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Absbcrci-In this paper, the very accurate and efficient modal 
analysis of arbitrarily sbaped wavgnides, whose cross-section 
is defined hy a combination of straight, cimrlar and/or ellip- 
tical arcs, is solved. An extension of the well-known Bound- 
ary Integral-Resonant Mode Expansion (BI-RME) method is 
proposed. Successful comparisons with available numerical and 
experimental data fully demonstrates the validity of the improved 
BI-RME method proposed. 

I. INTRODUCTION 

Arbitrary waveguides with a cross-section composed of Iin- 
ear, circular andor elliptical arcs (see fig. 1) are usually present 
in many passive waveguide devices [I]. For instance, ridge 
rectangular or circular waveguides, as well as cross-shaped 
irises, are frequently used in dual mode empty or dielectric 
loaded resonator filters. In the same way, the presence of 
rounded comers in rectangular waveguide passive components, 
mainly due to the manufacturing techniques presently em- 
ployed, is already being under investigation. Another example 
of great practical use is the elliptical waveguide, which has 
found increasing application in the design of many microwave 
smctures, such as dual and triple mode filters, circular 
waveguide polarizers, twists and mode launchers, radiators, 
resonators, and corrugated horns. 

Nowadays, most of the CAD tools used in the design of 
such components require to know, in a vely accurate way, the 
full-wave modal spectrum of the arbitrarily shaped waveguides 
considered in this paper. Furthermore, the coupling integrals 
between these modes and those of the standard rectangular 
waveguide that fully encloses the arbitrary cross-section (see 
12 in fig. 1) must also be known. Among the many methods 
published in the literature to solve this problem, the BI-RME 
method originally proposed in [2], [3] has become one of the 
most popular ones, mainly due to its high speed and accuracy. 

The BI-RME methods is based on the solution of an 
Integral Equation by the Method of Moments, whose practical 
implementation (see details in [2]) requires to subdivide the 
boundary contour of the arhitrary waveguide (D in fig. 1). 
Even though many efforts have k e n  devoted to improve 
the BI-RME technique in the last years (see [l], [41), all 
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Fig. 1. Arbitrmy waveguide with cross section S embedded in a standard 
rectangular waveguide R. Vector t is tangent to (r and I is a suitable abscisa 
taken on the line. 

the practical implementations of such technique subdivide 
the arbitrary contour using only straight segments. In many 
practical applications, e.g. when circular and/or elliptical arcs 
are present, the aforementioned subdivision approach based 
only on straight segments can lead to some errors in the results 
provided by the BI-RME method. Furthermore, as indicated 
in 151, such errors are even higher for the lower order modes 
of the arbitrary waveguides, thus degrading the accuracy of 
the modal analysis tools. 

In this paper, an extension of the BI-RME method, based 
on a subdivision of the arbitrary contours in rectangular, 
circular andor elliptical arcs, is proposed. Several practical 
results confirming the improved accuracy related to this new 
technique are offered. 

11. IMPROVING THE TM PROBLEM 

In order to compute the TM modes of an arbitrarily shaped 
waveguide using the original BI-RME method described in [2], 

~ 

the following matrix elements must be computed m: -. -. 
G3 = J, J, "z(l)g(s,S')2L3(l')dzdl' (1) 

where the functions U% and 7-13 are piecewise parabolic basis 
and weighting functions related to the MOM. The domain of 
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Fig. 2. Arbimrily oriented straight segment with length Al. Fig. 3. Arbitrarily oriented circular arc with radius r and length rAq. 

these functions are the elements i and j of U that can be 
straight segments, circular arcs andor elliptical arcs. 

