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Abstract 

Digital Holographic Interferometry (DHI) has been used to visualize the polarization 

concentration layer during crossflow RO. This technique is based on the fact that 

changes in the concentration of the solution produce changes in its refractive index. 

Therefore, the concentration profile formed due to the polarization phenomenon can be 

visualized as interference fringes. Experiments with Na2SO4 and NaCl solutions have 

been carried out. Three variables of the process were studied: crossflow velocity, initial 

concentration and pressure applied. In each experiment, crossflow velocity was changed 

every 30 minutes, in an increasing or decreasing sequence. Few minutes after changing 

the crossflow velocity the steady-state was reached. Interference fringe patterns of the 

polarization layer and their corresponding concentration profiles, as well as the 

permeate flux in different experimental conditions, are presented. The major 

experimental result is the visualization for the first time in situ and in real time of the 

polarization layer in a process of cross flow by a non-invasive method. Experimental 

results show a close relationship among crossflow velocity, permeate flux and 

polarization layer. Furthermore, experimental maximum concentration values reached at 

the membrane surface were compared with values calculated by using the film theory 

approach and a good agreement was obtained. 
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1. Introduction 

 

During the mass transfer through a membrane, in processes such as ultrafiltration (UF) 

and reverse osmosis (RO), the permeate flux drives solute to the membrane. The build-

up of rejected solute in the boundary layer near the membrane surface generates a 

concentration gradient and as a consequence, a diffusive flow of solute back to the feed 

solution bulk appears. This phenomenon is known as concentration polarization and the 

study of its properties by means of measurements of the dissolved solute profiles is 

easier in an unstirred batch process than in crossflow processes, because, in crossflow 

processes the thickness of the boundary layer is limited by the flow parallel (especially 

if it is turbulent) to the membrane. In RO processes carried out in an unstirred batch cell 

or dead-end conditions, steady-state is not easily reached, concentrations near the 

membrane surface (Cm) reach a very high value and the thickness of the boundary layer 

(δ) grows continuously with time (Figure 1a). The process seems to reach a quasi-steady 

state only after a long period of time. When the concentration of the permeate solution 

(Cp) tends to the bulk concentration (Co), the convective solute flow to the membrane 

surface is balanced by the solute flux through the membrane and the diffusive flow back 

to the bulk solution; as a consequence, no more accumulation of solute will occur. In 

crossflow, if steady-state is reached, the convective solute flux to the membrane surface 

is balanced by the solute flux through the membrane plus the diffusive and convective 

flow back to the bulk of the feed. The concentration profile near the membrane is 

usually stable and the maximum concentration is not very high (Figure1b). 

One of the earliest experimental research (1971) on concentration polarization in 

crossflow RO processes was developed by Hendricks and Williams [1]. They measured 

salt concentration profiles in brine adjacent to the membrane during reverse osmosis 

with electrical conductivity microprobes for a fully-developed two-dimensional channel 

in a closed-return water tunnel. Cellulose acetate membranes were employed with 

solutions of NH4NO3, NaNO3, NaCl, NaSO4 and MgSO4. In a relatively recent paper 

(2001), Sablani et al. [2] made a critical review about concentration polarization in UF 

and RO. More recent research of this subject has been basically focused on theoretical 

studies of simulation. Song and Yu [3] developed a new model for concentration 

polarization in the crossflow RO process in which the local variation of concentration 

polarization and the coupling between concentration polarization and permeate flux are 
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handled. In 2004, Fletcher and Wiley [4] applied a computational fluid dynamics (CFD) 

model to study the effect of buoyancy in reverse osmosis of salt–water separation in a 

flat sheet system. A mathematical model of reverse osmosis systems was published by 

Jamal et al. [5] in 2004. Kim and Hoek [6] (2005) modelled the concentration 

polarization in reverse osmosis. Geraldes and Afonso [7] (2006) proposed a generalize 

mass-transfer correction factor for nanofiltration and reverse osmosis. A finite element 

model to study pressure, flow, and concentration profiles in crossflow membrane 

filtration systems with open and spacer-filled channels was developed by Subramani et 

al. [8] in 2006. Ghidossi et al. [9] (2006) reviewed the state of the art on computational 

fluid dynamics (CFD) methods applied to membrane processes. In 2007, Alexiadis et al. 

[10] also used a CFD method to model the reverse osmosis membrane flow, validating 

the model with experimental permeate flux data. Lyster and Cohen [11] (2007) studied 

concentration polarization during reverse osmosis processes using a rectangular 

membrane channel. Chong et al. [12, 13] (2007) studied the fouling effect on 

polarization concentration in reverse osmosis. Wardeh and Morvan [14] (2008), 

developed CFD simulations of flow and concentration polarization in spacer-filled 

channels applied to water desalination. Cavaco Morão et al. [15] (2008) performed 

simulations of flow structure and solute concentration distribution in a 

nanofiltration/reverse osmosis plate-and-frame module by using CFD. 

