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Task Reallocation in Multi-Robot Formations
Noa Agmon, Gal A Kaminka, Sarit Kraus and Meytal Traub

Abstract—This paper considers the task reallocation problem,
where k robots are to be extracted from a coordinated group of
N robots in order to perform a new task. The interaction between
the team members and the cost associated with this interaction
are represented by a directed weighted graph. Consider a
group of N robots organized in a formation. The graph is the
monitoring graph which represents the sensorial capabilities of
the robots, i.e., which robot can sense the other and at what cost.
The team member reallocation problem with which we deal, is
the extraction of k robots from the group in order to acquire
a new target while minimizing the cost of the interaction of the
remaining group, i.e., the cost of sensing amongst the remaining
robots. In general, the method proposed in our work shifts the
utility from the team member itself to the interaction between
the members, and calculates the reallocation according to this
interaction cost. We found that this can be done optimally bya
deterministic algorithm, while reducing the time complexity from
O(Nk) to O(2k), thus resulting in a polynomial time complexity
in the common case where a small number of robots is extracted,
i.e., whenk = O(N). We show that our basic algorithm creates
a framework that can be extended for use in more complicated
cases, where more than one component should be taken into
consideration when calculating the robots’ cost of interaction.
We describe two such extensions: one that handles prioritized
components and one that handles weighted components. We
describe several other non-robotic domains in which our basic
method is applicable, and conclude by providing an empirical
evaluation of our algorithm in a robotic simulation.

Index Terms—multi-robot systems, multi-robot formation,
multi-robot task reallocation

I. I NTRODUCTION

This paper discusses a team ofN robots engaged in a
cooperative task. Specifically, we consider the problem of
choosingk team members in order to reassign them to a new
task. We assume that all members are capable of participating
in the execution of the new task, and the cost of the new
task does not depend on the identity of the robots chosen to
perform it. Therefore this work concentrates on the problem
of choosingk robots such that the performance of the existing
task, performed by the remaining group members, will be as
efficient as possible.

The general problem of choosingk out of N team members
in order to perform a new task is an important problem [6], [9],
[10], [13], [14], [18], [30]. Previous work in task reallocation
in teams of agents usually concentrate on optimizing some
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group-objective function that corresponds to the abilities or
characteristics of the agents (e.g. [11]). The general problem
was proven to beNP-hard as a special case of the Set
Partitioning Problem [12].

In this work we suggest a new method for choosing team
members for task reallocation that is based on the interaction
between team members. Our approach concentrates on the
minimization of the cost of interaction between the entities,
rather than on the capabilities of the agents. Under this
model, the problem remainsNP-hard, however we manage
to substantially reduce the number of possibilities for optimal
assignments, thus we reduce the search domain from order
(

N
k

)

to order 2k. This reduction makes it possible to solve
the problem faster even using a brute-force algorithm, and in
common cases wherek is relatively small it is possible to solve
the problem both optimally and efficiently (i.e., in polynomial
time).

In the model we propose, the set of team members and the
interaction between them is represented by a weighted directed
graph, where the vertices represent the members, the directed
edges represent the interaction (interaction of a vertexa to
vertexb could be different from interaction ofb to a, thus the
edges are directed) and edge weights represent the cost of the
interaction between them. We assume the team has a leader,
which can correspond to a formation leader in the example
accompanying us throughout the work. In the general case,
this leader is a team member that has only incoming edges
and no outgoing edges, i.e., it does not depend on other team
member’s input in its interaction with them.

The problem used to illustrate methods is the fundamental
problem of maintaining a formation by a team of robots; this
problem has received considerable attention in the literature
(e.g. [2], [3], [16], [21]). In order to maintain the formation, a
robot has to monitor one or more robots in the formation.
Several common methods for choosing the identity of the
robot(s) to be monitored are known [2]. We choose to focus
on the method proposed in [16], in which the identity is
driven by minimization of the monitoring cost of the robots.
Therefore the graph is the monitoring graph which represents
the sensorial capabilities of the robots, i.e., which robotcan
sense the other and at what cost. The problem thus involves
extractingk robots in order to perform a new task (for example
acquire a new target) while minimizing the monitoring cost of
the remaining group.

In particular, in this work we make the following contribu-
tions.

1) We introduce a new method in which the problem of
choosingk out of N team members is modeled by a
graph, and the decision is taken while emphasizing the
cost of interaction between the members.

2) We describe a deterministic algorithm for choosingk
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team members while minimizing the cost of interaction
between the members of the remaining group assuming
that the group has one possible leader. The algorithm
reduces the trivial time complexity ofO(Nk) to O(2k),
thus is polynomial if we assume thatk = O(log N).

3) We demonstrate the generality of the basic algorithm by
showing how it extends to deal with the following cases:

a) The group has more than one member which
can potentially act as the leader. These cases are
significantly more complex, as they require that we
check possible leader replacements; yet we show
that they can still be done optimally by applying an
algorithm that works in reduced time (exponential
in k, hence polynomial fork = O(log N)).

b) Not all team members can be chosen for the new
task. We show that in some cases the basic algo-
rithm can still be used under these circumstances.

c) The cost function of the robots is composed of
more than one component. In particular, we con-
sider weighted components where we each com-
ponent is associated with a relative weight, and
prioritized components of the cost function, where
the components are considered according to their
priority.

4) We show that the method we propose, and the basic
algorithm within it, is a general method that can be used
in several other domains.

