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Abstract  —  This paper describes a novel technique for 

the very efficient and accurate full-wave modal analysis of 
cylindrical waveguides with arbitrary cross-section. This 
new technique relies on solving the integral equations that 
provide the well-known Boundary Integral - Resonant 
Mode Expansion (BI-RME) method by the Nyström 
approach, instead of using the traditional Galerkin version 
of the Method of Moments (MoM), thus providing large 
savings on computational costs. Accuracy aspects of this 
simple and fast procedure, which are directly connected to 
the rigorous treatment of the singular behaviour of the 
integral equation kernels, are carefully considered for 
waveguides defined by straight, circular and/or elliptical 
arcs. Comparative benchmarks between the new technique 
and the original BI-RME method are successfully presented 
for single- and multi-ridged waveguides, elliptical 
waveguides and rectangular waveguides with rounded 
corners. 

I. INTRODUCTION 

Arbitrarily shaped waveguides, whose cross-section is 

defined by linear, circular and/or elliptical arcs, are 

usually found in many passive waveguide devices used in 

real applications [1]. For example, ridge rectangular or 

circular waveguides are frequently present in dual mode 

filters, and multi-ridged waveguides are the key element 

of doubly corrugated chokes. Elliptical waveguides have 

also found increasing application in many passive 

waveguide devices, such as dual and triple mode filters, 

circular waveguide polarizers, twists and mode 

launchers, radiators, resonators and corrugated horns. 

Finally, the accurate consideration of rounded corners in 

passive rectangular waveguide devices, usually attributed 

to present manufacturing techniques, is currently under 

investigation. 

The Computer Aided Design (CAD) tools of these 

complex passive waveguide devices require a very 

accurate full-wave modal solution of the above 

mentioned arbitrary waveguides. Among the many 

methods proposed in the literature, the BI-RME 

technique provides the complete modal spectrum of such 

waveguides [2], as well as the coupling coefficients 

between these modes and the ones of a surrounding 

standard rectangular waveguide [3], in a very accurate 

way. This technique is based on the solution of integral 

equations by the Galerkin version of MoM, which 

therefore requires to solve simple and double integrals 

for computing the matrix elements (see details in [1]).  

During the design process of complex waveguide 

components, the repeated use of the accurate BI-RME 

approach [2, 3] can lead to unaffordable computation 

times. To alleviate this situation, some recently 

developed optimization algorithms, e.g. the Aggressive 

Space Mapping (ASM) technique [4], propose the use of 

two different simulation tools: an efficient and not very 

accurate simulation tool, which will support the burden 

of the design process, and a very accurate but not 

efficient analysis tool to guarantee the accuracy of the 

whole process. Therefore, a fast and simple 

implementation of the BI-RME method is required. 

In this paper, a more efficient BI-RME method, based 

on the Nyström technique implemented with a very 

simple quadrature rule, is completely described. The 

accuracy and efficiency improvement provided by this 

new method is proved through successful comparisons 

with numerical data obtained with a revisited 

implementation of the classical BI-RME approach [5]. 

II. BASIC THEORY 

In this section, the combination of the BI-RME method 

with the Nyström technique is described. The novel 

technique is applied to the solution of the TE and TM 

modes of arbitrary waveguides, whose contour can be 

defined by any combination of straight, circular and/or 

elliptical arcs. Once the modal chart of these waveguides 

is computed, the coupling integrals between such modes 

and the ones of a surrounding standard rectangular 

waveguide can easily be obtained following [3]. 

The electric field at a generic observation point r 

inside the waveguide may be represented as 

( ) ( , , ) ( )
e

j k k l dlE r G r s J

 

(1) 

where  is the perturbing line that fixes the contour of 

the arbitrary waveguide and is defined by the parametric 

equation ( )ls s , Ge is the two-dimensional dyadic 

Green’s function of the electric type for the two-

dimensional resonator and J  is the current density on . 

A. TM Modes 

To compute the TM modes, the BI-RME technique is 

followed, thus leading to an integral equation after 
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imposing the boundary condition to the axial component 

of the electric field (see (9a) and (9b) in [2]). For solving 

such equation, instead of using standard Galerkin as in 

[2], a Nyström quadrature is employed, thus leading to 

the following algebraic equation 
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where ji and j are Nyström quadrature weights, N is the 

number of points used for the subdivision of the 

perturbing contour, si and sj are the discrete observation 

and source points, g is the rapidly convergent scalar two-

dimensional Green’s function described in [1]. On the 

other hand, M is the number of TM modes of the 

surrounding standard rectangular waveguide required by 

the modal expansion of the BI-RME method, and k´m and 

m are, respectively, the cut-off wavenumber and 

normalised scalar potential of the m-th TM mode of such 

rectangular waveguide. The unknowns of the problem are 

the modal expansion coefficients (a´m), the amplitudes of 

the  longitudinal current density in the discrete points (sj) 

of the contour (b´j), and the cut-off wavenumbers of the 

perturbed waveguide (k´). 