This review of the more recent literature shows that most of the papers are theoretical 

studies of the simulation, without experimental determination of the profiles of the 

concentration polarization layer (CPL) in crossflow RO processes. In some papers, 

experimental data of the permeate fluxes have been obtained, comparing them with 

those calculated with the model.  

Since the review made by Sablani et al. [2], only two papers [16, 17] presenting 

experimentally determined profiles of the CPL have been found. In both cases, 

experiments were developed on unstirred batch conditions. Chmiel and Fritz [16] 

constructed an experimental apparatus which allowed an in situ chemical sampling of a 

reverse osmosis system inside a high-pressure column. In it, a 101.3 mM sodium 

chloride solution was advected towards an uncompressed sodium-saturated bentonite 

membrane. Twelve small-diameter stainless steel tubes were fitted to run parallel to the 

length of the experimental column, each tube terminating at a different position within 

the concentration polarization layer. In the other paper [17], holographic interferometry 
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was used to visualize the appearance, evolution with time and disappearance of the 

concentration polarization layer in unstirred batch reverse osmosis.  

Holographic interferometry is an optical technique of the so-called ‘non-invasive’ 

methods. A review of “non-invasive” experimental methods for the observation in-situ 

and in real-time of membrane processes has been made by Chen et al. [18]. The authors 

describe a wide range of optical and non-optical techniques. 

In previous papers [17, 19-24], the optical holographic interferometry technique was 

used to visualize the evolution of the concentration polarization layer during UF of BSA 

and PEG solutions, as well as RO of salts. This technique, which has also been used to 

study diffusion processes [25-26], allows interferometric fringe patterns to be obtained, 

that are indicative of changes in the optical path followed by the light and are related to 

changes in the refractive index. In the case of the appearance of the concentration 

polarization layer during the RO process, changes in the concentration distribution, and 

therefore in the refractive index distribution, can be visualized as an interference fringe 

pattern. 

In the present research, the technique used is Digital Holographic Interferometry (DHI), 

a variation of the conventional HI technique where the main difference is the change of 

the hologram recording element. In classical HI, a holographic plate, photographically 

developed, is used. In DHI, the holographic plate has been substituted for the CCD chip 

of a video camera. The technique is as valid as the classical HI, and has already been 

used in similar diffusion studies in transparent media [27-28]. Methodology for the 

digital reconstruction of the interferograms may vary depending on the process to be 

studied. Schnars and Jüptner [29] developed the methodology for numerically 

reconstructing a digital hologram, while maintaining the same advantages (or even 

extending them) as optical holography. Nevertheless, there are applications where these 

advantages are not necessary and therefore easier ways for the interferogram formation 

can be used. Such is the case of Electronic Speckle Pattern Interferometry (ESPI, or 

DSPI also TV Holography). By means of this method, two interferograms of two 

different states of the object are recorded and then subsequently subtracted digitally, 

creating an interferogram similar to that obtained with conventional holographic 

interferometry [29].  
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The aim of this study is to determine in situ and real-time concentration profiles during 

the crossflow RO of salts by using Digital Holographic Interferometry. This 

determination constitutes the first direct verification of the CPL under crossflow 

conditions. Along with the measurement of the interference fringe pattern by means of 

DHI to determine the polarization layer, the permeate flow was measured in each 

experiment. The close relationship between these two variables of the process could be 

observed. So, an increase of crossflow velocity causes a higher shear force that 

decreases the polarization layer and, consequently, increases the permeate flow. 

 

 

2. Experimental 

2.1. Experimental set-up 

The experimental assembly associates two different systems: the optical set-up for the 

holographic interferometry and the reverse osmosis set-up. These two assemblies were 

coupled on the same work table, with the RO module as the common element. 

The RO module, specially designed to carry out the RO process satisfying the 

holographic interferometry requirements, has been thoroughly described in a previous 

paper [23]. Since a crossflow process takes place in a low channel, a piece of Teflon 

was introduced in the RO module to reduce the channel height to its final dimension (3 

mm). Dimensions of the module used were 100 x 10 x 3 mm. 

In this paper, a digital holographic interferometric set-up (Figure 2) was used. This 

optical system is very similar to that explained in a previous paper [24], the main 

difference being that the holographic plate has been substituted by the CCD chip of a 

video camera. The chip is, therefore, the hologram recording device. 