We then present an empirical evaluation of the algorithm,
using the Player/Stage simulated environment [15]. This im-
plementation illustrates the use of three different task reallo-
cation algorithms—the basic algorithm, and two algorithms
that take other considerations into account (weighted and
prioritized components)—in different formations.

II. RELATED WORK

Our problem, task reallocation in multi-robot formation, is
on the line between two canonical problems in multi-robot
systems, multi-robot pattern formation and maintenance [2],
[8], [16], [17], and multi-robot task allocation [9], [10],[14],
[20], [22], [28].

The only work, to our knowledge, that considers the prob-
lem of task allocation in multi-robot formation is the work
by Michael et al. [19]. In their work, they use combinatorial
auctions in order to assignn robots tom tasks, i.e., splitting
the robots intom groups. They implement their proposed
solution in a team of mobile robots in a formation under
the constraint of collision avoidance. In our work we also
provide an empirical evaluation of the case in which it is
required to avoid collisions, however our main general method
concentrates on optimize the cost of interaction (sensing)
amongst the remaining team. Note that our work does not
require communication, as the deterministic algorithm canbe
executed by each robot individually.

The class of pattern formation and maintenance of a team of
mobile robots received considerable attention in the literature
[2], [8], [16], [17]. Balch and Arkin [2] discussed the reactive
behavior-based techniques for formation control, motivated

by nature phenomena. They describe three possible basic
techniques a robot can use in order to maintain its position in
a formation: leader referenced, neighbor referenced and unit-
center referenced.

Several works used the neighbor referenced technique, and
examined it in different aspects. Desai [8] offers a graph
modeling of a formation usingcontrol graphs, based on the
neighbor referenced technique, where the robots can change
their formation by switching between control graphs. Lemay
et al. [17] consider the problem of initially assigning robots
to specified locations in the formation. Kaminka et al. [16]
assume that a robot follows not necessarily the closest neigh-
bor, but the one that the cost of sensing it is minimal, and
represent the formation in a sensing graph, i.e., a graph that
represent the cost of sensing. We use the work of Kaminka et
al. as baseline for our work, thus choose to reallocatek robots
to a new task based on the sensing graph.

Balch and Hybinette [3] presented a new behavior based
approach for formation control, based on potential functions
that attract robots, in designated positions, from their team
members in the formation. The advantage of this new approach
is that it is easily scalable to large formations, it assumesonly
local sensing and it is flexible in the sense that it allows to
work in various formations and avoid obstacles. This work
concentrates on determining the proper formation positionfor
each team member.

Our problem belongs to themulti robot task allocation
(MRTA) domain. Following the taxonomy for MRTA systems
given by Gerkey and Mataric [14], our work deals with
instantaneous assignments of single-task robots performing
multi-robot tasks.

Parker [20] presents a behavior based architecture AL-
LIANCE for cooperative multi-robot control. This architecture
deals with missions that are composed of loosely coupled
subtasks that are independent. The task achieving behaviors
are divided into lower-lever behaviors that correspond to indi-
vidual ad-hoc primitives such as obstacle avoidance, and high-
level behaviors that corresponds to the team-mission actions.
This work, however, does not deal with task reallocation within
the team of robots but in the individual behavior of the robot
that assures completion of team tasks.

Studies that discuss the problem of choosingk out of N
agents in order to perform a new task mostly concentrate on
maximizing the profit gained by the optimal performance of
the new task. For example in [9], [10] Dias et al. consider
market-based coordination methods for assigning tasks to
robots. In such systems, tasks are allocated between robots
using auctions. Finding the optimal assignment using combi-
natorial auctions, where bidders can bid on combinations of
items, has been proven to beNP-hard [23]. We, on the other
hand, concentrate on maximizing the benefit (minimizing the
cost) gained by the optimal execution of the original task.
The problem can be considered equivalent, if it is perceived
as choosingN−k team members to perform the original task.
Nevertheless, we aim to find the exact optimal solution where
in other studies the problem is handled heuristically.

Other studies discuss allocation of agents to several given
tasks. These studies mostly provide heuristic algorithms for
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efficient allocation of agents to tasks. In [22], Sander et al.
describe task allocation heuristic algorithms for settings in
which the agents and tasks are geographically dispersed in
the plane.

The problem of designing and forming groups of agents
while maximizing some mutual objective is usually referred
to as coalition formation. The work of Shehory and Kraus [28]
is close to the scenario discussed in this paper. They suggest
algorithms for coalition formation among agents, where an
agent can be either a member of only one coalition (similar
to our case), or coalitions may overlap. They provide heuristic
algorithms, rather than an exact optimal solution.

Sandholm and Lesser [25] also dealt with coalition for-
mation, but with self interested agents. Our problem can be
perceived as a private case of the general coalition formation
studies (forming two coalitions - one for the old task and one
for the new).

Tosic and Agha describe a distributed algorithm for gener-
ating coalitions based on the current physical configuration of
the agents, using maximal cliques [29]. They show that the
agents convert to the same coalitions, but their work does not
refer to any kind of group utility, as opposed to our work,
which maximizes the joint utility of the agents performing the
original task.

Another subject in coalition formation which is closely
related to the problem discussed here is the problem of
coalition structure generation [7], [24], [26]. In this problem,
which has been shown to beNP-hard, a division of the
agents into coalitions is searched such that the group utility
(payoff) is maximized. Sandholm et al. [24] and Dung and
Jennings [7] provide algorithms for coalition formation with
a guaranteed lower bound from the optimal solution. Sen and
Dutta describe a stochastic search approach for searching for
optimal coalitions [26]. As opposed to our scenario, whereby
an optimal solution is guaranteed, in these studies a sub
optimal solution is given.

