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Abstract—In this paper, a novel computer-aided design (CAD)
tool of complex passive microwave devices in waveguide tech-
nology is proposed. Such a tool is based on a very efficient
integral-equation analysis technique that provides a full-wave
characterization of discontinuities between arbitrarily shaped
waveguides defined by linear, circular, and/or elliptical arcs. For
solving the modal analysis of such arbitrary waveguides, a modi-
fied version of the well-known boundary integral-resonant-mode
expansion (BI-RME) method using the Nystrom approach, instead
of the traditional Galerkin version of the method of moments,
is proposed, thus providing significant savings on computational
costs and implementation complexity. The novel theoretical as-
pects of this Nystrom approach, as well as their impact on the
original BI-RME formulation, are fully described. Compara-
tive benchmarks between this new technique and the classical
BI-RME formulation using Galerkin are successfully presented
for the full-wave analysis of frequently used irises (i.e., rectan-
gular cross-shaped and circular multiridged) and for the CAD of
complex waveguide components (such as rectangular waveguide
filters considering mechanization effects and dual-mode circular
waveguide filters with elliptical irises).

Index Terms—Integral equations (IEs), method of moments
(MoM), waveguide components, waveguide discontinuities.

1. INTRODUCTION

RBITRARILY shaped waveguides, whose cross sections

are defined by a combination of linear, circular, and/or
elliptical waveguides, are increasingly used in passive wave-
guide components (e.g., filters, diplexers and multiplexers,
directional couplers, power dividers and combiners, ortho-
mode transducers, polarizers, twisters, and mode launchers)
[1]. Most available computer-aided design (CAD) tools used
for such devices are based on numerical meshing techniques,
i.e., the finite-element (FE) method [2], the finite-difference
time-domain (FDTD) method [3], and the transmission-line
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matrix (TLM) method [4], which do have strong requirements
on CPU time and memory storage. To alleviate these problems,
several modal methods, such as those based on the general-
ized scattering matrix (GSM), generalized admittance matrix
(GAM), or generalized impedance matrix (GIM) have been
successfully proposed [5].

The above-mentioned modal methods do always require to
know the complete modal chart (cutoff frequencies) of the in-
volved arbitrarily shaped waveguides, as well as the coupling
integrals between the modal vectors of such cascaded wave-
guides. Among the many different approaches proposed in the
technical literature for the modal chart computation, the well-
known boundary integral-resonant-mode expansion (BI-RME)
method has revealed to provide very accurate results in short
computation times [6]. Recently, this method has been revisited
in order to cope with arbitrary profiles defined by the combina-
tion of linear, circular, and/or elliptical waveguides [7]. Another
advantage of the BI-RME technique is that, without hardly any
additional CPU effort, the coupling coefficients between the ar-
bitrarily shaped waveguide and a standard rectangular contour
enclosing the arbitrary profile can be computed (see [8] and [9]).

Both practical BI-RME implementations described in [6]
and [7] are based on the Galerkin version of the method of
moments (MoM) [10], where the basis and testing functions are
chosen to be overlapping piecewise parabolic splines. Such a
choice does obviously introduce additional complexities to the
practical solution of the BI-RME integral equations (IEs): first,
the contribution of each parabolic piece to several matrix entries
must be carefully accounted for (see [6]) and, secondly, the
connection of different types of segments (linear, circular, and
elliptical ones) must be treated as described in [7]. Furthermore,
following the Galerkin approach, the regular terms of the
BI-RME matrix elements become single and double integrals
that can be solved numerically via a Gauss quadrature rule (see
[71), which can require a large number of integrand evaluations
for high-accuracy applications. An alternative way to solve the
cited IEs, thus avoiding the previous restrictions related to the
Galerkin approach, is the so-called Nystrom method described
in [11]. This solution is much simpler than the Galerkin scheme
since each matrix entry in the eigenvalue problem does only
involve a function evaluation. However, the main disadvantage
is that the Nystrom method tends to increase the singularity
problems that also arise with Galerkin.
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Fig. 1. Arbitrarily shaped waveguide (with cross section .5) to be analyzed by
the combination of Nystrom and BI-RME methods.

The Nystrom method is a simple and efficient point-based
segmentation solution for solving IEs, where integrals are ap-
proximated by weighted sums of function evaluations

[ 1@ids =Y 056w )

When IEs involve singular kernels [11], it is necessary to lo-
cally adapt the quadrature weights g; to the singularity regions
[12], [13]. In this study, the new formulation leads to singular
and hyper-singular operators (TE case of the BI-RME formu-
lation) that are specifically treated. The authors have firstly pro-
posed the application of the Nystrém and BI-RME methods to
the modal chart determination of arbitrarily shaped waveguides
in [14] and [15] where no theoretical details about the hyper-sin-
gularity treatment of the TE case are explicitly given.

This paper describes the fast and simple implementation of
the Nystrom-based BI-RME method for the accurate analysis
of passive devices composed of waveguides with arbitrary con-
tours (defined by linear, circular, and/or elliptical arcs). The
integration of such a method within a CAD tool of complex
passive devices, which is based on the characterization of wave-
guide discontinuities by means of an IE technique described
in [16], is also discussed in this paper. Making use of the
novel Nystrom approach proposed, the complete modal charts
of a rectangular cross-shaped iris and of a multiridged cir-
cular waveguide have been successfully computed. The more
efficient CAD tool developed has been used in the accurate
design of an inductively coupled rectangular waveguide filter
considering rounded corners, and a dual-mode filter in a cir-
cular waveguide with elliptical irises and triangular tuning
elements. The gain in efficiency while preserving accuracy
due to the Nystrom approach has been successfully measured
by comparing our results with those provided by the Galerkin
solution.