The laser beam is divided with a beam splitter (Bs1) into the reference beam and the 

object beam. After passing through the RO module (Ob), the object beam is re-joined 

with the reference beam and both are focused into the camera (CCD) by means of a lens 

system (Lens). The interferences between both beams form the hologram, which is 

electronically stored in the PC. 

The crossflow RO system (Figure 3) is similar to that described in a previous paper 

[22]. The feed solution was pumped (1) from the tank (2) to the RO module (3). 

Pressure was visualized by means a pressure gauge (4), while the crossflow rate was 



 6

measured with a rotameter (5). A valve in the rotameter allowed both the pressure and 

the crossflow velocity of the system to be controlled. A fine regulation valve (6) also 

helped to regulate flow rate and pressure. Permeate flux was continuously measured by 

means of a balance (8) and its conductivity determined with a conductivity probe 

(Crison, model 5287) (7) and a conductimeter (Crison, model GLP 32) (9) connected to 

a PC (10).  

 

2.2. Materials 

Experiments were performed with a thin film membrane (TFM-50, from Hydro Water 

S.L.). Suitable pieces for the size of the module used (1x10 cm) were cut from the entire 

membrane. Each piece of membrane was changed after several experiments, so after 

each experiment the module was washed with distilled water. Washing was done by 

circulating water at high crossflow velocity to completely remove salts from the 

membrane surface. The membrane was considered to be clean when the permeate flux 

of water was recovered. 

Experiments were performed using solutions of two salts: Na2SO4 and NaCl (Panreac). 

Different feed concentrations (Co), in the range of 3.5-8.5 kg/m3, were used to study the 

effect of the solute and feed concentration on the polarization layer. Physical properties 

of the solute solutions used (diffusion coefficient, density and osmotic pressure) were 

obtained from literature. 

 

Na2SO4
 [30]: D (m2/s) =-3.9x10-12C (kg/m3) + 1.16x10-9 

NaCl [4]: D (m2/s) = max (1.61x10-9(1-14 m), 1.45x10-9) 

where m is the mass fraction of the solute 

 

Na2SO4 [31]: ρ (kg/m3) =9.80 C (kg/m3) + 997.1 

NaCl [31]: ρ (kg/m3)=7.24 C (kg/m3)+ 997.1 

 

The osmotic pressure of both solutions was calculated using the van’t Hoff equation for 

dilute solutions [32] 

Na2SO4: Π (atm) = 0.516 C (kg/m3) 

NaCl: Π (atm) = 0.835 C (kg/m3) 
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2.3. Experimental methodology 

Three variables of the process were studied in each experiment: initial concentration 

(Co), pressure applied (∆P) and crossflow (CF) velocity. Four values of initial 

concentration (3.5, 5, 7 and 8.5 kg/m3), two different transmembrane pressures (6 and 

7.2 bar) and two combinations of crossflow rate were used. The use of glass windows 

limited the maximum pressure applied. Therefore, in order to prevent buckling of the 

windows (which could cause the appearance of spurious interference fringes) a 

maximum pressure of 7.2 bar was used. This limitation on the pressure applied 

determines the range of salt concentrations used (up to 8.5 kg/m3), as the solution 

should not have an osmotic pressure greater than the pressure applied. The CF velocities 

used were 0.2, 0.7 and 1.7 cm/s (Re = 10, 31 and 77), combined in each experiment in 

two ways: upward or downward, and always returning to the initial velocity at the end 

of each experiment. Thus, the upward series (Up Series) had a sequence 0.2-0.7-1.7-0.2 

cm/s, while the downward series (Down Series) followed the sequence 1.7-0.7-0.2-1.7 

cm/s. Each crossflow velocity was maintained for 30 minutes. Each possible variables 

combination (Co, ∆P and Series of crossflow velocity) was repeated twice to verify the 

reproducibility of the results. 

Before each experiment, water flow (Jw) was measured to verify that it had not fallen 

very much and the membrane was not in bad condition. Once the water flux was 

checked, the solution was introduced into the system and remained in circulation at the 

intermediate velocity of 0.7 cm/s. With the solution circulating and the optical set-up 

correctly aligned, the hologram capture program was started thus beginning the 

calculation of the interferograms. Finally, pressure was applied and initial CF velocity 

was selected according to the crossflow series to be studied. 