III. PROBLEM DEFINITION

The motivation for the following representation of the
problem comes from the world of multi robot formation
maintenance. In this domain, the robots monitor one another
in order to maintain a formation. While in the formation,k of
the robots are required to leave the team in order to acquire
a new target. We wish to extract the robots in such a way
that will minimize the disruption to the original formation.
A detailed description of the multi robot problem follows the
general definition of the problem, which is applicable to other
domains (as seen in Section VII).

Let G = {P1, . . . , PN} be a group ofN homogenous
team members. The interaction between team members can
be represented by a cost function. Note that this cost function
can be generalized into an interaction-basedutility function.
The group has one root - a team member that acts as the
leader. The set of members and the interaction between them
can be presented as a directed weighted graphG = (V, E),
wherev ∈ V are the team members, and the edges represent
the interactions. Namely,(vi, vj) ∈ E if an interaction exists

betweenvi and vj with a cost(vi, vj), which is the weight
of the edge(vi, vj). An Optimal Interaction Tree(OIT) is
built on this graph by simply running Dijkstra’s shortest path
algorithm between all vertices of the graph and the leader
(similar to [16]).

One main constraint is required on this graph as follows:

Constraint A: If (v1, v2) ∈ E(OIT) and(v2, v3) ∈ E(OIT),
thencost(v1, v2) + cost(v2, v3) < cost(v1, v3).

This means that the triangle inequality exists on theoptimal
tree ofG, OIT(G) (but not necessarily onG). Intuitively, if a
path is chosen to be inOIT(G), then there is no shorter path
between the two edges of the path. Note that this does not
mean that the triangle inequality holds for general edges ofG,
as depicted in Figure 1. In this example, the triangle inequality
does not hold inG, for examplecost(a, c) + cost(c, e) ≤
cost(a, e), thus clearly the edge(a, e) will not be in OIT(G).
The triangle inequality can still exist between some vertices,
for examplecost(a, b) + cost(b, c) > cost(a, c).
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Fig. 1. An example of a case in which the triangle inequality exists in
OIT(G), yet it does not exist in G.

The motivation behind this constraint is as follows. In order
to achieve a relatively lower time complexity, we would like
to restrict the options of the removal of nodes. Specifically,
this constraint allows us to consider only leaves or subtrees
of the tree. The constraint is necessary in order to avoid cases
like the one depicted in Figure 2, in which the structure of
G does not follow Constraint A. In this case, illustrated in
our robotic domain, the cost of the sensing robotr1 by r3 is
7, and lower than the cost of sensingr1 by r3 via robot r2

(10 + 10 = 20). However, the edge(r3, r1) does not appear
in the graph sincer2 lies exactly betweenr3 andr1, thereby
blocking the sensing capabilities ofr3. This example conflicts
with constraint A since edge(r1, r3) is not in the tree, whereas
cost(r3, r1) < cost(r3, r2)+cost(r2, r1), and indeed it would
have been more profitable to remover2 and notr3 which is
the leaf.

In many cases the leader of the team has unique char-
acteristics that distinguish it from the other team members.
Consequently there is no point in discussing the removal
of the team leader. However, in some cases all robots are
homogenous, including the leader, thus an additional property
can be added to the problem, as given in the following
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Fig. 2. An example of a case where Constraint A is not fulfilled.

definition.

Definition 1: In a graphG = (V, E), V = {v1, . . . , vN}, a
potential leadergroupL = {ṽ1, . . . , ṽM}, 1 ≤ M ≤ N is a
subset ofV containing possible leaders from the group. We
denote the size of the potential leader group byM .

Having theOIT of the group,k < N vertices should be
extracted from the graph. The extraction should be done while
satisfying the following basic objectives.

1) The cost of the remainingOIT should be minimal.
2) At least one of the vertices from the potential leader

group ofG should remain in the graph (this requirement
is necessary due to the fact that we assume the remaining
formation must have a leader, and only one of the
potential leader group members can act as a leader).

It is assumed that allN team members can theoretically be
extracted, hence if we are dealing with acquiring a new target
or performing a new task, then all members are compatible
for the mission (see an exception to this assumption in
Section IV-C). Therefore, potentially, the number of different
possibilities for extracting thek team members from the group
is

(

N
k

)

. The algorithms described later in this paper, which
work in our settings and under our constraints substantially
reduce the complexity toO(2k/2).

Returning to the multi-robot domain, the root of the tree
is the formation leader, the original graph is the monitoring
multigraph where each vertex represents the location of a
robot, and the edges represent the monitoring capabilitiesand
cost of each robot of its peers. As proposed by Kaminka et al.
in [16], an Optimal Monitoring Tree,OMT, which is a special
case of theOIT, is built on the monitoring multigraph. The
OMT describes who each entity should monitor in order to
minimize the cost of the sensing path from itself to the leader.
The value of monitoring multigraphs and specificallyOMTs,
is its compatibility with real world scenarios, i.e., in thereal
world robots usually have limited sensing capabilities andthe
cost of sensing varies from one sensed object to another—
depending on its distance and angle with respect to the sensing
robot. When extractingk robots, the objective is to minimize
the cost of sensing of the remaining group.

