contains the variance of the errors of the UWB system and it is 

equal to the R  covariance matrix of the particle filter in section 4.4. 

The fusion algorithm obtained from the combination of this Kalman and particle filters is 

described in Table 3. This algorithm improves the performance of the particle filter algorithm 

presented in section 4.4 because its execution frequency is reduced. The high rate measurements 

from the motion capture systems are processed with the Kalman filter (lines 9-10 of Table 3) and 

thus the particle filter is only executed when slow measurements from the UWB system are obtained 

(lines 13-15 of Table 3). In a similar way to the fusion algorithms of sections 4.3 and 4.4, the 

transformation matrix U
GT  is recalculated (line 6 of Table 3) after an UWB measurement is received 

in order to correct the error accumulated by the inertial system, as in the previous fusion algorithms. 

 

 

 

 



Table 3: Fusion algorithm based on Kalman-particle filter. 

01: Initialize filter parameters: 1, , , , , , , ,KF KF PF PFA H P Q R n Q Rα  

02: Initialize U
GT  with the first two measurements [Eq. (2)-(4)] 

03: for each sensor measurement ( )z t  

04:  if ( )z t  is from the inertial system [ ( )inertialz t ] 

05:    if ( 1)z t −  is from UWB system 

06:      Recalculate U
GT  with ( )inertialz t  and 1tx −  [Eq. (2)-(4)] 

07:    end if 

08:    Transform ( )inertialz t  from frame G  to frame U  [Eq. (1)] 

09:    [ ] ( )1 1, KalmanPrediction , , ,t t KF t tx P A Q x P− −=  

10:    [ ] ( )( ), KalmanCorrection , , , ,t t KF inertial t tx P H R z t x P=  

11:    Store tx  as state estimate for time t  

12:  else if ( )z t  is from UWB system [ ( )uwbz t ] 

13:    ( )1PF_Prediction ,t t PFS x Q−=  

14:    ( )PF_ImportanceFactor , ( ),t uwb PFW S z t R=  

15:    ( )PF_SystematicResampling ,t t tS S W=  

16:    Calculate state estimate tx  as mean of all particles tS  

17:  end if 

18: end for 

5. EXPERIMENTAL RESULTS 

A collection of experiments has been developed in order to compare the precision and efficiency 

of the three Bayesian fusion filters described in section 4. Two paths have been defined in order to 

perform these experiments: a linear path of 3 meters and a rectangular path of 8 meters. Both 

trajectories are defined in the same XY plane with a constant height (coordinate Z) since the errors 

in the vertical component are negligible in comparison with the errors in the horizontal plane. A 

human operator who wears the inertial motion capture suit and the UWB tag has covered each 

trajectory fifteen times at a walking speed of approximately 1-3m/s. These trajectories are marked on 

the floor so that the human operator follows them with precision. The points of these marked 

trajectories are used as ground-truth values for computing the position errors of the tracking systems. 

The global translation measurements which are registered by the inertial motion capture system and 

the UWB system in these experiments are processed in three Matlab functions which implement the 

three Bayesian filter algorithms. All the algorithms have been tested in the same computer (Intel 



Pentium 4 2.8GHz processor, 760MB RAM) to compare their computational efficiency. A set of 100 

particles has been used in the algorithms which are based on particle filtering. 

The global position measurements obtained in one of the fifteen experiments of the linear path are 

depicted in Fig. 3. Fig. 3.a shows the original position measurements registered by the two tracking 

systems (inertial motion capture system and UWB system) in the same coordinate system. This plot 

shows the advantages and disadvantages of both tracking systems. On one hand, the inertial system 

obtains fast measurements which define a continuous movement while UWB measurements have a 

lower sampling rate. On the other hand, measurements from the inertial system accumulate an error 

which increases over time while UWB measurements maintain approximately a constant error. 