The video camera captures the images and sends them to the PC. The program, at a rate 

of 1 per second, converts these images to a matrix. The value of each element of the 

matrix is related to the intensity received by each light detector (pixel) of the camera 

CCD chip. Afterwards, the numerical subtraction of two different matrixes, 

corresponding to two different states of the object, provides the intensity of the 

interferogram desired. Therefore, as the reference state (the hologram) must be the 

object before undergoing any change, the first image captured by the camera will be the 

hologram. Next images will be subtracted from the hologram and the resulting matrix 

will be converted back to an image. This image is the interferogram finally studied.  
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When pressure was applied, a convective flux of solute to the membrane surface began, 

thus causing the accumulation of the solute in the vicinity of the membrane. The 

increase of the concentration on the membrane surface (Cm) changed the refractive 

index and caused the appearance of interference fringes when comparing the actual state 

and the reference state. Each interference fringe corresponds to a concentration step in 

the solution. This step depends on the relation between the concentration and the 

refraction index, measured at 25 ºC with a refractometer (Leica, AR600): 

Na2SO4:  n =1.54x10-4 C (kg/m3) + 1.33299  

NaCl: n =1.76x10-4 C (kg/m3)+ 1.33299 

Methodology to obtain the concentration profile from the interferograms was described 

in previous papers [19, 24]. 

The process was continuously recorded, even while the crossflow velocity was 

modified. Modifications were made every 30 minutes through a change in the position 

of the valves of the system, until a total time of experiment of 120 minutes. 

Weight and conductivity data of the permeate solution were also continuously measured 

during the process. Permeate weight data were used to calculate the permeate flux as the 

curve derived from the weight. As the relation between conductivity and concentration 

was experimentally measured, permeate concentration was obtained from conductivity 

data of the permeate solution.  

Na2SO4:  µ (µS) =1227.3 C (kg/m3) + 2.29   

NaCl:  µ (µS) =1799.2 C (kg/m3) + 2.29  

Conductivity of permeate solutions was very low, thus indicating a very high retention 

(higher than 90%). 

After 120 minutes of experiment, the pump was stopped thus removing pressure and 

feed flow. It was observed that, in a few minutes, interference fringes of the polarization 

layer completely disappeared.  

 

 

3. Results and Discussion 

3.1. Na2SO4 experiments 

Combining four initial feed concentrations (3.5, 5, 7 and 8.5 kg/m3 of Na2SO4) with two 

applied pressures (6 and 7.2 bar), a total of 8 experiments were run (Table 1). All the 

experiments were duplicated to check reproducibility. In each experiment, crossflow 

velocity was changed every 30 minutes, in an increasing sequence (Up Series). The 
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sequence of CF velocities was 0.2-0.7-1.7-0.2 cm/s (Re = 10, 31, 77 and 10). Permeate 

flux measurements showed that steady state was reached in a few minutes after the 

beginning of the experiment or after every change in the CF velocity. Interferogram 

recording was performed continuously.  

In order to check if the CF velocity history has any effect on the results obtained, 

another series of experiments was made with a decreasing sequence (Down Series) of 

CF velocity. As the results obtained with the Down Series properly reproduced those 

obtained with the Up Series, only three concentrations (3.5, 5 and 7 kg/m3) and a 

pressure of 6 bar were used (Table 1). The sequence of CF velocities was 1.7-0.7-0.2-

1.7 cm/s (Re = 77, 31, 10 and 77) and all the experiments were duplicated. Some 

conditions (∆P = 6 bar, CF velocity = 1.7, 0.2 cm/s) were used 6 times, some of them 

with a different piece of the original membrane. Although it has been reported [33] that 

heterogeneities in the membrane can cause changes in its hydraulic permeability, no 

notable differences were observed in our experiments.  

As an example, Figure 4 shows the complete results (permeate fluxes, interferograms 

and concentration profiles of the polarization layer) of experiment nº 8, corresponding 

to a concentration of 8.5 kg/m3 of Na2SO4, a pressure of 7.2 bar and an Up Series of 

crossflow velocity. 

The top of the Figure shows the evolution of permeate flux (J) with time. Vertical lines 

have been included in the Figure to identify when the CF velocity changed. Thus, in the 

range of 0-1800 seconds the velocity was 0.2 cm/s; 0.7 cm/s during the 1800-3600 

seconds interval; 1.7 cm/s during the 3600-5400 seconds interval and again 0.2 cm/s for 

the 5400-7200 seconds interval.  

It can be seen that the permeate flux reaches a nearly constant value for each crossflow 

velocity. As feed flux at the inlet of the module was continuous and stationary, all the 

variables of the process reached a value which was stable with time. As a consequence, 

the solute concentration profile (polarization layer) at any point of the membrane 

channel also remained stable with time, and the same occurred with permeate flux 

which is conditioned by this polarization layer. 

