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Task Reallocation in Multi-Robot Formations

Noa Agmon, Gal A Kaminka,

Abstract—This paper considers the task reallocation problem,
where k robots are to be extracted from a coordinated group of
N robots in order to perform a new task. The interaction betwee
the team members and the cost associated with this interacin
are represented by a directed weighted graph. Consider a
group of N robots organized in a formation. The graph is the
monitoring graph which represents the sensorial capabilies of
the robots, i.e., which robot can sense the other and at whaibst.
The team member reallocation problem with which we deal, is
the extraction of £ robots from the group in order to acquire
a new target while minimizing the cost of the interaction of he
remaining group, i.e., the cost of sensing amongst the remaing
robots. In general, the method proposed in our work shifts tte
utility from the team member itself to the interaction between
the members, and calculates the reallocation according tohts
interaction cost. We found that this can be done optimally bya
deterministic algorithm, while reducing the time complexty from
O(N*) to O(2%), thus resulting in a polynomial time complexity
in the common case where a small number of robots is extracted
i.e., whenk = O(NN). We show that our basic algorithm creates
a framework that can be extended for use in more complicated

cases, where more than one component should be taken into.

consideration when calculating the robots’ cost of interation.
We describe two such extensions: one that handles prioritex

Sarit Kraus and Meytal Traub

group-objective function that corresponds to the abditar
characteristics of the agents (e.g. [11]). The generallprob
was proven to beNP-hard as a special case of the Set
Partitioning Problem [12].

In this work we suggest a new method for choosing team
members for task reallocation that is based on the intenacti
between team members. Our approach concentrates on the
minimization of the cost of interaction between the entditie
rather than on the capabilities of the agents. Under this
model, the problem remain&“P-hard, however we manage
to substantially reduce the number of possibilities foriropt
assignments, thus we reduce the search domain from order
(™) to order2*. This reduction makes it possible to solve
the problem faster even using a brute-force algorithm, and i
common cases whefels relatively small it is possible to solve
the problem both optimally and efficiently (i.e., in polyniain
time).

In the model we propose, the set of team members and the
interaction between them is represented by a weightedtdaec
graph, where the vertices represent the members, the etirect

components and one that handles weighted components. Weedges represent the interaction (interaction of a vesitdr

describe several other non-robotic domains in which our bas
method is applicable, and conclude by providing an empirich
evaluation of our algorithm in a robotic simulation.

Index Terms—multi-robot systems, multi-robot formation,
multi-robot task reallocation

I. INTRODUCTION

This paper discusses a team f robots engaged in a

cooperative task. Specifically, we consider the problem

choosingk team members in order to reassign them to a n
task. We assume that all members are capable of partiojpa

in the execution of the new task, and the cost of the n

vertexd could be different from interaction d@fto a, thus the
edges are directed) and edge weights represent the cost of th
interaction between them. We assume the team has a leader,
which can correspond to a formation leader in the example
accompanying us throughout the work. In the general case,
this leader is a team member that has only incoming edges
and no outgoing edges, i.e., it does not depend on other team
member’s input in its interaction with them.

The problem used to illustrate methods is the fundamental
Foblem of maintaining a formation by a team of robots; this

oblem has received considerable attention in the liteeat
@.g. [2], [3], [16], [21]). In order to maintain the formati, a

bot has to monitor one or more robots in the formation.

task doe_s not depend on the identity of the robots Chosen§8vera| common methods for choosing the identity of the
perform it. Therefore this work concentrates on the prObleFBbot(s) to be monitored are known [2]. We choose to focus

of choosingk robots such that the performance of the existingn the method proposed in [16]

task, performed by the remaining group members, will be
efficient as possible.
The general problem of choosiigout of N team members

in which the identity is
@Fiven by minimization of the monitoring cost of the robots.
Therefore the graph is the monitoring graph which represent
the sensorial capabilities of the robots, i.e., which rote

in order to perform a new task is an important problem [6], [%ense the other and at what cost. The problem thus involves

[10], [13], [14], [18], [30]. Previous work in task reallotian

extractingk robots in order to perform a new task (for example

in teams of agents usually concentrate on optimizing SOQEy jire a new target) while minimizing the monitoring cot o

Preliminary results appeared in Proceedings of the Twtbntiational
Conference on Artificial Intelligence (AAAI'05) [1]
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the remaining group.

In particular, in this work we make the following contribu-

tions.

1) We introduce a new method in which the problem of
choosingk out of N team members is modeled by a
graph, and the decision is taken while emphasizing the
cost of interaction between the members.

2) We describe a deterministic algorithm for choosing
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team members while minimizing the cost of interactioby nature phenomena. They describe three possible basic

between the members of the remaining group assumiteghniques a robot can use in order to maintain its position i

that the group has one possible leader. The algorithemformation: leader referenced, neighbor referenced aitd un

reduces the trivial time complexity @(N*) to O(2%), center referenced.

thus is polynomial if we assume that= O(log N). Several works used the neighbor referenced technique, and
3) We demonstrate the generality of the basic algorithm kexamined it in different aspects. Desai [8] offers a graph

showing how it extends to deal with the following casesnodeling of a formation usingontrol graphs based on the

a) The group has more than one member whidkeighbor referenced technique, where the robots can change
can potentially act as the leader. These cases &fgir formation by switching between control graphs. Lemay
significantly more complex, as they require that wét al. [17] consider the problem of initially assigning redo
check possib|e leader rep|acement5; yet we shd® Specified locations in the formation. Kaminka et al. [16]
that they can still be done optimally by applying ar@ssume that a robot follows not necessarily the closeshneig
algorithm that works in reduced time (exponentidpor, but the one that the cost of sensing it is minimal, and

in k, hence polynomial fok = O(log NV)). represent the formation in a sensing graph, i.e., a graph tha
b) Not all team members can be chosen for the nei@present the cost of sensing. We use the work of Kaminka et

task. We show that in some cases the basic algd- as baseline for our work, thus choose to reallo¢atebots
rithm can still be used under these circumstancel® @ new task based on the sensing graph.