Therefore, the fusion algorithms developed in this paper should be applied to calculate better 

position estimates. Figs. 3.b, 3.c and 3.d depict the position estimates which are obtained in this 

experiment by applying the Kalman filter, the particle filter and the Kalman-particle filter fusion 

algorithms, respectively. 
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Figure 3: Linear trajectory experiment: (a) original position measurements from the inertial and 

UWB systems; (b) position estimates from the Kalman filter algorithm in the prediction and 

correction steps; (c) position estimates from the particle filter algorithm in the prediction and 

resampling steps; (d) position estimates from the Kalman-particle filter algorithm in the Kalman 

filter (KF) and the particle filter (PF) steps. 



Fig. 4 shows the error statistics (error mean and standard deviation) of all the position estimates 

computed by the three fusion algorithms along the fifteen experiments of the linear path. These 

statistics are obtained by calculating the Euclidean distance between each position measurement and 

the corresponding ground-truth point in the linear path. The Kalman-particle filter algorithm has a 

global mean error (0.037±0.029m) very similar to the global error of the Kalman filter algorithm 

(0.038±0.029m). The particle filter algorithm has a slightly higher global error (0.044±0.029m). 
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Figure 4: Mean error and standard deviation of the position estimates from the three fusion 

algorithms (KF: Kalman filter, PF: Particle filter, KF-PF: Kalman-particle filter) in the linear path 

experiments. 

 

Fig. 5.a depicts the number of measurements of the inertial motion capture system and the number 

of measurements of the UWB localization system which are processed by the fusion algorithms at 

each experiment of the linear path. The number of measurements of the inertial system is always 

substantially higher than the number of measurements of the UWB system because of its higher 

sampling rate. Fig. 5.b shows the execution time which is spent by the fusion algorithms to combine 

all the measurements of both tracking systems. The Kalman filter is the least expensive algorithm in 

terms of execution time with a global mean time of 0.077s. The Kalman-particle filter algorithm has 

an intermediate computational cost (global mean execution time: 1.137s) between the Kalman filter 

and the particle filter (global mean execution time: 1.523s). 
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Figure 5: Computational cost of the linear path experiments: (a) number of measurements 

registered by the two tracking systems (inertial and UWB); (b) total execution time of the three 

fusion algorithms (KF: Kalman filter, PF: Particle filter, KF-PF: Kalman-particle filter). 

 

Fig. 6.a depicts the original global position measurements registered by the tracking system 

during one of the fifteen experiments of the rectangular path. The error accumulation of the inertial 

system is more evident in this trajectory because it is longer than the previous linear path (Fig. 6.a). 

The differences in the accuracy of the position estimates obtained from the three fusion algorithms 

are also more important and they can be appreciated in the Figs. 6.b, 6.c and 6.d. The trajectory 

estimated by the Kalman-particle filter algorithm (Fig. 6.d) is the most precise because it has a 

tighter fit to the real rectangular trajectory. The trajectory estimated by the particle filter algorithm 

(Fig. 6.c) is the least precise because the estimation positions are farther from the real path. 

A more in-depth description of the errors of the position estimates computed by the three fusion 

algorithms is shown in Fig. 7. As it was stated before, the Kalman-particle filter algorithm obtains 

more accurate position estimates (global mean error: 0.063±0.055m) than the Kalman filter (global 

mean error: 0.105±0.076m) and the particle filter algorithms (global mean error: 0.184±0.127m). 

Fig. 8.a shows the number of measurements which are combined by the fusion algorithms in each 

experiment of the rectangular trajectory. In this case, the number of processed measurements is 

higher because the path is longer. Fig. 8.b depicts the execution time of the fusion algorithms to 

combine these measurements. On one hand, the number of measurements of the inertial system is the 

main factor that determines the different execution times of the same fusion algorithm at different 

experiments. On the other hand, when the execution times of the three fusion algorithms are 

compared, the same results than in the linear path experiments are obtained. The Kalman filter 

algorithm has a smaller computational cost (global mean execution time: 0.561s) than the Kalman-

particle filter (global mean execution time: 4.358s) and the particle filter algorithms (global mean 

execution time: 5.947s). 
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Figure 6: Rectangular trajectory experiment: (a) original position measurements from the inertial 

and UWB systems; (b) position estimates from the Kalman filter algorithm in the prediction and 

correction steps; (c) position estimates from the particle filter algorithm in the prediction and 

resampling steps; (d) position estimates from the Kalman-particle filter algorithm in the Kalman 

filter (KF) and the particle filter (PF) steps. 