On the other hand, the higher the crossflow velocity, the higher the permeate flux. It can 

be observed (Figure 4) that when CF velocity is 0.2 cm/s, the permeate flux is 0.80 x 10-

6 m3/s·m2; when CF velocity changes to 0.7 and 1.7 cm/s, the permeate flux is 1.08 and 

1.39 x 10-6 m3/s·m2, respectively. At the end of the run, when velocity returns to the 

initial value (0.2 cm/s), permeate flux returns to 0.80 x 10-6 m3/s·m2. The reason is that 
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when the CF velocity increases, the shear effect is greater and the polarization layer 

decreases, thus increasing the permeate flux. The recovery of the permeate flux value 

when returning to the initial conditions shows that the permeate flux depends only on 

the pressure applied and on the CF velocity; therefore, concentration polarization can be 

considered a reversible phenomenon. 

In Figure 4, it can also be seen that a steady state is easily reached after a few minutes. 

This period of time is necessary for the concentration polarization layer to become 

stabile, which implies either a formation or a destruction process. The formation of the 

polarization layer will occur when crossflow velocity decreases, thus causing a less 

shear effect and increasing the accumulation of solute on the membrane surface. The 

destruction of the polarization layer will occur with the increase of CF velocities. 

In the central part of Figure 4, four interferograms corresponding to the four crossflow 

velocities (0.2, 0.7, 1.7 and 0.2 cm/s) of Experiment 8 are shown. Holographic 

interferometry allows the appearance and evolution of the concentration polarization 

layer during crossflow RO experiments to be followed in real time. At the beginning of 

the process, some fringes appeared on the membrane surface, thus indicating that the 

concentration of solute at the membrane surface was increasing.  

As has been noted when discussing the behaviour of the permeate flux, the stabilization 

of the polarization layer (appearance or disappearance of some fringes) occurred only 

during a few minutes after changing the crossflow velocity. Usually, the process needed 

around 10 minutes after each change of CF velocity to be stabilized. After this time of 

stabilization, the number of fringes remained constant, as well as their distance from the 

membrane surface. This fact indicates that Cm and the thickness of the boundary layer 

(δ) had reached the steady state. Usually, the process reached the steady state (the 

number of fringes and their appearance remained virtually immutable, and both the 

permeate flux and permeate concentration were constant) around 10 minutes after each 

change of CF velocity. Although a high number of images are available (video camera 

captures one image per second), in Figure 4 only four interferograms are shown. The 

interferograms were taken at the end of each steady state step, just before changing the 

crossflow velocity. 

It can be seen that the greater the crossflow velocity, the lesser the number of fringes, 

thus indicating the polarization layer decreases due to the higher shear flow. As an 

example, the number of interference fringes in Figure 4 is 7-5-4-7 when the crossflow 

velocity is 0.2-0.7-1.7-0.2 cm/s, respectively. 
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Moreover, as the thin fringes close to the membrane are related to the thickness of the 

concentration polarization layer (δ), some qualitative conclusions about this thickness 

can be extracted from interferograms in Figure 4. 1) the lesser the crossflow velocity, 

the greater the polarization layer thickness (when the crossflow velocity is 0.2 cm/s, δ is 

around 1 mm and decreases to 0.8 mm when the crossflow velocity increases). 2) In RO 

crossflow processes, δ is much lesser than in unstirred batch RO processes, (where δ can 

be up to 5 or 6 mm, as stated in a previous paper [17]). 

Finally, in the bottom part of Figure 4, four concentration profiles calculated from the 

four interferograms in the Figure are shown. As the relationship between refractive 

index and concentration of the solutions is known, interference fringes can be converted 

into a concentration profile. Methodology for this conversion has been described in 

previous papers [19, 24]. It can be observed that, the higher the CF velocity, the flatter 

the concentration profile and the lesser the concentration at the membrane surface. 

Figures 5 and 6 show the effect of feed concentration on the permeate flux when an Up 

Series of experiments was carried out at 6 and 7.2 bar, respectively.  

Not all experiments have been carried out with the same piece of membrane. Cleaning 

and regeneration of the membrane during repeated experiments caused a small 

deterioration that made it necessary to replace the membrane after several experiments. 

Nonetheless, a first interpretation allows it to be seen that in every experiment the 

permeate flux reaches a stable value a few minutes after a new crossflow velocity was 

fixed. 

On the other hand, there is a clear influence of the feed concentration on the permeate 

flux. As the higher the feed concentration, the greater the osmotic pressure, an increase 

of feed concentration will reduce the driving force and therefore the permeate flux will 

decrease.  

Finally, comparing Figures 5 and 6, it is possible to state that an increase of the applied 

pressure causes an increase of the permeate flux. 

A second set of experiments, with decreasing crossflow velocities (Down Series), was 

carried out. Figure 7 shows the evolution of permeate flux in a Down Series when three 

feed concentrations of Na2SO4 (3.5, 5, and 7 kg/m3) and a pressure of 6 bar were used.  