IV. REALLOCATION WHILE MINIMIZING COSTS

In this section we describe three variants of the team
reallocation algorithm. In the first and basic algorithm,k
robots are extracted from a team ofN robots, where the

formation has one specified leader that cannot be extracted.
In the second algorithm, the formation has a set of possible
leaders, where the only restriction in the extraction is that one
of the possible leaders will remain in the formation as the
leader. In the final variant of the algorithm described in this
section we discuss the case in which some robots cannot be
extracted from the formation.

A. Team member reallocation with one possible leader

In this section we describe an algorithm that finds the
optimal k vertices that should be extracted from the graph
such that the cost of the remainingOIT is minimized. The
Tree Pruning algorithm described in this section, finds the
optimal k vertices to be extracted, assuming that the leader
cannot be changed.

The following lemma and its corollary provides the moti-
vation behind the algorithm. The lemma proves that the algo-
rithm should concentrate on removing the leaves or subtrees
from theOIT rather than arbitrary vertices without all vertices
that are in the subtree rooted in that vertex. The reason lies
in the fact that theOIT is built in an optimal manner, hence
any removal of a vertex without all the subtrees rooted in it
will force the vertices of those subtrees to find an alternative
path towards the leader. Based on the optimality of the tree,
this alternative either will incur the same cost or will be more
expensive than the original one.

Lemma 1. Consider anOIT(G), satisfying Constraint A. If
vertex v that is not a leaf nor the leader is removed, then
the sum of the weights of the edges ofOIT(G \ v) will not
decrease.

Proof: In a DAG, every vertex that is not a leaf is
an articulation vertex, meaning, removing it will disconnect
the graph. Therefore all vertices connected tov should find
another node to connect to, i.e., allui ∈ V such that
(ui, v) ∈ E and(v, u) ∈ E, should create a new edge(ui, vj)
such that the cost of the DAG is minimized.

If vj = u then the proof is completed, since by Constraint A
cost(ui, u) > cost(ui, v)+ cost(v, u). If vj 6= u then by min-
imality of theOIT it follows that if cost(ui, vj) < cost(ui, v)
then the algorithm would have chosenui to point tovj in the
first place, contradicting the minimality of theOIT.

Corollary 2. In anOIT(G) satisfying Constraint A, the benefit
gained from removing a leaf is greater than the benefit gained
from removing one of its ancestors.

The following definitions are used throughout the descrip-
tion of the algorithm.

Definition 2:

2.1 A palindromic compositionof a numberk is a collection
of one or more positive integers whose sum isk. The
number of palindromic compositions of a numberk is
2

k

2 [4].
2.2 A bundleoriginating in vertexv is the subtree rooted in

vertexv. Vertex v nests a bundleof size t if the bundle
originating in it hast vertices, includingv.
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2.3 In a directed treeG = (V, E) where all paths are directed
to the root of the tree, if(v, u) ∈ E thenu is calledv’s
pivot.

From Corollary 2 we can assert that the gain from removing
bundles or leaves fromOIT(G) will be greater than the gain
from removing arbitrary vertices from the graph. This fact
motivates the algorithmTree Pruning, which exhaustively
searches all possible combinations of leaves and bundles and
picks the combination which results in the highest reduction
in cost to the remainingOIT(G).

The Tree Pruning algorithm (1) works as follows. First,
it creates a table in which it stores the vertices in levels
1, . . . , k, where each leveli, 1 ≤ i ≤ k, contains vertices
that nest a bundle of sizei. For each of these elements it
indicates the gain from removing the bundle originating in
that vertex. This gain is simply the sum of all the costs of
edges in this subtree, including the cost of the edge going from
the root of the subtree to its pivot. After the table is created,
the algorithm starts checking all palindromic compositions of
the numberk. For each compositionα1 + α2 + . . . + αt

the algorithm first checks whether it is feasible, i.e., whether
there are components of sizesα1, . . . , αk. If so - for each
αi it checks for the element with maximal gain in levelαi

of the table. If the algorithm picks up non-disjoint bundles,
then it checks the gain of removing each element of the non-
disjoint set alone. Summing up the gains from removing the
composition is compared to the current maximal gain, and
the set resulting in the higher gain is saved. Finally, afterall
palindromic compositions ofk are examined, the algorithm
returns the set with the highest cost reduction upon its removal.

Algorithm 1 Algorithm Teamk = Tree Pruning(G =
(V, E), k)

1: for each leafv ∈ V do
2: Start building ak-bundle bottom-up:
3: Cbest ← 0 andTeamk ← ∅.
4: Add each subtree of size1 ≤ t ≤ k to the table in row

t and calculate its cost.
5: Sort all elements in each row according to their cost.
6: Generate a palindromic composition of the number

k and sort each composition from left to right in
decreasing order.

7: for each possible compositionCj of k = α1 + α2 +
. . . + αt do

8: Check whether the composition is feasible.
9: for eachαi in the composition,i = 1, 2, . . . , t do

10: Pick highest order unmarked element from rowti
and mark it.

11: if the elements are not disjoint, then check all
possibilities:then

12: Pick element with highestαi, next don’t pick it
and pick element with next highestαi and so
on.

13: Calculate the cost of the compositionCj .
14: if cost(Cj) ≥ Cbest then
15: Cbest ← Cj andTeamk ← current composition.
16: ReturnTeamk
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Fig. 3. An example of 7-bundling of a tree.

Theorem 3. The Tree Pruning algorithm finds the optimal
k vertices to be removed from the group such that the cost of
the remainingOIT is minimized.