In (U, the double integral is computed numerically with a  in^ is s&aightforward. 
Gauss quadrature rule, but this is not possible for the diagonal 
elements of the L' matrix (i.e. when i = j )  because of the 
singularity of g (the scalar Green function of a cylindrical 
waveguide). A rapidly convergent expression for g is 

A. Straight segments 

For straight segments, the integration of the singular term 
arbitrary oriented straight segment 

can be defined as follows (see fig, 2) 

= 2o + (t + 0 . 5 ) ~ ~  case 
g = yo + ( t  + 0.5)ALsinO (9) 

l m  TAOT;~ 
47r 

g = -  In- 
T;OTA1 

m=-w 

where 

(3) 

(4) 

7r Tz9 = 1 - 2eTms cos (y - (-1)qy') + 
7r 

Tmp = - 15 - (-1)*2' + 2" 
b 

The singularity is introduced by the In Tto term when the field 
point ( q y )  approaches the source point (dry ' ) .  This term 
tends to infinity Like In R. In order to treat this singularity, g 
must be expanded as a Taylor series, and taking into account 
the following limit 

where t E [-0.5,0.5] and the expression of InR is very simple 

InRZ = In [(z - 2')' + (y - y')'] = In [AL2(t - t')'] (IO) 
(2) 

and the singular integral can be solved immediately be- 
cause the integration of parabolic functions U, multiplied by 
In AZ2(t - t')' is analytically known. 

B. Circular arcs 

Following the same procedure, a circular arc (see fig. 3) can 
be defined as follows 

2 = 20 t rcosp(t) 
y = yo + rsinp(t)  (11) 

(5) where T p  2 

2 = (i) lim 

P Y '  
z-z' (. - 2')' + (y - y') 

(12) d t )  = pi + Ap(t +0.5) 
then, the green function can be split in the following way Ap = ' ~ z - p i  (13) 

1 
277 

g = g1 - -In R 

where 

1 Tto 
91 = go--lu- AT R2 

where t E [-0.5,0.5] and T is the constant radius of the 
circular arc. Here, taking into account the Taylor series of 
R2, InR' can be decomposed in two parts 

(6) 

In R2 = In Ap2(t R2 - t')' +In  [Ap'(t - t')'] (14) 
(7) 

Y-Y' and the functions go and 91 are regular everywhere. 
Then, the singular part of the diagonal elements of L' matrix 

is analytically performed. Moreover, this analytic integration 
is always done in the same limits (in the parameter interval 
defined by t E [-0.5,0.5]) to fully exploit the code. 

With this last result, the regular term in (14) can be added 
to the regular part of the Green function to be integrated 
numerically, and the singular term of (14) can be integrated 
analytically because it is similar to (IO). 
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Fig. 4. Arbitrarily oriented elliptic arc. 

C. Elliptical arcs 

Again, following the same procedure of the previous sec- 
tions, an elliptic arc is defined. In this case, a local coordinate 
system (U, v) has been chosen (see fig. 4), thus obtaining 

U = acosq(t)  

v = bsinq(t) (16) 

where 

q( t )  = VI + Aq(t +0.5) 
AV = 02 ~ 71 (17) 

with t E [-0.5,0.5]. Using the Cartesian coordinate system 
( x , ? ~ )  we obtain 

In the ‘E case, an additional problem appears when the 
dyadic GSt is expanded into a Taylor series, where the 
following two terms are obtained 

which are not singular but discontinuous. This means that the 
limit when the source point approaches the field point depends 
on the approximation path. If we have three kinds of segments, 
these limits must be properly calculated for each case. 

A. Straight segments 
If we use (Y), the limits of (22)  and (23) are easily calculated 

lim = cos2$ (24) 
2-2‘ 

1I-Y‘ 

lim V = -sin(26’) 
z-z’ 2 
U-Y’ 

(25) 
1 

B. Circular arcs 
In this case, using ( I  I), the limits of Q and I are 

Iim Q = sin2[p(t)] (26) 
2-B‘ 
YWY’ 

lim I = -1 sin[ap(t)l (27) 
5-21 2 
Y-Y‘ 

C. Elliptical arcs 
In this case, taking (16), the limits of Q and I are 

(28) 
[-a cos a sin q(t)  - bsin a cos q(t)12 (;) = (20) YO + (cp,. s ina  - s t n o ) .  cosa (;) (18) 

lim @ = 

Y-Y’ 
and finally 5-2’ a2 sin2 q(t)  + b2 cos2 q(1) 