c) The cost function of the robots is composed of Balch and Hybinette [3] presented a new behavior based
more than one component. In particular, we cor@Pproach for formation control, based on potential fumetio
sider weighted components where we each corffiat attract robots, in designated positions, from theamte
ponent is associated with a relative weight, anghembers in the formation. The advantage of this new approach
prioritized components of the cost function, wheré that it is easily scalable to large formations, it assunrdy

the components are considered according to thé@cal sensing and it is flexible in the sense that it allows to
priority. work in various formations and avoid obstacles. This work

4) We show that the method we propose, and the baSgncentrates on determining the proper formation posfon

algorithm within it, is a general method that can be usé:(')aCh team member. ) )
in several other domains. Our problem belongs to thenulti robot task allocation

- . ... (MRTA) domain. Following the taxonomy for MRTA systems
We then present an empirical evaluation of the algonthn(liven by Gerkey and Mataric [14], our work deals with

using the Player/Stage simulated environment [15]. This i . ; .
oo . Instantaneous assignments of single-task robots penfigrmi
plementation illustrates the use of three different taskloe multi-robot tasks

cation algorithms—the basic algorithm, and two algorithms Parker [20] presents a behavior based architecture AL-

th?t .take other Cons'der‘?‘“of‘s Into accou.nt (weighted aEFANCE for cooperative multi-robot control. This architece
prioritized components)—in different formations.

deals with missions that are composed of loosely coupled
subtasks that are independent. The task achieving bebkavior
are divided into lower-lever behaviors that correspondtbi-i

Our problem, task reallocation in multi-robot formatios, ividual ad-hoc primitives such as obstacle avoidance, agld hi
on the line between two canonical problems in multi-robdével behaviors that corresponds to the team-mission ratio
systems, multi-robot pattern formation and maintenange [Zhis work, however, does not deal with task reallocatiorimit
[8], [16], [17], and multi-robot task allocation [9], [10]14], the team of robots but in the individual behavior of the robot
[20], [22], [28]. that assures completion of team tasks.

The only work, to our knowledge, that considers the prob- Studies that discuss the problem of choosingut of N
lem of task allocation in multi-robot formation is the workagents in order to perform a new task mostly concentrate on
by Michael et al. [19]. In their work, they use combinatoriamaximizing the profit gained by the optimal performance of
auctions in order to assigm robots tom tasks, i.e., splitting the new task. For example in [9], [10] Dias et al. consider
the robots intom groups. They implement their proposednarket-based coordination methods for assigning tasks to
solution in a team of mobile robots in a formation undembots. In such systems, tasks are allocated between robots
the constraint of collision avoidance. In our work we alsasing auctions. Finding the optimal assignment using cembi
provide an empirical evaluation of the case in which it isatorial auctions, where bidders can bid on combinations of
required to avoid collisions, however our main general meéth items, has been proven to BéP-hard [23]. We, on the other
concentrates on optimize the cost of interaction (sensingand, concentrate on maximizing the benefit (minimizing the
amongst the remaining team. Note that our work does nmist) gained by the optimal execution of the original task.
require communication, as the deterministic algorithm bban The problem can be considered equivalent, if it is perceived
executed by each robot individually. as choosingV — k team members to perform the original task.

The class of pattern formation and maintenance of a teamMévertheless, we aim to find the exact optimal solution where
mobile robots received considerable attention in theditme in other studies the problem is handled heuristically.
[2], [8], [16], [17]. Balch and Arkin [2] discussed the remet Other studies discuss allocation of agents to several given
behavior-based techniques for formation control, modigat tasks. These studies mostly provide heuristic algorithars f

Il. RELATED WORK
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efficient allocation of agents to tasks. In [22], Sander et detweenv; and v; with a cost(v;, v;), which is the weight
describe task allocation heuristic algorithms for sedirig of the edge(v;,v;). An Optimal Interaction Tree(OIT) is
which the agents and tasks are geographically dispersedbirilt on this graph by simply running Dijkstra’s shortestipa
the plane. algorithm between all vertices of the graph and the leader
The problem of designing and forming groups of agen{similar to [16]).
while maximizing some mutual objective is usually referred One main constraint is required on this graph as follows:
to as coalition formation. The work of Shehory and Kraus [28
is close to the scenario discussed in this paper. They stig
algorithms for coalition formation among agents, where
agent can be either a member of only one coalition (similar _ ] ) ] ] )
to our case), or coalitions may overlap. They provide héiaris | NiS means that the triangle inequality exists ondpémal
algorithms, rather than an exact optimal solution. tree qu, OIT(G) (but.not necessarily oG).. Intuitively, if a
Sandholm and Lesser [25] also dealt with coalition fol28th is chosen to be iBIT(G), then there is no shorter path

mation, but with self interested agents. Our problem can BEWween the two edges of the path. Note that this does not
perceived as a private case of the general coalition foomatiMe@n that the triangle inequality holds for general edges, of