Proof: As seen in Corollary 2, the optimal benefit for the
remaining tree is obtained by removing vertices that are not
articulation points in the graph. Therefore the examination of
all removal possibilities of leaves and bundles, as done by the
algorithm, assures that the optimal group ofk vertices will
indeed be removed.

Time Complexity: The time complexity of the preliminary
work of building the table isO(N), as each vertex is visited
once. The sorting of the rows will cost additionalO(N log N)
time. The number of palindromic compositions of a numberk
is 2

k

2 [4]. The algorithm might check each composition (the
worst case)N times, if the chosen elements are not disjoint.
Assuming that each approach to an element takesO(1) steps
(depending on the data structure used), each composition is
calculated in (the worst case)O(N) steps.

Therefore the total time complexity of the algorithm is
N log N + N2

k

2 . Assuming thatk is in orderlog N , then the
time complexity of the algorithm isO(N log N + N

√
N) =

O(N1.5).

B. Team member reallocation with multiple possible leaders

Removing the leadervlead can significantly decrease the
total cost of the graph in cases where the weights of edges
enteringvlead are considerably higher than the other weights
in the graph. Therefore when examining the vertices, it can
be highly profitable to examine removal of both leaves (or
bundles) and the leader. The removal of the leader is possible
only in cases where the potential leader group of the formation
is of a size greater than one. Consider the case in which
robots move in a formation. In this case, it is possible that
several robots in the formation can lead the group. This is
obvious in cases in which all robots are homogenous, whereby,
theoretically, the number of robots in the potential leadergroup
is N .

The order of extraction of the leading vertex is important,
since changing the leader might result in a different structure
of the OIT. In particular, it might result in changing the
identity of the leaves and bundles. If we wish, for example, to
extract three vertices from the graph, the result may vary ifwe
pick a leaf, leader and a leaf from the new tree, as opposed to
picking, say, two leaves and then the leader. Note that in some
cases removal of a leaf might result in changing the leader,
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depending on the leader election algorithm. However, in our
case we assume that this does not happen.

In the extreme case in whichM = N , the number of
different possibilities for choosingk vertices - a combination
of leaves and leaders, isO(2k). See Figure 4 for an example.
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Fig. 4. An example of the search tree of all possibilities of extracting
k = 5 vertices from the graph where the leader can be elected as well
in each step.

In the first level,l = 1, we can either pickk vertices using
the Tree Pruning algorithm (meaning, we do not change the
leader), or change the leader first, second and so on until
the k’th vertex is selected. Each of these options except the
former branches out similarly in the next level (l = 2) where
k decreases by one. IfM ≥ k − 1 then the formal time
complexity analysis is as follows.

Assume that a leader is chosen in a round wheret vertices
remain to be chosen,1 ≤ t ≤ k. It is possible to pick
p vertices before the leader is replaced andq afterwards,
0 ≤ p, q ≤ t − 1 and p + q = t − 1. Therefore there aret
different choices of the order in which the leader is extracted,
in addition to the choice where the leader is not replaced.
When a leader is replaced, the calculation of thep vertices
chosen prior to it is obtained simply by runningTree Pruning
for p. The remainingq launch an additional level where, again,
they branch intoq + 1 new options. In order to calculate the
complexity of finding the best allocation, we need to calculate
the number of times eachp appears (theq is calculated in
the next level). As demonstrated in the table below, each
number i = 1, . . . , k appears asp, i.e., above the leader
line, 2k−i times. UsingTree Pruning, the complexity of each
extraction of sizei is N log N + N2

i

2 . Therefore the total
complexity is

∑k
i=1 2k−i ·(N log N +2

i

2 ) = O(2kN log N)+

N
∑k

i=1 2k− i

2 = O(2kN log N)+O(2kN) = O(2kN log N).
If k = O(log N), then the complexity of choosing the
members isO(N2 log N).

To this complexity we need to add the cost of recalculating
the graph after a leader is extracted. As shown in [5], the
complexity of calculating theOIT of a graph of sizeN given
the identity of the leader vertex is simply running Dijkstra’s
shortest paths algorithm that takesO(N3). If there areM̃
potential leaders, then the complexity isO(N3M). Hence
here the time complexity can be bounded from above by the
total number ofqs, timesO(N3M). The total number ofqs,
as demonstrated in Figure 4, is

∑k−1
i=1 2(k−1)−i, therefore the

total time complexity isN3M
∑k−1

i=1 2(k−1)−i = O(N3M2k).
Again, in our casek = O(log N), hence the final complexity
of the algorithm isO(N4M).

C. Addressing non-removable robots

Sometimes, there may be a requirement that some team
members must not be extracted from the group. For example,
if the robots moving in the formation are heterogenous, some
might be incapable of performing the new task and thus cannot
be chosen to do it. In another example, if the formation itself
defines critical positions that cannot be deserted, it will dictate
the identity of the robots that cannot be extracted. In both
cases—driven by the old or new task requirements—some
robots must remain in the original team. Converting it to our
graph problem, if vertices should be extracted only from a
subgroupG1 of G, G1 ⊆ G and |G1| ≥ k, then a small
variation of the basic algorithm can be used in some cases.
First, if |G1| is exactly k, then the only option is that all
vertices inG1 be extracted.

Definition 3: In anOIT graphG, a vertexv ∈ V (G) is called
a bundle blockerif it cannot be extracted from the graph and
the bundle above it stops spreading.