As was previously stated when studying the results of experiment 8 (Table 1), the 

thickness and concentration profile of the polarization layer, and hence the permeate 

flux, depend on the crossflow velocity.  



 12

In order to study if there is any influence of the sequence of variation of the crossflow 

velocity (Up Series or Down Series), Figure 8 shows the permeate flux for two 

experiments carried out with the same conditions (pressure: 6 bar; feed concentration: 5 

kg/m3) but with different CF velocity sequences. It can be observed that the steady state 

value of the permeate flux, with a particular crossflow velocity, is independent of the 

previous velocity used. For example, at the beginning and at the end of the Down Series 

(CF velocity = 1.7 cm/s) the permeate flux was 1.87 x 10-6 m3/s·m2 and the same value 

was obtained in the range 3600-5400 seconds of the Up Series, when the CF velocity 

was 1.7 cm/s. 

Figure 9 shows permeate flux, interferograms and concentration profiles corresponding 

to experiment nº 1 (pressure: 6 bars; feed concentration: 3.5 kg/m3). This experiment 

has been selected because it was carried out with the most different conditions to 

experiment nº 8 (pressure: 7.2 bar; feed concentration: 8.5 kg/m3). Comparing Figures 4 

and 9, it can be seen that a decrease of the applied pressure and the feed concentration 

reduces the polarization layer thickness (δ) and the concentration in the membrane (Cm) 

(less interference fringes). 

 

3.2. NaCl experiments 

A total of 6 experiments (Table 1), combining three initial feed concentrations (3.5, 5 

and 7 kg/m3 of NaCl) and two pressures (6 and 7.2 bar), were carried out. As with 

Na2SO4 experiments, crossflow velocity was changed after 30 minutes by regulating the 

valves of the system. Three CF velocities were used: 0.2, 0.7 and 1.7 cm/s (Re = 10, 31 

and 77, respectively), combined in two series (Up Series and Down Series). With NaCl 

it has not been possible to use the greatest concentration (8.5 kg/m3) because with this 

concentration, the osmotic pressure of NaCl solution is greater than the pressure applied 

(7.2 bar).  

As an example, Figure 10 shows permeate flux, interferograms and concentration 

profiles from experiment nº 17 (pressure: 7.2 bar; feed concentration: 7 kg/m3), when an 

Upward Series of crossflow velocity was carried out. Permeate fluxes for the three 

concentrations (3.5, 5 and 7 kg/m3 of NaCl) when a pressure of 6 and 7.2 bar were used 

are shown in Figures 11 and 12, respectively.  

From a qualitative point of view, conclusions are similar to those obtained with Na2SO4 

(paragraph 3.2). The effect of CF velocity, feed concentration and pressure on the 

thickness of the polarization layer and on the permeate flux is the same as with Na2SO4.  
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Some quantitative differences are evident: As the osmotic pressure of an NaCl solution 

is greater than that of an Na2SO4 solution with the same concentration, permeate fluxes, 

which depend on the difference ∆P – ∆π, are smaller with NaCl than with Na2SO4. On 

the other hand, the thickness of the polarization layer is smaller, as can be seen in 

Figures 10, 11 and 12. 

As previously noted in the Introduction, in 1971 Hendricks and Williams [1] measured 

profiles of the polarization layer in cross-flow experiments in RO. using a technique 

based on the variation of solution conductivity with concentration. The salts tested by 

these authors (NH4NO3, NaNO3, NaCl, NaSO4 and MgSO4) included the two salts used 

in this study, NaCl and NaSO4. A comparison between results from both papers is 

difficult: Most of the experimental data of concentration profiles in the polarization 

layer presented in graphical form in [1] concern the NH4NO3 and no profile of Na2SO4 

is presented. On the other hand, although experimental results with NaCl are presented, 

they were obtained with very different experimental conditions (∆p = 21.6 atm and Re = 

137) to those used in this research; furthermore, these conditions were not suitable for a 

reverse osmosis process. As the   authors themselves say, "That in Figure 8 is for NaCl 

at sea water concentration, in this case the osmotic pressure, 35.9 atm, exceeded the 

pressure applied, and therefore water could be transported out the brine only because of 

imperfect rejection”. 

 

3.3. Comparison between experimental and theoretical results 

The film theory approach is commonly used as a starting point for many simplified laws 

used in membrane science. It simplifies a complex transport problem to a one-

dimensional mass transfer problem by assuming axial solute convection near the 

membrane negligible. To describe concentration polarization, one-dimensional flow and 

a fully-developed boundary layer is assumed. As a consequence, the relationship 

between concentration polarization and permeate flux can be expressed as [34]:  

m p

o p

C C J
exp

C C k

−  
=  

−  
     (1) 

where k is the mass transfer coefficient.  