In this approach, a simple one point quadrature is 

chosen for ji and j. However, as can be seen in (2a), the 

Nyström method requires the evaluation of the kernel 

with coincident source and observation points. In such 

cases, the singular contribution of the kernel is 

approximated by its Taylor expansion, which gives place 

to a regular and a singular term. To compute the 

corresponding element ii , the regular term is 

numerically integrated, whereas the singular one is 

analytically solved. Further details for each kind of 

segment (i.e. straight, circular and elliptical) will be 

presented during the talk. 

B. TE Modes 

For solving the TE case, the original BI-RME 

formulation is modified (see (8a) and (8b) in [2]), since 

the transverse dyadic involving the double gradient of the 

Green’s function g is preserved. Proceeding in this way, 

the unknown transverse current density does not involve 

any derivative, thus easing the numerical solution. 

Therefore, the following set of algebraic equations is 

obtained 
2
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where Gst is now the rapidly convergent solenoidal 

dyadic normal to the boundary described in [2], and t is 

the unitary tangent vector on the arbitrary contour. In this 

case, M represents the number of TE modes of the 

surrounding standard rectangular waveguide, and km and 

m are, respectively, the cut-off wavenumber and 

normalised scalar potential of the m-th TE mode of the 

rectangular waveguide. In this problem, the  unknowns 

are again the modal expansion coefficients (am), the 

amplitudes of the transverse current density in the 

discrete points (sj) of the contour (bj), and the cut-off 

wavenumbers of the perturbed waveguide (k). 

The quadrature weights ´ji, ii, ji and ’j coefficients 

of the Nyström method are obtained in the same way as 

explained before for the TM case. However, as it can be 

seen in (3a), the computation of the ´ii coefficients 

involve a double partial derivative of g with respect to 

the observation and source contour parameters l and l´ is 

required, which is not integrable even in the Cauchy 

principal value definition. Therefore, the treatment of this 

singularity is different with regard to the previous case. 

In this case, ´ii is computed via the traditional method of 

the subtraction of the singularity because of the 

hypersingularity of the double derivative of Green’s 

function. 

III. RESULTS 

The new algorithm has been tested on different 

geometries in order to identify the advantages of the 

method compared to standard Galerkin BI-RME method 

[5]. All tests have been performed on a PC Pentium II @ 

400 MHz. Obviously, the Nyström method with one-

point quadrature should need more discrete points than 

Galerkin’s technique in order to obtain the same 

accuracy. Therefore, the starting point is to use the same 

number of points N  than the Galerkin case. The second 

step is to compute the relative error in the computation of 

the cut-off frequencies. The maximum relative error 

allowed is set to 0.5% when compared to Galerkin BI-

RME. If that bound is not satisfied, then the spatial grid 

is increased. As a consequence, the benchmark results 

depend on several factors, such as the geometry, the size 

of the perturbation contour and the desired number of 

valid modes. 

The validity of this new method can also be proved by 

representing the axial electric field for the Transversal 

Magnetic (TM) modes and the transversal electric field 

for the Transversal Electric (TE) modes. Finally, in order 

to confirm the accuracy of the novel technique several 

coupling coefficients will be computed. 

A. Ridge waveguide 

The first geometry to be tested is a WR-75 standard 

waveguide perturbed by a central single ridge shown in 

Fig. 1. The results obtained are shown in Table I. Time 

savings are achieved with a small loss of accuracy and 

the same number of points N as in Galerkin. In this 

comparison, 600 modes in the rectangular waveguide are 

used and 140 single ridge valid cut-off frequencies are 

obtained. The mean and maximum relative error of these 

140 cut-off frequencies are also shown in Table I. 

The electric field obtained in this example is shown in 

Fig. 2a) for the axial component in the 4th TM mode, 

while Fig. 2b) shows the transversal component for the 

4th TE mode. 
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a = 19.05 mm 

b = 9.525 mm 

w = 3 mm 

h = 3 mm 

Fig. 1. Single ridge waveguide geometry. 

TABLE I. SINGLE RIDGE WAVEGUIDE RESULTS 

 N extra 
points  

Time 
reduction 

Time Max. 
Error 

Mean 
error 

TM 0 % 38.9 % 1.98 s 0.05 % 0.02 % 

TE 0 % 32 % 6.12 s 0.19 % 0.05 % 

 

 

a) 

 

b) 
Fig. 2. Electric field representation for the ridge waveguide. 

 
As it is expected, the computed fields are practically 

zero outside the region of interest as was expected. 

For this case, the coupling integrals for the first 8 

modes of the single ridge and 21 modes of a WR-75 

waveguide have also been computed. A maximum 

absolute error of 4 ·10-3 has been observed, thus 

confirming the accuracy of the novel technique. Table II 

shows some coefficients and their associate absolute 

error. 

B. Multiridge waveguide 

In this geometry, a rectangular waveguide is perturbed 

by six ridges symmetrically distributed (see Fig. 3). As 

can be seen in Table III, the computing time reduction for 

the TM case is very large. In the case of TE modes, the 

result is not so impressive because the grid had to be 

increased with extra 50% discrete points in order to keep 

the error bound. Despite of the spatial grid expansion 

required, the total computation effort is still reduced. In 

this case, the number of rectangular waveguide modes is 

600, and 110 valid modes are obtained. 