In our case, the bundle blockers are all verticesui such that
ui /∈ G1. If the bundle blockers lie in accumulating levels of
depthk or more, then a simple variation ofTree Pruning can
be used in order to find the optimalk vertices to be extracted.
In this variation ofTree Pruning, the algorithm should be
run on theOIT graphG, but should stop at bundle blockers
or at depthk, whichever comes first.

V. M ULTIPLE COMPONENTS IN THE COST FUNCTION

When establishing the nature of the cost function, it is
possible that more than one property will be taken into
consideration. For example, one might want to consider both
the cost of the remaining formation and the cost of the new
formation. We consider two manners in which more than
one consideration can be incorporated in the cost function:
prioritized components and weighted components. We show
examples in which theTree Pruning algorithm can be used
in both cases.

Note that the ground rule which stands at the base of the use
of the Tree Pruning algorithm is that it is more profitable to
remove leaves and bundles of theOIT. Hence any scenario in
which we can incorporate the use ofTree Pruning must apply
to this rule. In the following examples we were motivated by
the stability of the formation, whereby any change in the pivot
of robots might cause instability of the formation. Therefore
the following case suits the requirement that only bundles
or leaves be removed, and thus theTree Pruning algorithm
perfectly suits this problem.

A. Prioritized cost components

In prioritized cost components, the components are pre-
sented in a prioritized list, namely, component one is more
important than component two and so on. Therefore we first
minimize the cost according to the first priority. In case of a
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tie, we examine the component listed second in the priorities,
and if that results in a tie we move on to the third priority
component and so on.

A good example of this would be when we wish to minimize
events that might undermine the remaining group’s formation
stability as well as minimize the monitoring cost. For instance,
we assume that robots leaving the formation in order to acquire
a new target continue in a straight line from their current
location towards the new target. First, we would like to cause
minimal changes to the currentOIT, so that robots will not
have to switch pivots and thereby cause temporary instability.
Thus only leaves or bundles should be removed, and the leader
should remain intact. Second, we wish to minimize collisions
between the robots leaving for the new target and the ones
remaining in the formation. As seen in Figure 5, ifv2 moves
straight towardstG and maintains its predefined velocity, it
will intersect withv3. In addition, ifv5 moves towardstG then
at some point it will blockv4’s view of its pivot, v3. Third,
we wish to minimize the monitoring cost of the remaining
formation. Hence the prioritized components list is as follows.

1) Minimize collisions between the robots leaving for the
new target and the ones remaining in the formation

2) Minimize the incidents of robots leaving the formation
while, at some point, crossing anOIT edge, thus hiding
the pivot of some robot remaining in the formation and
potentially causing it to divert from the group formation.

3) Minimize the remaining group’s monitoring cost.
ThePrioritized Pruning algorithm works as follows. First,

assuming that the robots are homogeneous, it is simple to
calculate the expected intersections between paths of robots
leaving the formation and the remainingOIT vertices (robots)
and edges. For each robotri (vertex vi) that leaves towards
goal pointpG, the algorithm checks against all robotsrj 6=
ri, rj 6= rlead whether the path ofri hides the outgoing edge
from robotrj (vertexvj). If so, it addstj to the entry ofri in
a pre-specifiedTable under columnE (see for example Figure
5). If the robots themselves intersect, thenrj is added toTable
under columnI. After creating this table,Tree Pruning is run
on the graph where three features are examined in each step:
I intersections,E intersections which are extracted from the
Table, and the cost incurred by the remainingOIT (in this
order).

5vv4

3v 2

direction of movement

Table:
I intersectionE intersection

v O

v4

O

5v

v4

3v
2v

G
t

1v

6v

v4 5v 6v O

O

O

O

3vO

Fig. 5. An example of a path/edge intersection.

The Prioritized Pruning algorithm is guaranteed to find
the k robots that will minimize the potential disturbance to

Algorithm 2 Algorithm Teamk = Prioritized Pruning(G =
(V, E), k, tG)

1: for each vertexvi ∈ V such thatvi is not the leaderdo
2: Go over all vertices of the graph except for vertices in

the bundle originating invi.
3: if the outgoing edge of vertexvj intersects the path of

vi on its course towardstG then
4: Add vj to Table(vi, E).
5: if vi on its course towardstG intersectsvj then
6: Add vj to Table(vi, I).
7: Run procedureTree Pruning(G, k) with the following

modifications.
8: SetEbest ←∞, Ibest ←∞ andTeamk ← ∅.
9: Check the number ofE and I intersections between

members of the current chosen elements and the remaining
ones and store them inEcur andIcur, respectively.

10: if Icur < Ibest then
11: Ibest ← Icur and

Teamk ← current composition.
12: if Icur = Ibest andEcur < Ebest then
13: Ibest ← Icur andTeamk ← current composition.
14: if Icur = Ibest andEcur = Ebest then
15: Check the difference between the cost of the compo-

sition and save the best of two choices, as done in
Tree Pruning .

16: ReturnTeamk.

the formation satisfying the criterions we defined. The time
complexity of the algorithm is composed of two steps. In stage
1, a simple brute force algorithm that finds the intersections
will take O(N2) steps by simply comparing each pair of
robots. Stage2 is similar to the Tree Pruning algorithm
with an addition of maximumO(k) comparisons at each
step, hence the complexity isO(N1.5 log N) (assuming that
k = O(log N)), and altogether the complexity isO(N2).