studies (forming two coalitions - one for the old task and orfe® depicted in Figure 1. In this example, the triangle inéyua
for the new). does not hold inG, for examplecost(_a,c) + cqst(c,e) <
Tosic and Agha describe a distributed algorithm for genef2st(¢: €), thus clearly the edggu, ¢) will not be in OIT(G)..
ating coalitions based on the current physical configunatip The triangle inequality can still exist between some vesijc
the agents, using maximal cliques [29]. They show that tfi@" €xamplecost(a, b) + cost(b, ¢) > cost(a, ).
agents convert to the same coalitions, but their work do¢s no
refer to any kind of group utility, as opposed to our work,
which maximizes the joint utility of the agents performirnget
original task.
Another subject in coalition formation which is closely
related to the problem discussed here is the problem of
coalition structure generation [7], [24], [26]. In this jplem,
which has been shown to h&P-hard, a division of the b
agents into coalitions is searched such that the groupyutili
(payoff) is maximized. Sandholm et al. [24] and Dung and
Jennings [7] provide algorithms for coalition formationthwi
a guaranteed lower bound from the optimal solution. Sen and
Dutta describe a stochastic search approach for searcbing f
optimal coalitions [26]. As opposed to our scenario, whgrelFig. 1. An example of a case in which the triangle inequality exists in
an optimal solution is guaranteed, in these studies a sBB(G). yetitdoes notexistin G.
optimal solution is given.

gnstraint A: If (v1,v2) € E(OIT) and(v2, v3) € E(OIT),
Rencost(v1, va) + cost(va, v3) < cost(vi, v3).

The motivation behind this constraint is as follows. In arde
to achieve a relatively lower time complexity, we would like
to restrict the options of the removal of nodes. Specifically

The motivation for the following representation of thehis constraint allows us to consider only leaves or subtree
problem comes from the world of multi robot formatiorof the tree. The constraint is necessary in order to avoidscas
maintenance. In this domain, the robots monitor one anothie the one depicted in Figure 2, in which the structure of
in order to maintain a formation. While in the formatidnpof G does not follow Constraint A. In this case, illustrated in
the robots are required to leave the team in order to acquiner robotic domain, the cost of the sensing robpby r3 is
a new target. We wish to extract the robots in such a way and lower than the cost of sensing by r3 via robotrs
that will minimize the disruption to the original formation (10 + 10 = 20). However, the edgérs,r;) does not appear
A detailed description of the multi robot problem followsth in the graph since- lies exactly betweem; andr, thereby
general definition of the problem, which is applicable toesth blocking the sensing capabilities of. This example conflicts
domains (as seen in Section VII). with constraint A since edge1, r3) is not in the tree, whereas

Let G = {P,...,Py} be a group of N homogenous cost(rs,r1) < cost(rs,r2)+cost(r2,71), and indeed it would
team members. The interaction between team members bame been more profitable to remowre and notrs which is
be represented by a cost function. Note that this cost fanctithe leaf.
can be generalized into an interaction-baséitity function. In many cases the leader of the team has unique char-
The group has one root - a team member that acts as #uteristics that distinguish it from the other team members
leader. The set of members and the interaction between th€mnsequently there is no point in discussing the removal
can be presented as a directed weighted g@pt (V, E), of the team leader. However, in some cases all robots are
wherev € V' are the team members, and the edges represkatmogenous, including the leader, thus an additional ptgpe
the interactions. Namelyp;,v;) € E if an interaction exists can be added to the problem, as given in the following

IIl. PROBLEM DEFINITION
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I3 .‘ formation has one specified leader that cannot be extracted.

' In the second algorithm, the formation has a set of possible

' leaders, where the only restriction in the extraction ig tre

r, @ 7 of the possible leaders will remain in the formation as the

! leader. In the final variant of the algorithm described irs thi
section we discuss the case in which some robots cannot be
extracted from the formation.

10

10

Fig. 2. An example of a case where Constraint A is not fulfilled.

A. Team member reallocation with one possible leader

In this section we describe an algorithm that finds the
o optimal k vertices that should be extracted from the graph
definition. such that the cost of the remainif@IT is minimized. The

Definition 1: In a graphG = (V, E),V = {v,...,on}, @ Tree_Pruning algorithm described in this section, finds the

Liuhb1<M<Nisa optimal k vertices to be extracted, assuming that the leader
iy - wgannot be changed.

The following lemma and its corollary provides the moti-
vation behind the algorithm. The lemma proves that the algo-
Having the OIT of the group,k < N vertices should be rithm should concentrate on removing the leaves or subtrees

extracted from the graph. The extraction should be doneawhifom theOIT rather than arbitrary vertices without all vertices
satisfying the following basic objectives. that are in the subtree rooted in that vertex. The reason lies

1) The cost of the remainin@IT should be minimal. in the fact that theDIT is built in an optimal manner, hence

2) At least one of the vertices from the potential lead&nY removal of a vertex without all the subtrees rooted in it

roup of G should remain in the graph (this re uiremen\?/'" force the vertices of those subtrees to find an alteweati
igsnegessary due to the fact that 8ve 2ssume thqe remai path towards the leader. Based on the optimality of the tree,

; nm% alternative either will incur the same cost or will be o
formation must have a leader, and only one of the

potential leader group members can act as a Ieader).exloenswe than the original one.

It is assumed that alN team members can theoretically bd-emma 1. Consider anOIT(G), satisfying Constraint A. If
extracted, hence if we are dealing with acquiring a new targéertex v that is not a leaf nor the leader is removed, then
or performing a new task, then all members are compatiifee sum of the weights of the edgesQif (G \ v) will not
for the mission (see an exception to this assumption @ecrease.