 

Modes Modes B 

A TE10 TE20 TE01 TE11 TM11 

TE10 
-0.851 
1.7·10

-3
 

0 
-0.213 
2.3·10

-3
 

0 -- 

TE01 0 
-0.7619 
2·10

-4
 

0 
-0.593 
1·10

-3
 

-- 

TE20 0 
-0.602 
1.4·10

-3
 

0 
0.7649 
6·10

-4
 

-- 

TE11 
-0.0269 
2.2·10

-4
 

0 
0.918 

1.2·10
-3

 
0 -- 

TM11 
0.329 
4·10

-3
 

0 
-0.186 
2·10

-3
 

0 
-

0.768 
1·10

-3
 

TE21 0 
0.0084 
3·10

-4
 

0 
-

0.2134 
3·10

-4
 

-- 

TM21 0 
0.067 

2.1·10
-3

 
0 

-
0.0108 
2·10

-4
 

0 

TE30 
0.0203 
1.7·10

-4
 

0 
-0.129 
1.1·10

-3
 

0 -- 

TABLE II. COUPLING COEFFICIENTS BETWEEN 

RECTANGULAR (A) AND RIDGE WAVEGUIDE MODES (B) 

 

 

 

 

 

a = 86.36 mm 

b = 48.39 mm 

w = 12.79 mm 

h = 14.195 mm 

l1 = 8 mm 

l2 = 15.995 mm 

Fig. 3. Multiridge waveguide. 

TABLE III. MULTI-RIDGE WAVEGUIDE RESULTS 

 N extra 
points 

Time 
reduction 

Time Max.  
Error 

Mean 
error 

TM 0 % 92.2 % 3.67 s 0.34 % 0.18 % 

TE 50 % 65.8 % 48.47 s 0.49 % 0.23 % 

 

C. Elliptic waveguide 

An elliptic waveguide enclosed by an auxiliary WR-90 

rectangular waveguide (see Fig. 4) has also been 

analysed. The number of WR-90 waveguide modes is 

800, and 29 valid modes are solved for the elliptic guide 

(see results in Table IV). The error bounds are similar to 

the multi-ridge case. The TE problem needs again a more 

dense spatial grid in order to satisfy the error limitations, 

thus decreasing the time reduction. 
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a = 22.86 mm  

b = 10.16 mm 

ae = 5 mm 

be = 2.1794 mm 

Fig. 4. Elliptic waveguide geometry. 

TABLE IV. ELLIPTIC WAVEGUIDE RESULTS 

 N extra 
points 

Time 
reduction 

Time Max.  
error 

Mean 
error 

TM 0 % 59.7 % 6.41 s 0.33 % 0.21 % 

TE 50 % 26.5 % 34.34 s 0.48 % 0.26 % 

 

 

D. Rounded Corner waveguide 

A WR-75 waveguide perturbed by four rounded 

corners (see Fig. 5) has been considered. The time 

reduction and the error bound is excellent for the TM 

case even without grid expansion, as shown in Table V. 

The TE mode computation gives a larger error but the 

spatial grid does not need to be modified with respect to 

the Galerkin case. The number of rectangular waveguide 

modes is 600, and in this case 147 valid modes have been 

obtained for the perturbed waveguide. 

 

 

 

 

 

a = 19.05 mm 

b = 9.525 mm 

r = 2 mm 

a

b

r
a

b

r Fig. 5. Rectangular waveguide with rounded corners. 

TABLE V. RECTANGULAR WAVEGUIDE WITH ROUNDED 

CORNERS RESULTS 

 N extra 
points 

Time 
reduction 

Time Max.  
error 

Mean 
error 

TM 0 % 41.2 % 1.8 s 0.05 % 0.02 % 

TE 0 % 19.5 % 12.43 s 0.32 % 0.09 % 

 
The electric field representation for the case of the 

rounded corner waveguide can be seen in Fig. 6, where 

the axial component for the fourth and the sixth TM 

modes are shown. 

IV. CONCLUSIONS 

A new BI-RME algorithm based on the Nyström 

method has been successfully implemented and tested 

with different complex geometries. The main difficulty of 

this new approach comes from the treatment of the 

singularities of the integral equation kernels, which are 

different in nature for the TM and the TE modes. It has 

been shown that the new method offers some advantages 

when compared to the original MoM BI-RME method. 

The first one is the simplicity of the implementation. The 

second advantage is related to the reduction of the 

computation time. Therefore, this new method has been 

revealed as a good candidate for an efficient and less 

accurate simulator intended for a design tool. 

Furthermore, the Nyström method can be combined with 

the Wavelet transform in order to continue improving the 

computational efficiency. 
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a) 

 

b) 
Fig. 6. Electric Field representation for the rounded corner 

waveguide for the 4th mode in a) and the 6th mode in b). 
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