B. Weighted cost components

Formally, weighted cost components allow us to assign
an accumulating percentage for each component, and choose
the option resulting in the minimized cost valueU . Each
of these cost values is composed ofl different components
{u1, . . . , ul}, andwt is the weight of the cost componentut,
where

∑l
t=1 wt = 1. Therefore the weighted cost valueU is

calculated as:U =
∑l

t=1 wi
tu

i
t

In the following example we assume that robots leaving
the formation remain in their current location, i.e., they will
change their relative position to other robots. Our objective
is to minimize both the remaining group’s monitoring cost
and the monitoring cost of the robots leaving the formation,
according to their location at the moment they leave the
formation. This is applicable in cases where a subgroup of
robots is required to leave the formation and create a formation
of its own with minimal sensorial cost of the new forma-
tion. Our original assumption is that we wish to minimize
disruptions of the original formation, thus we will examine
the removal of only leaves and bundles, and leave the leader
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intact. This property will allow us to use theTree Pruning
algorithm in this case. Note that if we consider only the
monitoring cost of the leaving robots, we might have needed
to remove vertices that are not necessarily leaves or bundles.
For example, ifk = N − 2, then the optimal choice of
removal would be the removal of the minimal edge in the
OIT, regardless of its location if only the monitoring cost
of the extracted group is considered. Therefore, as we have
shown in the previous subsection, the initial assumption that
we remove only leaves and bundles is crucial for the use of
the Tree Pruning algorithm and ensures its complexity.

Minimizing the remaining group’s sensorial cost (first com-
ponent) contradicts, in most cases, the minimization of the
extracted group’s sensorial cost. This contradiction is exempli-
fied in Figure 6, and results straightforward from the fact that
the first minimization requirement would cause the removal
of the most expensive edges, while the second component
would require the removal of the least expensive edges from
the graph.

10

2

10

24

60

200
80

k = 4N = 8

Extracted group monitoring cost: 17

Remaining group monitoring cost:300

Extracted group monitoring cost: 262

Remaining group monitoring cost:94

3

4040 80
200

60

4

Fig. 6. An example of a contradiction between the two cost components:
the remaining group’s OIT cost and the extracted group’s OIT cost. Here
N = 8, k = 4 and the optimal choice of nodes for removal is colored in
gray, while the remaining nodes are colored in black.

Usew1 to denote the weight of the cost component of the
remaining formation’s monitoring cost , andw2 to denote the
weight of the cost component of the extracted formation’s
monitoring cost. TheWeighted Pruning algorithm, then,
works as follows. For each possible choice ofk robots, the
algorithm calculates the cost of the remainingOIT multiplied
by w1, the cost of the extractedOIT multiplied by w2, and
it sums the two values. If the resulting value is lower than
the lowest value obtained so far, this is saved as the potential
optimal choice. After all choices have been checked, the choice
with the optimal cost is reported.

Algorithm 3 Algorithm Teamk = Weighted Pruning(G =
(V, E), k, w1, w2)

1: Run procedureTree Pruning(G, k) with the following
modifications.

2: SetEbest ←∞, Ibest ←∞ andTeamk ← ∅.
3: Cj ← current composition.
4: CR ← cost ofOIT(G \Cj), andCE ← cost ofOIT(Cj)
5: Ccur ← w1 × CR + w2 × CE .
6: if Ccur < Cbest then
7: Cbest ← Ccur andTeamk ← Cj .
8: ReturnTeamk.

Algorithm Weighted Pruning is guaranteed to find the
k robots that will minimize the total cost according to the

weights we received from the user. The time complexity
of the algorithm is identical to the time complexity of the
Tree Pruning algorithm, since we go over the entire graph
only once for each possible composition,, which leaves us with
a time complexity ofN2

k

2 needed to check all compositions.

VI. EMPIRICAL EVALUATION

We implemented the three algorithms described
herein, Tree Pruning, Prioritized Pruning and
Weighted Pruning, in order to perform an empirical
evaluation of the algorithms. The implementation was done
using the Player/Stage simulation package [15], a practical
and popular development tool for both simulated and real
robots.

We simulated16 robots, traveling in one of three formations
commonly tested in general multi-robot formation problems
(e.g. [16]) - see Figure 7:A. Diamond B. Triangle C. Ar-
rowhead. The edges between the robots in each formation
were given weights according to the cost of sensing, similar
to the weights given in [16]. In the first step, the robots built
a spanning tree, instructing each robot which other robot to
monitor in order to minimize the cost of sensing inside the
formation. The Spanning trees are indicated by bold arcs in
Figure 7.

Fig. 7. Three different formations tested in our Player/Stage simulation.
The arcs represent the edges of the minimal sensing tree from all robots
to the leader (robot 1).

Following the first phase of constructing the mini-
mal spanning tree, we executed the three algorithms
on the formation:Tree Pruning, Prioritized Pruning and
Weighted Pruning. We were interested in revealing which
robots were extracted as the output of each algorithm, or
more specifically what different outputs would be returned
by each algorithm for the same formation. We wanted to
test whether thePrioritized Pruning algorithm would indeed
answer possible problems raised by the use ofTree Pruning
in the multi-robot formation domain. We continue with a
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Fig. 8. Execution of the Tree Pruning algorithm on formation A (left)
and C (right). The snapshot was taken approximately 15 seconds after
the extraction.

description of the results of the algorithms’ performance on
the chosen formations.