Secti.or_1.I_V-C). Therefqre, potentially, the number of diéfet Proof: In a DAG, every vertex that is not a leaf is
possibilities for extracting thi team members from the group, .\ 4 ticulation vertex, meaning, removing it will disconhe

. N . . . . .
is (). The algorithms described later in this paper, Wh'CE\e graph. Therefore all vertices connectedvtshould find

k - . - -
work in our settings and under our constraints substantia nother node to connect to, ie., ali € V such that
u;,v) € E and(v,u) € E, should create a new edge;, v;)

reduce the complexity t@(2%/2).
Returning to the multi-robot domain, the root of the treéuch that the cost of the DAG is minimized.
If v; = u then the proof is completed, since by Constraint A

potential leadergroup L = {1, ..
subset ofV containing possible leaders from the group.
denote the size of the potential leader groupMy

is the formation leader, the original graph is the monitgrin
multigraph where each vertex represepts_the Iocat_i(_)n ofcgst(ui7u) > cost(us, v) + cost(v,u). If v; # u then by min-
robot, and the edges represent the monitoring capabititels ;. jiv of the OIT it follows that if cost (us, v;) < cost(us, v)
.CO[SI(SO]f eacch) r(?botlcl)\jl 'tS. pe.ers.TAsegr,\(;IEJroseﬁ. bﬁ/.Kamlnka. elt en the algorithm would have chosento point towv; in the

in , an Optimal Monitoring Tre , Which is a special -~ P

case of theOIT, is built on the monitoring multigraph. The]cIrSt place, contradicting the minimality of tr@IT. "
OMT describes who each entity should monitor in order tGorollary 2. In anOIT(G) satisfying Constraint A, the benefit
minimize the cost of the sensing path from itself to the leadgained from removing a leaf is greater than the benefit gained
The value of monitoring multigraphs and specificaiMTs, from removing one of its ancestors.

is its compatibility with real world scenarios, i.e., in theal
world robots usually have limited sensing capabilities el
cost of sensing varies from one sensed object to anothe
depending on its distance and angle with respect to therspndbefinition 2:

robot. When extracting robots, the objective is to minimize, 1 A palindromic compositiorf a number is a collection

the cost of sensing of the remaining group. of one or more positive integers whose sumkisThe
number of palindromic compositions of a numbelis

The following definitions are used throughout the descrip-
Fign of the algorithm.

IV. REALLOCATION WHILE MINIMIZING COSTS 2% [4].
In this section we describe three variants of the ted®? A bundleoriginating in vertexv is the subtree rooted in
reallocation algorithm. In the first and basic algorithi, vertexv. Vertexv nests a bundlef sizet if the bundle

robots are extracted from a team &f robots, where the originating in it hast vertices, includingy.
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2.3 Inadirected tre& = (V, E) where all paths are directed
to the root of the tree, ifv,u) € E thenu is calledv’s
pivot

From Corollary 2 we can assert that the gain from removing
bundles or leaves fro@IT(G) will be greater than the gain
from removing arbitrary vertices from the graph. This fact
motivates the algorithnifree_Pruning, which exhaustively
searches all possible combinations of leaves and bundtes an
picks the combination which results in the highest redunctiasig. 3. An example of 7-bundling of a tree.
in cost to the remainin®@IT(G).

The Tree_Pruning algorithm (1) works as follows. First,
it creates a table in which it stores the vertices in leve
1,...,k, where each level, 1 < ¢ < k, contains vertices
that nest a bundle of sizé For each of these elements i
indicates the gain from removing the bundle originating in  Proof: As seen in Corollary 2, the optimal benefit for the
that vertex. This gain is simply the sum of all the costs gkmaining tree is obtained by removing vertices that are not
edges in this subtree, including the cost of the edge goom fr articulation points in the graph. Therefore the examimatd
the root of the subtree to its pivot. After the table is crdateall removal possibilities of leaves and bundles, as donéby t
the algorithm starts checking all palindromic composiiaf  algorithm, assures that the optimal group fofvertices will

P N W b~ O o N
©

abcdhj mnplqglt

Il;heorem 3. The Tree_Pruning algorithm finds the optimal
k vertices to be removed from the group such that the cost of
the remainingOIT is minimized.

the numberk. For each compositiony; + a2 + ... + @:  indeed be removed. u
the algorithm first checks whether it is feasible, i.e., vileet ) . ] o
there are components of sizes, ..., ax. If so - for each Time Complexity: The time complexity of the preliminary

a, it checks for the element with maximal gain in level work of building the table iD(V), as each vertex is visited
of the table. If the algorithm picks up non-disjoint bunglesPnce. The sorting of the rows will cost additior@(N log N)
then it checks the gain of removing each element of the ndine. The number of palindromic compositions of a number
disjoint set alone. Summing up the gains from removing thg 22 [4]. The algorithm might check each composition (the
composition is compared to the current maximal gain, aY¢Prst case)N times, if the chosen elements are not disjoint.
the set resulting in the higher gain is saved. Finally, afler Assuming that each approach to an element taRel) steps
palindromic compositions of: are examined, the algorithm(depending on the data structure used), each composition is
returns the set with the highest cost reduction upon its vamo calculated in (the worst cas€)(V) steps.