(29) 
l x ( t ) s in2a -abs in2qcos2a  

lim P = ~ 

v-v‘ 

R2 = a2 [cosq(t) - c o ~ q ( t ’ ) ] ~  + b2 [sinq(t) ~ sinq(t’)]’ 
(1% 5-5’ 2 a2 sin2 q(t)  + b2 cos2 q(t)  

Now, taking into account the Taylor series of R2, InR2 can 
be decomposed in two parts where 

~ ( t )  = a2 sin2 q(t)  - b2 cos2 q(t)  (30) 
In R2 = In A$(t R2 - t’)2 +In [A$@ - t’)’] (20) IV. RESULTS 

This section presents some results that fully validate the 
extension of the BI-RME method iust described. Successful because the first term of the r.h.s part of (20) is regular 

Y-Y’ A. n2e circular waveguide 
In this case, the singular term of (20) needs a further treatment 
in order to obtain an analytical solution. . 

~n this example, we compute the cutoff frequencies of 
the TM modes of a circular waveguide, which is obtained 

111. IMPROVING THE TE PROBLEM 
from a standard square contour (6 in fig. 1) perturbed by 
a tubular sheet (U in fis. 1). Table I comDares the relative - ,  

For the TE problem, the singularities appear in the static 
part of the bidimensional Green’s dyadic GSt,  whose four 
components are detailed in [2], and are of the same kind 
solved before. Therefore, the same procedure described in the 
previous section can he followed. 

enors of such cutoff frequencies for the classical BI-RME 
approach (using only straight segments) and the new extension 
proposed (considering circular arcs). This benchmark test fully 
demonstrates the accuracy improvement introduced by the BI- 
RME extension proposed. 
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TABLE I 
RELATIVE ERROR IN THE CUTOFF FREQUENCIES OF THE BI-RME 

METHOD USING STRAIOHT SEGMENTS AND CIRCULAR ARCS. 

1 Mode Enor BI-RME I Error BI-RME I 
(TM) (straight segments) (circular segments) 

~~ 

T M i i  

TMoz 
TMii 

TM12 

0.206 % 0.009 % 
0.207 % 0.004 % 
0.320 % 0.011 % 
0.439 % 0.013 % 

TABLE II 
CUTOFF WAVENUMBERS USINO BI-RME WITH ELLIPTICAL ARCS VERSUS 

THE METHOD OUTLINED IN [61 

.. 

TMiz 

~ 

Mode 

W M )  
TE 
TE 
TM 
TE 
TE 
TM __ 

0.585 % 0.015 % 

0.422472 0.422540 
0.519355 0.519450 
0.644532 0.644830 
0.658631 0.659039 

Relative emx 

0.015 
0.016 
0.018 

0.04 

B. The elliptical waveguide 

Next, an elliptical waveguide defined within a rectangular 
WR-90 waveguide has been considered. Here, U is an ellipse 
of eccentricity equal to 0.5 and semi-major axis equal to 
5". Table II successfully compares the cutoff wavenumbers 
provided by this method with results from [6]. 

C. Filter analysis 

As a final example of practical use, a four-pole inductively 
coupled rectangular waveguide filter in with rounded corners 
has been designed, manufactured and measured. The rounded 
corners that usually appear in the manufacturing process 
have been accurately considered using the extended BI-RME 
method proposed in this paper. As can be seen in fig. 5, this 
filter is composed of several pieces that can be manufactured 
using low cost milling. Figure 6 shows a very good agreement 
between simulated and measured'results. 

V. CONCLUSION 

In this paper, an extension of the BI-Rh4E method that can 
handle straight, circular and elliptical segments in the dis- 
cretization of arbitrary cross section waveguides is presented. 
The validation of this extended technique has been carried 
out with numerical and experimental results. Finally, this 
method has been used in the design process of a rectangular 
waveguide filter with rounded corners. The simulated results 
have been successfully compared with measurements of a low 
cost manufactured prototype. 

Fig. 5. Pieces of the four pole inductive filter with rounded comers 

Fig. 6. Simulated and measured S-parameten of the four pole inductive filter 
with rounded comers. 
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