First, the robots executedTree Pruning in order to real-
locate 4 out of the 16 team members to a new task. The
extracted robots were instructed to remain in their position
while the remaining formation continued their movement in
their initial direction. We obtained the following results. In
formation A, robots11, 13, 15 and 16 were extracted from
the team (Figure 8). In formation C, robots13, 14, 15 and16
were extracted (Figure 8). The more interesting results were
obtained in formation B, where robots8, 9, 12 and 14 were
extracted. Since the extracted robots remained in place and
the remaining formation continued straight, robot8 collided
with robot 16 (see Figure 9).

The choice of robots to be extracted in formationB
using Tree Pruning strengthens the motivation to use the
Prioritized Pruning algorithm. Indeed, when executing the
Prioritized Pruning algorithm for formationB, the extracted
set of robots was9, 11, 14 and 15. In this case, the target
point of the robots was behind the formation, simulating a
similar behavior given to algorithmTree Pruning, and thus
emphasizing how thePrioritized Pruning algorithm is able to
solve the problem evolving from the use of theTree Pruning
algorithm (see Figure 9).

Fig. 9. Execution of the Tree Pruning (left) and the Prioritized Pruning
(right) algorithms on formation B. The extracted robots are denoted by a
surrounding square.

When we used theWeighted Pruning algorithm with
w = 0.5, the extracted robots were11, 13, 15 and 16 in
formation A, which is the same set that was extracted by
Tree Pruning. However, in formationsB andC when adding
the consideration of the weight of the extracted team of robots,
the set of extracted robots was different. In formationB the
set of extracted robots was4, 7, 11, 12, and in formation C
the set was10, 12, 14 and 16. We checked the output also
given other weights (w = 0.2 andw = 0.8), however in both
formations the resulted chosen team was similar. This can be
explained by the fact that the weight of edges between the
robots that cannot sense one another is∞. Consequently any
choice of a set of robots that would be extracted such that
even one robot would remain disconnected from the other team
members would receive a weight of∞, and therefore that set
would not chosen.

VII. A PPLICABILITY IN ADDITIONAL DOMAINS

The general representation of the problem asteam member
reallocation, makes it applicable in other domains, in addition
to the multi-robot formation domain, which motivated the
current study.

One example is a variation of thedependency tree [27]. A
dependency treeG = (V, E) describes a group ofN tasks
(vertices) with prerequisite relation, i.e., an edge(u, v) ∈ E
exists if u has to be executed beforev, andcost(u, v) is the
cost of executingv after u. The root of the tree is, then, the
task that has to be executed last. In our case, we use a slight
variation of the dependency tree. Here, we are given one task
that should be conducted last and the interaction between all
other tasks. If two tasksv1 andv2 are independent, then ifv1

is executed before or afterv2 their cost will be the same. If
v1 and v2 are dependent, then without loss of generality,v1

can rely on the fact thatv2 will perform a part of its task,
thuscost(v1, v2) in this case will be smaller than the cost in
the independent case. TheOIT describes the optimal tree of
execution of the tasks. The requirement is to removek tasks
from the group such that the cost of the remaining execution
tree is minimized.

The warehouse assembling problem presents an additional
example in which theOIT is applicable. In the warehouse
assembling problem we are given a set ofN warehouses
located inN distinct positions, and all the trucks are heading
towards one main warehouse. The vertices of the graph rep-
resent the warehouses, and the edges represent the distances
between two warehouses (note that triangle inequality doesnot
apply). The objective is for any number of trucks to visit all
warehouses in minimal time. TheOIT represents the optimal
tree of paths from all warehouses to the main warehouse. The
number of truckst is, then, the number of leaves in theOIT.
The requirement is to closek warehouses in order to cut back
expenses while not increasing the valuet, and thus remain
with the assembling tree with the lowest cost.

The last problem is thenetwork broadcast problem, in
which we are given a network with one source vertex that
should constantly broadcast messages to the rest of the net-
work. The edges represent the cost of the link between every
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two vertices, and theOIT is the optimal broadcast tree. Once
again in this case we are required to removek vertices in order
to cut back expenses and remain with a broadcast tree with
the lowest cost.

VIII. C ONCLUSIONS

We considered the task reallocation problem in multi-robot
formation. In this problem, a team ofN robots move in a
formation, andk of them need to be extracted from the group.
The extraction is done considering the interaction cost between
the team members—in our case the cost of sensing inside the
formation—where the goal is to minimize the interaction cost
between the remaining team members (and thus maximizing
the utility function of the remaining group). A summary of
our contributions in this paper is as follows.

• We introduce a new method in which the problem of
reallocatingk out of N team members to a new task is
modeled by a graph, and the utility function is based on
the interaction cost between the team members.

• We describe a deterministic algorithm for the realloca-
tion problem which reduces the time complexity of the
solution fromO(Nk) to O(2k). This result is shown for
both cases in which the formation can have either one or
more possible leaders.

• We generalize the use of the basic reallocation algorithm
for cases in which the cost function has more than one
component. In particular, we consider weighted compo-
nents and prioritized components of the cost function.

• We describe an empirical evaluation of the algorithm and
its variations using the Player/Stage simulated environ-
ment.

• We show that the method we propose that focuses on
the interaction between team members, and the basic
algorithm within it, is a general method that can be used
in several other domains different from the multi-robot
formation domain.

There are several areas we plan to pursue in our future work,
which include considering the cost/utility of the robots leaving
the formation and uncertainty in the actual cost of interaction.
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