Therefore trle total time complexity of the algorithm is
Algorithm 1 Algorithm Team, = Tree_Pruning(G — ].VlOgN + Ngi. Assuming t_ha'k i_s in orderlog N, then the
(V.E), k) E)T;f?;npleX|ty of the algorithm i€©(Nlog N + Nv/N) =

1: for each leafv € V' do
2:  Start building ak-bundle bottom-up:

3. Chest <+ 0 andTeam; — 0. B. Team member reallocation with multiple possible leaders

4: Add each subtree of size< t < k to the table in row . N
Removing the leaden;.,q can significantly decrease the

5. ggrntdaﬁa;:ir?é?\tgsi:?;éh row according to their cost total cost of the graph in cases where the weights of edges
6: Generate a palindromic composition gof the numbéenteringvlmd are considerably higher than the other weights
: P omp . 4] the graph. Therefore when examining the vertices, it can
k and sort each composition from left to right in : , :
. be highly profitable to examine removal of both leaves (or
decreasing order. . .
: " bundles) and the leader. The removal of the leader is pessibl
7. for each possible compositiofi; of k¥ = a1 + a2 +

only in cases where the potential leader group of the foonati

g .“Cj;lgékdv?/hether the composition is feasible is of a size greater than one. Consider the case in which
: . positio ' robots move in a formation. In this case, it is possible that
9: for eachq; in the composition; =1,2,...,¢t do . . o
) ) several robots in the formation can lead the group. This is
10: Pick highest order unmarked element from rgw . . . .
. obvious in cases in which all robots are homogenous, whereby
gnd mark it, — eoretically, the number of robots in the potential leagteup
11: if the elements are not disjoint, then check all
possibilities:then . . .
. N s The order of extraction of the leading vertex is important,
12: Pick element with highest;, next don't pick it . : . ; :
and pick element with next highest; and so since changing the leader might result in a different stmect
P 9 of the OIT. In particular, it might result in changing the
on. . . .
. identity of the leaves and bundles. If we wish, for exampde, t
13: Calculate the cost of the compositicry. ) ;
. : extract three vertices from the graph, the result may vaneif
14: if cost(C}) > Chesi then .
. pick a leaf, leader and a leaf from the new tree, as opposed to
15: Chest <+ C; andTeam,, «— current composition.

picking, say, two leaves and then the leader. Note that iresom

16: ReturnTeam cases removal of a leaf might result in changing the leader,
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depending on the leader election algorithm. However, in ototal time complexity isV3 M Zf;ll 2(k=D=i — O(N3M2¥).

case we assume that this does not happen. Again, in our casé = O(log N), hence the final complexity
In the extreme case in which/ = N, the number of of the algorithm isO(N*M).

different possibilities for choosing vertices - a combination

of leaves and leaders, $(2"). See Figure 4 for an example.cc_ Addressing non-removable robots

P I E— Sometimes, there may be a requirement that some team
% P e pruning| || recmoctions members must not be extracted from the group. For example,
oy opion d st | if the robots moving in the formation are heterogenous, some
without extracting leader = = . . .
\ 4=22 |[3] 2-2t might be incapable of performing the new task and thus cannot
5 _ _ . . .
P | s be chosen to do it. In another example, if the formation fitsel

defines critical positions that cannot be deserted, it viditade

the identity of the robots that cannot be extracted. In both
cases—driven by the old or new task requirements—some
robots must remain in the original team. Converting it to our
graph problem, if vertices should be extracted only from a
subgroupG; of G, G; C G and|G:| > k, then a small
variation of the basic algorithm can be used in some cases.
First, if |G| is exactly k, then the only option is that all

Fig. 4. An example of the search tree of all possibilities of extracting ~ vertices inG; be extracted.
k = 5 vertices from the graph where the leader can be elected as well o ]
in each step. Definition 3: In anOIT graphG, a vertexv € V(G) is called

a bundle blockeiif it cannot be extracted from the graph and
In the first level,l = 1, we can either piclé vertices using the bundle above it stops spreading.
the Tree_Pruning algorithm (meaning, we do not change the |n our case, the bundle blockers are all vertigesuch that
leader), or change the leader first, second and so on ugtil¢ ;. If the bundle blockers lie in accumulating levels of
the k'th vertex is selected. Each of these Optlons except ta@pthk or more, then a S|mp|e variation dfee Prun|ng can
former branches out similarly in the next level< 2) where pe ysed in order to find the optimalvertices to be extracted.
k decreases by one. §/ > k — 1 then the formal time |n this variation of Tree_Pruning, the algorithm should be

complexity analysis is as follows. _ run on theOIT graphG, but should stop at bundle blockers
Assume that a leader is chosen in a round whierertices oy at depthk, whichever comes first.

remain to be chosenl < t < k. It is possible to pick
p vertices before the leader is replaced anpdafterwards, V. MULTIPLE COMPONENTS IN THE COST EUNCTION
0<pq<t—1andp+q =t— 1. Therefore there are
different choices of the order in which the leader is extect
in addition to the choice where the leader is not replac
When a leader is replaced, the calculation of theertices
chosen prior to it is obtained simply by runnifigee_Pruning
for p. The remaining; launch an additional level where, again,

lead [1]] 2
4 fEag
321

When establishing the nature of the cost function, it is
ssible that more than one property will be taken into
consideration. For example, one might want to consider both
the cost of the remaining formation and the cost of the new
formation. We consider two manners in which more than
one consideration can be incorporated in the cost function:

they branch intay + 1 new options. In order to calculate the iized ¢ d hted ts. We sh
complexity of finding the best allocation, we need to caltmlaprlorl 1z€d components an We'_g €d components. We show
examples in which th@ree_Pruning algorithm can be used

the number of times each appears (the is calculated in .
h app (they both cases.

the next level). As demonstrated in the table below, eath .