There are several empirical relationships that attempt to estimate the value of k 

depending on the hydrodynamics of the system. These equations are of the type: 
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( )hk d
Sh f Re,Sc

D

⋅
= =     (2) 

where Re is the Reynolds number and Sc is the Schmidt number 

Mass transfer coefficient can be calculated by using the correlation of the Sherwood 

number for a laminar flow [34]. 

0.33
o hd

Sh 1.85 Re Sc
L

 =  
 

   (3) 

However, this correlation was developed for impermeable walls and low mass-transfer 

rates. Geraldes and Afonso [7] obtained a correction factor for conventional mass-

transfer coefficients to account for the suction effect in nanofiltration (NF)/reverse 

osmosis (RO) membrane modules. They defined the correction factor as 
o

Sh

Sh
Ξ ==== , 

where Sh is the average Sherwood number taking into account the suction effect and 

Sho is the Sherwood number at impermeable walls and low mass-transfer rates. 

This correction factor depends only on the ratio 
o

Pe

Sh
====φ , where Pe is the permeation 

average Peclet number 
J h

Pe
D

⋅⋅⋅⋅    
====    

    
. Once the relation Ξ (φ) is known [7], the corrected 

mass transfer coefficients can be calculated and the concentration at the membrane 

surface obtained.  

The intrinsic rejection (R) is defined by equation 4:  

p

m

C
R 1

C
= −        (4) 

By introducing the mass transfer coefficient and the expression of the intrinsic rejection 

(R) in equation 1: 

m

o

C exp(J / k)

C R (1 R)exp(J / k)
=

+ −
    (5) 

The ratio m

o

C

C
 is called the concentration polarization modulus. This ratio increases (Cm 

increases) as the permeate flux and the rejection rate does, or when the mass transfer 



 15

coefficient decreases. Equation (5) shows that there is a close relationship between J and 

R, the main parameters related to the membrane performance. 

Experimental values of membrane concentration (Cm,e) have been compared with 

calculated membrane concentration values (Cm,c). Cm,c has been calculated with equation 

(5), using experimental values of Co, R, J, the geometrical parameters of the channel and 

the diffusion coefficient of the solution (D). The correction factor proposed by Geraldes 

and Afonso [7] was used to calculate the mass transfer coefficients, under the 

experimental conditions used in this work. Using the height of the channel used (h = 3 

mm) and the permeate fluxes obtained with the pressure and CF velocity conditions 

applied, the Peclet number was calculated, values ranging between 1.55 and 6.03 for 

Na2SO4 solutions and between 0.98 and 4.63 for NaCl solutions. With these values of 

Pe and with the Sho values obtained with equation (3), parameter φ  was calculated 

(ranging between 0.06 and 0.36). Finally, the correction factor Ξ (φ) was determined, 

values being in the range 1.03-1.20. 

Table 2 shows, as an example, the comparison between 12 of the experimental and 

calculated values of concentrations at the membrane surface (Cm), corresponding to 

each of the three CF velocities used (0.2, 0.7 and 1.7 cm/s) in the experiments 7, 8, 16 

and 17. Experimental values of R used for the calculation were obtained from the Cp 

measured. In all the experiments with the same solute, the mean value for R was very 

similar, resulting in 0.97 for Na2SO4 and 0.9 for NaCl. 

In general, as can be observed, there is a good agreement between experimental and 

theoretical values with 2.0 % average error. 

 

 

4. Conclusions  

 

Digital Holographic Interferometry has proved to be a valid technique to observe the 

appearance and stabilization of the polarization layer. Evidence has been experimentally 

obtained to show that, in a crossflow reverse osmosis system, the hydrodynamics of the 

process has a great influence on the polarization layer.  

Permeate flux drives solute to the membrane and increases the polarization layer; at the 

same time, fluid flow exerts a shear effect that reduces the concentration polarization 

layer. 
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Moreover, permeate flux and concentration polarization are completely dependent 

parameters. Thus, the contribution of solute towards the membrane increases the 

polarization layer and at the same time, the permeate flux is limited because of the 

build-up of this polarization layer.  

Experimental results show a close relationship between these three significant 

parameters: permeate flux, polarization layer and crossflow velocity.  