 

0 2 4 6 8 10 12 14 16
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

No. Experiment

M
ea

n
 E

rr
o

r 
an

d
 S

ta
n

d
ar

d
 D

ev
ia

ti
o

n
 (

m
)

 

 

KF PF KF-PF

 



Figure 7: Mean error and standard deviation of the position estimates from the three fusion 

algorithms (KF: Kalman filter, PF: Particle filter, KF-PF: Kalman-particle filter) in the rectangular 

path experiments. 
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Figure 8: Computational cost of the rectangular path experiments: (a) number of measurements 

registered by the two tracking systems (Inertial and UWB); (b) total execution time of the three 

fusion algorithms (KF: Kalman filter, PF: Particle filter, KF-PF: Kalman-particle filter). 

 

The three fusion algorithms developed in this research can be compared according to the results of 

the experiments described above. The Kalman-particle filter combination algorithm obtains the more 

precise position estimates. Therefore, this algorithm is suitable for human tracking in industrial 

environments. The better accuracy of this algorithm is based on its internal structure. The fast 

measurements of the inertial motion capture system can be easily represented with the linear 

Gaussian models of a Kalman filter while the slow measurements of the UWB system are better 

modeled with a nonlinear non-Gaussian technique (like a particle filter) because of their high 

latency. The fusion algorithm based on a Kalman filter is the most efficient fusion algorithm because 

of its simple implementation. However, it should be used in tracking systems where less accuracy is 

needed because it is not able to correct the errors of the inertial motion capture system as much as 

the Kalman-particle filter algorithm. 

 

6. CONCLUSIONS 

In this paper, three novel algorithms based on Bayesian Filtering have been developed to combine 

position measurements from two human tracking systems (an inertial motion capture system and a 

UWB localization system) with different sampling rates and accuracy. The first algorithm is based 

on a Kalman filter where measurements from the motion capture system are used in the prediction 

step of the filter and UWB measurements are incorporated in the correction step. The second 

algorithm is based on a particle filter and follows a general structure very similar to the Kalman 



filter: motion capture measurements are used in the prediction step and UWB measurements are used 

in the importance factor calculation step. Both algorithms use motion capture measurements in the 

motion model to predict the next position of the human operator. UWB measurements are used in 

the observation model to correct the previously predicted positions. The third algorithm combines 

these two Bayesian techniques: motion capture measurements are processed by a Kalman filter while 

UWB measurements are processed by a particle filter. In these three algorithms, the transformation 

matrix between the coordinate frames of both tracking systems is recalculated each time a UWB 

measurement is processed and thus next measurements from the motion capture system are corrected 

with the previous UWB position estimate. 

These fusion algorithms have been compared by performing several experiments where a human 

operator has followed two different paths: a linear trajectory and a rectangular trajectory. Several 

conclusions can be drawn from the obtained results. Firstly, the fusion of both tracking systems has 

been able to correct the drift which made impractical the use of the inertial motion capture system 

for the global localization of a human operator. Secondly, the errors of position estimates obtained 

by the Kalman filter and the Kalman-particle filter approaches are assumable (0.06-0.10m in a 8m 

trajectory) for the development of general human-robot interaction tasks. Thirdly, the development 

of several fusion algorithms enables the selection of one or the other solution depending on the 

efficiency and accuracy requirements of the application. Thereby, applications which require a quick 

response of the tracking system will use the Kalman filter algorithm while applications which 

require precise positioning will implement the Kalman-particle solution. Finally, the validity of the 

proposed algorithms depends on the supply of sufficient UWB measurements for the correction of 

the inertial drift. If the UWB system does not provide a minimum sampling rate, the inertial system 

will accumulate too much drift between each pair of UWB measurements and this error will make 

impossible the tracking of the human. 

This paper has been focused on the precise localization of a human operator in an industrial 

environment. This is the first step to create intelligent industrial workplaces where human operators 

can interact naturally and unobtrusively with industrial machinery. Future work will be concentrated 

on developing real collaboration tasks between human operators and industrial robots where the 

tracking measurements obtained from these fusion algorithms will be used. 
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