numberi = 1,....k appears ag, ie., above the leader Note that the ground ru!e wh_lch stapd_s at the basg of the use

line, 25 times. UsingTree_Pruning, the complexity of each of the Tree_Pruning algorithm is that it is more proﬁtab!e Fo

extraction of sizez is Nlog N + N23. Therefore the total '© Ve Ieave; and bundles of U3T. Hence any scenario in

compIeX|ty '521 2k (N logN—|—22) — O(2*Nlog N)+ WhIC!’l we can mcorporate_z the useTée_Pruning must_apply

NZ 2k=3 Z O(25 N log N)+O(28N) = O(25 N log N). to this rule. In the following examples we were motivated by
=1 the stability of the formation, whereby any change in thepiv

If k = O(logNV), then the complexity of choosing theof robots might cause instability of the formation. Therefo

i 2
members ISO(N”log V). the following case suits the requirement that only bundles

To this complexity we need to add the cost of recalculatin (9r leaves be removed, and thus ffiree_Pruning algorithm
the graph after a leader is extracted. As shown in [5], the
perfectly suits this problem.

complexity of calculating th®IT of a graph of sizeV given
the identity of the leader vertex is simply running Dijksra
shortest paths algorithm that takéxN3). If there are)s A. Prioritized cost components

potential leaders, then the complexity @&(N3M). Hence In prioritized cost components, the components are pre-
here the time complexity can be bounded from above by teented in a prioritized list, namely, component one is more
total number ofgs, timesO(N3M) The total number ofys, important than component two and so on. Therefore we first
as demonstrated in Figure 4, Z 2(k—1)—i therefore the minimize the cost according to the first priority. In case of a
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tie, we examine the component listed second in the prisritiAlgorithm 2 Algorithm Team,, = Prioritized_Pruning(G =
and if that results in a tie we move on to the third priorityV; E), ¥, tc)

component and so on. 1: for each vertex; € V such thaty; is not the leadedo
A good example of this would be when we wish to minimize2:  Go over all vertices of the graph except for vertices in
events that might undermine the remaining group’s fornmatio the bundle originating in;.
stability as well as minimize the monitoring cost. For imsta,  3:  if the outgoing edge of vertex; intersects the path of
we assume that robots leaving the formation in order to aequi v; on its course towards; then
a new target continue in a straight line from their currents: Add v; to Table(v;, F).
location towards the new target. First, we would like to @us 5:  if v; on its course towards; intersectsy; then
minimal changes to the curre@IT, so that robots will not e: Add v; to Table(v;, I).

have to switch pivots and thereby cause temporary instabili 7: Run procedurelree_Pruning(G, k) with the following
Thus only leaves or bundles should be removed, and the leader modifications.
should remain intact. Second, we wish to minimize collision 8: Set Ey.y; < 00, Ipes: < oo and Teamy, «— 0.
between the robots leaving for the new target and the ones Check the number off and I intersections between
remaining in the formation. As seen in Figure 5pif moves members of the current chosen elements and the remaining
straight towardg; and maintains its predefined velocity, it  ones and store them if.,,. and I, respectively.
will intersect withvs. In addition, ifvs moves towardgg then  10: if I, < Ipes: then
at some point it will blockv,’s view of its pivot, v3. Third, 11: Ipess < I..r and
we wish to minimize the monitoring cost of the remaining Team; « current composition.
formation. Hence the prioritized components list is asofeB.  12: if 1., = Iyest and By < Epesr then
1) Minimize collisions between the robots leaving for thets: I < I and Teamy < current composition.
new target and the ones remaining in the formation 14: if 1., = Iyest aNd Eyr = Epest then
2) Minimize the incidents of robots leaving the formationis:  Check the difference between the cost of the compo-
while, at some point, crossing @IT edge, thus hiding sition and save the best of two choices, as done in
the pivot of some robot remaining in the formation and Tree_Pruning .
potentially causing it to divert from the group formation.16: ReturnTeamy.
3) Minimize the remaining group’s monitoring cost.
The Prioritized_Pruning algorithm works as follows. First,
assuming that the robots are homogeneous, it is simplet@ formation satisfying the criterions we defined. The time
calculate the expected intersections between paths oftsobgomplexity of the algorithm is composed of two steps. In stag
leaving the formation and the remaini@JT vertices (robots) 1, a simple brute force algorithm that finds the intersections
and edges. For each robat (vertex v;) that leaves towards will take O(N?) steps by simply comparing each pair of
goal pointpg, the algorithm checks against all robots # robots. Stage? is similar to the Tree_Pruning algorithm
Ti,Tj # Tieaa Whether the path of; hides the outgoing edgewith an addition of maximum®(k) comparisons at each
from robotr; (vertexv;). If so, it addst; to the entry ofr; in  step, hence the complexity ©(N'5log N) (assuming that

a pre-specifiedable under column¥ (see for example Figure j. — O(log N)), and altogether the complexity §(N?).
5). If the robots themselves intersect, theris added tdlable

under columri. After creating this tablélree_Pruning is run
on the graph where three features are examined in each s . .
I intersections E intersections which are extracted from the Formally, weighted cost components allow us to assign

Table, and the cost incurred by the remaini@yT (in this an accumulating percentage for each component, and choose
order). the option resulting in the minimized cost valdé. Each

of these cost values is composed loflifferent components
‘ direction of movement {u1,...,u}, andw, is the weight of the cost componemnt,
5 Table: WhereZi:1 wy = 1. Therefore the weighted cost valdgis
calculated asU = Y°!_, wiul