At high CF velocities, the number of fringes in the polarization layer decreased (and δ 

decreased) and permeate flux increased. This phenomenon was due to the greater shear 

force caused with the increase of the fluid flow. This shear force swept the solute away 

from the polarization layer, reducing the concentration on the membrane (Cm) and 

consequently, increasing the permeate flux. Moreover, the higher the CF velocity, the 

lesser the polarization layer thickness, because shear force itself avoided the growth of 

the polarization layer. Therefore, the crossflow velocity determines the thickness and 

concentration profiles of the polarization layer and hence, the permeate flux. 

During the process, each time that the CF velocity changed, a steady state was reached 

after a few minutes. This period was necessary to obtain the stabilization of the 

polarization layer after changing the crossflow velocity. As a result, permeate flux also 

reached a steady value after a few minutes. 

In the steady state, the number of fringes remained constant as well as their distance 

from the membrane surface. Furthermore, it was observed that the steady state value of 

the permeate flux for any velocity was independent of the previous velocities used. 

On the other hand, the influence of the feed concentration on the permeate flux has been 

clearly proved. Independently of the crossflow velocity, the greater the feed 

concentration, the greater the reduction of the permeate flux. The reason is that when 

the feed concentration increases, so does the osmotic pressure, thus reducing the driving 

force and therefore, the permeate flux decreases. 

The applied pressure also had an important effect on the polarization layer and the 

permeate flux. The lesser the applied pressure, the smaller the polarization layer 

thickness and the concentration in the membrane. A reduction of the concentration 

polarization causes a lesser resistance, thus increasing the permeate flux. However, a 

lesser pressure also causes the driving force to decrease. The global result of both 

effects is that permeate flux decreases. 

In a qualitative way, no significant differences were observed with the two salts studied 

(NaCl and Na2SO4). The effect between all the significant variables studied was similar. 
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Nevertheless, some quantitative differences were observed as the osmotic pressure of 

NaCl solutions is greater than that of Na2SO4 solutions with the same concentration. 

This higher osmotic pressure caused a smaller permeate flux and consequently, the 

amount of solute moving to the membrane was lesser, so the polarization phenomenon 

was less important. 

A good agreement between experimental and theoretical values of membrane 

concentration has been obtained. 
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Figure captions 

 

Figure 1. Schematic concentration profiles: a) unstirred batch cell at three different 

times; b) crossflow cell at steady state 

Figure 2. Digital holographic interferometry set-up. 

Figure 3. Reverse osmosis crossflow system: (1) pump; (2) feed and water tanks; (3) 

RO module; (4) pressure gauge; (5) rotameter, (6) regulation valve; (7) conductivity 

probe; (8) balance; (9) conductimeter; (10) computer. 

Figure 4. Permeate flux, interferograms and concentration profiles for each CF velocity 

used (experiment 8).  

Figure 5. Permeate flux of Na2SO4 experiments at 6 bar with different feed 

concentration (Up Series).  

Figure 6. Permeate flux of Na2SO4 experiments at 7.2 bar with different feed 

concentration (Up Series).  

Figure 7. Permeate flux of Na2SO4 experiments at 6 bar with different feed 

concentration (Down Series).  

Figure 8. Comparison between permeate flux of Up and Down Series in experiments 

with the same pressure and feed concentration (6 bar; 5 kg/m3). 

Figure 9. Permeate flux, interferograms and concentration profiles for each CF velocity 

used (experiment 1).  

Figure 10. Permeate flux, interferograms and concentration profiles for each CF 

velocity used (experiment 17). 

Figure 11. Permeate flux of NaCl experiments at 6 bar with different feed concentration 

(Up Series).  

Figure 12. Permeate flux of NaCl experiments at 7.2 bar with different feed 

concentration (Up Series).  
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Tables 

 

Table 1. Experiments carried out 

Salt Series Experiment Co (kg/m3) ∆P (bar) 

Na2SO4 

Up series 

1 
3.5 

6 

2 7.2 

3 
5 

6 

4 7.2 

5 
7 

6 

6 7.2 

7 
8.5 

6 

8 7.2 

Down series 

9 3.5 6 

10 5 6 

11 7 6 

NaCl Up series 

12 
3.5 

6 

13 7.2 

14 
5 

6 

15 7.2 

16 
7 

6 

17 7.2 

 

 

 

Table 2. Comparison between experimental and calculated values of Cm 

 

Experiment no CF velocity (cm/s) Cm,e (kg/m3) Cm,c (kg/m3) 

7 

0.2 10.25 9.842 

0.7 9.84 9.68 

1.7 9.43 9.50 

8 0.2 11.07 10.49 
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0.7 10.25 10.21 

1.7 9.84 10.14 

16 

0.2 7.79 7.71 

0.7 7.43 7.49 

1.7 7.43 7.43 

17 

0.2 8.34 8.35 

0.7 7.99 8.12 

1.7 7.99 8.04 

 

 