%.pWeighted cost components

E intersectiofl intersection . .
v v In the following example we assume that robots leaving
tG 2| 0 3 the formation remain in their current location, i.e., theyl w
V3| O %) change their relative position to other robots. Our objecti
v is to minimize both the remaining group’s monitoring cost
410 o and the monitoring cost of the robots leaving the formation,
Vg | Vy [%) according to their location at the moment they leave the
formation. This is applicable in cases where a subgroup of
V6 V4 V5 (%) . . . .
robots is required to leave the formation and create a foomat

Fig. 5. An example of a path/edge intersection. of its own with minimal sensorial cost of the new forma-

tion. Our original assumption is that we wish to minimize

The Prioritized_Pruning algorithm is guaranteed to finddisruptions of the original formation, thus we will examine
the k robots that will minimize the potential disturbance tdhe removal of only leaves and bundles, and leave the leader
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intact. This property will allow us to use thEee_Pruning weights we received from the user. The time complexity
algorithm in this case. Note that if we consider only thef the algorithm is identical to the time complexity of the
monitoring cost of the leaving robots, we might have needddee_Pruning algorithm, since we go over the entire graph
to remove vertices that are not necessarily leaves or bsndlenly once for each possible composition,, which leaves tis wi
For example, ifk = N — 2, then the optimal choice of a time complexity ofN2% needed to check all compositions.
removal would be the removal of the minimal edge in the
OIT, regardless of its location if only the monitoring cost
of the extracted group is considered. Therefore, as we have
shown in the previous subsection, the initial assumpti@t th We implemented the three algorithms described
we remove only leaves and bundles is crucial for the use Igérein,  Tree_Pruning, Prioritized_Pruning and
the Tree_Pruning algorithm and ensures its complexity. Weighted_Pruning, in order to perform an empirical
Minimizing the remaining group’s sensorial cost (first comevaluation of the algorithms. The implementation was done
ponent) contradicts, in most cases, the minimization of thging the Player/Stage simulation package [15], a prdctica
extracted group’s sensorial cost. This contradiction &neali- and popular development tool for both simulated and real
fied in Figure 6, and results straightforward from the faeit thrgpots.
the first minimization requirement would cause the removal we simulated.6 robots, traveling in one of three formations
of the most expensive edges, while the second compongginmonly tested in general multi-robot formation problems
would require the removal of the least expensive edges frqalg. [16]) - see Figure 7A. Diamond B. Triangle C. Ar-
the graph. rowhead. The edges between the robots in each formation
were given weights according to the cost of sensing, similar
to the weights given in [16]. In the first step, the robots buil
a spanning tree, instructing each robot which other robot to
monitor in order to minimize the cost of sensing inside the
formation. The Spanning trees are indicated by bold arcs in
Figure 7.

VI. EMPIRICAL EVALUATION

Remaining group monitoring cost:94 Remaining group monitoring cost:300

Extracted group monitoring cost: 262 Extracted group monitoring cost: 17

2 3
Fig. 6. An example of a contradiction between the two cost components: /. EL\
the remaining group’s OIT cost and the extracted group’s OIT cost. Here "/' B
N = 8,k = 4 and the optimal choice of nodes for removal is colored in o @ 7 B 1
gray, while the remaining nodes are colored in black. ./ E\ /I\E

remaining formation’s monitoring cost , ang, to denote the
weight of the cost component of the extracted formation R /E B/
monitoring cost. TheWeighted_Pruning algorithm, then, 1

works as follows. For each possible choice kofobots, the
algorithm calculates the cost of the remain@gl’ multiplied c N | e
by w4, the cost of the extracte®IT multiplied by w9, and ‘ e
it sums the two values. If the resulting value is lower than 5 N
the lowest value obtained so far, this is saved as the patenti 2 .
optimal choice. After all choices have been checked, theceho i 5
with the optimal cost is reported. " E?ha

E g°4 2
Usew; to denote the weight of the cost component of th o l\ . }-ﬁ s

Algorithm 3 Algorithm Team;, = Weighted_Pruning(G =

(V, E), k, w1, w2) Fig. 7. Three different formations tested in our Player/Stage simulation.
’ A - - - The arcs represent the edges of the minimal sensing tree from all robots
1: Run procedureTree_Pruning(G, k) with the following to the leader (robot 1).

modifications.

2: SetEpesy «— 00, lpest — co and Teamy, — . Following the first phase of constructing the mini-
3: C; < current composition. mal spanning tree, we executed the three algorithms
4: Cr « cost of OIT(G \ Cj), andCk « cost of OIT(C;) on the formation:Tree_Pruning, Prioritized_Pruning and

5. Ceyr w1 X Cr + w2 x CE. Weighted_Pruning. We were interested in revealing which
6: if Ceur < Chest then robots were extracted as the output of each algorithm, or
7. Chest +— Ceur andTeamy, « Cj. more specifically what different outputs would be returned
8: ReturnTeamy. by each algorithm for the same formation. We wanted to

test whether th@rioritized_Pruning algorithm would indeed
Algorithm Weighted_Pruning is guaranteed to find the answer possible problems raised by the us@&reé_Pruning
k robots that will minimize the total cost according to thén the multi-robot formation domain. We continue with a



AGMON ET AL.: TASK REALLOCATION IN MULTI-ROBOT FORMATIONS 9

~ / - When we used theNeighted_Pruning algorithm with
/ = w = 0.5, the extracted robots werel, 13,15 and 16 in
o | m formation A, which is the same set that was extracted by
a ® B B Tree_Pruning. However, in formation$3 andC when adding
f = » ® the consideration of the weight of the extracted team of tgbo
® r= B the set of extracted robots was different. In formati®rthe
= set of extracted robots wag 7,11,12, and in formation C
B the set wasl0, 12,14 and 16. We checked the output also
u given other weightsy = 0.2 andw = 0.8), however in both
@ formations the resulted chosen team was similar. This can be
o B explained by the fact that the weight of edges between the
b ®  robots that cannot sense one anothexisConsequently any
choice of a set of robots that would be extracted such that
Fig. 8. Execution of the Tree_Pruning algorithm on formation A (left) €ven one robot would remain disconnected from the other team
and C (right). The shapshot was taken approximately 15 seconds after members would receive a weight of, and therefore that set
the extraction. would not chosen.

description of the results of the algorithms’ performance o VII. APPLICABILITY IN ADDITIONAL DOMAINS

the .chosen formations. . The general representation of the problentesm member
First, the robots execute@ree_Pruning in order to real- q5)10cation, makes it applicable in other domains, in toki

locate 4 out of the 16 team members to a new task. Thgy the multi-robot formation domain, which motivated the

extracted robots were instructed to remain in their pasitiqrent study.

while the remaining formation continued their movement in One example is a variation of tiependency tree [27]. A

their initial direction. We obtained the following results dependency tre€ = (V, E) describes a group ol tasks
formation A, robots11,13,15 and 16 were extracted from (vertices) with prerequisite relation, i.e., an edgev) € E

the team (Figure S)' In formation C, rqbols, 14,15 and16  gyigts ify has to be executed before and cost(u, v) is the
were extracted (Figure 8). The more interesting resultew&l, of executing after u. The root of the tree is, then, the

obtained in formation B, where robots 9,12 and 14 were ;4 that has to be executed last. In our case, we use a slight
extracted. Since the extracted robots remained in place 3pdliation of the dependency tree. Here, we are given one task
the remaining formation continued straight, roBotollided ¢ should be conducted last and the interaction betwden al

with robot 16 (see Figure 9). _ __ other tasks. If two tasks; andwv, are independent, then if,

The choice of robots to be extracted in formatidh s executed before or afte, their cost will be the same. If
using Tree_Pruning strengthens the motivation to use thq}1 and v, are dependent, then without loss of generality,
Prioritized_Pruning algorithm. Indeed, when executing thg.g, rely on the fact that, will perform a part of its task,
Prioritized_Pruning algorithm for formatipnB, the extracted thus cost(vy, v2) in this case will be smaller than the cost in
set of robots wad), 11,14 and 15. In this case, the targetihe independent case. TIRT describes the optimal tree of
point of the robots was behind the formation, simulating &eacution of the tasks. The requirement is to rembwasks

similar behavior given to algorithriiree_Pruning, and thus rom the group such that the cost of the remaining execution
emphasizing how thBrioritized_Pruning algorithmis able to {yae is minimized.

solve the problem evolving from the use of thee_Pruning

_ ) The warehouse assembling problem presents an additional
algorithm (see Figure 9).

example in which theOIT is applicable. In the warehouse
assembling problem we are given a set 8f warehouses
located inN distinct positions, and all the trucks are heading
towards one main warehouse. The vertices of the graph rep-
resent the warehouses, and the edges represent the distance
= between two warehouses (note that triangle inequality does
. E = apply). The objective is for any number of trucks to visit all
L] ® warehouses in minimal time. THeIT represents the optimal
& B & 5 tree of paths from all warehouses to the main warehouse. The
5] @ E B = number qf truckst_ is, then, the number o_f leaves in tAHET.
5 & The requwem_ent is to_ clogev_varehouses in order to cut bgck
expenses while not increasing the valyeand thus remain
with the assembling tree with the lowest cost.
The last problem is thenetwork broadcast problem, in
Fig. 9. Execution of the Tree_Pruning (left) and the Prioritized_Pruning which we are given a network with one source vertex that
(right) algorithms on formation B. The extracted robots are denoted by a ~ Should constantly broadcast messages to the rest of the net-
surrounding square. work. The edges represent the cost of the link between every
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two vertices, and th®IT is the optimal broadcast tree. Once[7]
again in this case we are required to reméweertices in order

to cut back expenses and remain with a broadcast tree with
the lowest cost. 8]

VIIl. CONCLUSIONS el

We considered the task reallocation problem in multi-robei;
formation. In this problem, a team d¥ robots move in a
formation, andk of them need to be extracted from the group.
The extraction is done considering the interaction costeen (11
the team members—in our case the cost of sensing inside the
formation—where the goal is to minimize the interactiontcoi%2
between the remaining team members (and thus maximizi g]
the utility function of the remaining group). A summary of13]
our contributions in this paper is as follows.

o We introduce a new method in which the problem of
reallocatingk out of N team members to a new task id14!
modeled by a graph, and the utility function is based on
the interaction cost between the team members. [15]

o We describe a deterministic algorithm for the realloca-
tion problem which reduces the time complexity of the
solution fromO(N*) to O(2*). This result is shown for [16]
both cases in which the formation can have either one or
more possible leaders. [17]

« We generalize the use of the basic reallocation algorithm
for cases in which the cost function has more than 0@1%]
component. In particular, we consider weighted compo-
nents and prioritized components of the cost function.

« We describe an empirical evaluation of the algorithm arié®]

its variations using the Player/Stage simulated environ-

ment.

We show that the method we propose that focuses Bl

the interaction between team members, and the bagig

algorithm within it, is a general method that can be used
in several other domains different from the multi-robo
formation domain.

There are several areas we plan to pursue in our future work,
which include considering the cost/utility of the robotavang

[23]
the formation and uncertainty in the actual cost of intéoact
[24]
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