II. NYSTROM FORMULATION

Here, the formulation related to the combination of the Nys-
trom and BI-RME methods is fully described. The arbitrarily
shaped waveguide to be considered has a cross section defined
by a combination of linear, circular, and/or elliptical arcs (see S
in Fig. 1). The arbitrary contour o of such a waveguide (defined
by the tangent vector t and a suitable abscisa /, also shown in
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Fig. 1) must be completely enclosed within a standard rectan-
gular waveguide of cross section {2.

To characterize the arbitrary waveguides under consideration,
we will only present the novel theoretical aspects related to the
application of the Nystrom method. Special emphasis will be
given to the suitable treatment of the singular integrals that ap-
pear in some BI-RME matrix elements.

A. TM Modes

The longitudinal component of the electric field at a generic
observation point r inside S (see Fig. 1) may be represented as
follows (cf. (7) in [6]):

B.(x) = ~jnk’ [ g(e,8)T.(0)ar
M’ $IMO(p)

—jnk’ Z T (W — 1) (1")dl'

TMD
k"2 / 1/

where g(r,s’) is the rapidly convergent scalar two-dimensional
(2-D) Green’s function and .J, (I’) is the longitudinal component
of the current density J,,. Moreover, A/, and 1/;31MD are, respec-
tively, the cutoff wavenumber and normalized scalar potential
of the mth TM mode of the surrounding standard rectangular
waveguide (€2 in Fig. 1).

To compute the TM modes, the boundary condition for the
axial component of the electric field (E, = 0) is first imposed
on o. The arbitrary contour o is then segmented following the
Nystrom method, where the central point s; and the length of a
segment w; are only needed. With the Nystrom approach, the
integral is approximated at each point by a simple one-point
trapezoidal quadrature, being the quadrature weights equal to
the length of the segments of the discretization wj, as described
in [17]. The scalar Green function g(s;,s;) is singular when
the discrete source (s;) and observation points (s;) coincide.
In such a case, the contribution of the segment ¢; that produces
the singularity is isolated and treated separately. The following
system of equations is then obtained:

(@)

N
S wrglsis) () + / o508V () dl

J#i i
M MO
b (Si)
+ Z ey al =0 3)
m=1 m

TMI:J )

= k2 Z wj h,2

where N is the number of points used for the segmentation of
the perturbed contour.

Equations (3) and (4) lead to an eigenvalue problem similar
to the one obtained with the original Galerkin-based BI-RME
formulation, which can be expressed in matrix form as

U O » D' Rl al
o ol-»[r B} o

Ja(s5) 4
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where U is the M’ x M’ unitary matrix, O is the N x M’
null matrix, and O’ is the N X N null matrix. The detailed
expressions for the other matrices are

D’ =diag (k7% h52, ... hy?) (6)
Li; =g(si;sj), i #7;
:—/ s;,s’)dl’ )
TMD
R/ l/}TZ(SL)v t,] = 172 7N;
m=12,...,.M'. 8)

It must be noticed that the expressions for the elements of the
L’ and R’ matrices are different to the equivalent ones deduced
for the Galerkin approach (cf. [6, eqs. (16b) and (16¢)]), and
their new computation is much more efficient and simpler.

In the generalized eigenvalue problem defined by (5), a’ is a
column vector including the modal coefficients a,,,, whereas b’
contains the terms b; = w;J. (s;), where the quadrature weights
have been included to preserve the symmetry of the involved
matrices. The solution of the eigenvalue problem (k') are the
TM cutoff wavenumbers of the arbitrary waveguide.

As it happens with the Galerkin solution of the BI-RME
method, the previous TM generalized eigenvalue problem can
also be cast into the following standard form:

(D'-R|L'"'R')a’ = k' %a’. ©)

Finally, we must focus on the accurate computation of the di-
agonal elements (L};) of the L’ matrix, which must cope with
the singularity due to the evaluation of the scalar Green func-
tion with coincident observation and source points. In this case,
a similar procedure to the one described in [7] for the Galerkin
approach will be followed. First, the original scalar 2-D Green
function can be split into a regular (g,.) and a singular expres-
sion. This singular expression is then regularized following the
technique explained in [18], giving as a final result a regular part
of the singular expression ¢, and a final singular term g, that
can be analytically integrated. Consequently, the following ex-
pression for the diagonal elements of the L’ matrix is obtained
in our case:

L:7 = I:gT(Si,qu) + grs(si:

) i i li A
s,)] + » /gs(s,,,s )dl

=L

nr

+ L,

(10)
where the regular term L/, can be directly computed, and the
singular integral .}, must be analytically solved. It should be
noted that the integral solution depends on the geometry of the
segment o; (linear, circular, or elliptical geometry), whose de-
tailed expressions for each kind of arc is as follows.

1) Linear Arcs:

Y
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2) Circular Arcs:
1 i
L;zs =——ln w_ -1 (12)
27r 2
3) Elliptical Arcs:
! 1 2 2 2 2
Lzzs - 4_ In (a SINT Mg + b“ cos ’r]mL)
T
v |Anila | A
- 1 -1 13
i w; [n < 2 (13)
where v = \/TOSZUW‘, An; = n9; — n1; and Ny =

0.5(n1; + m2i), with n1; and 7; being the elliptical parametric
initial and final angles for o;, as defined in [7].

If the arbitrary waveguide supports TEM modes, the Nystrom
approach just outlined can also be employed for solving such
problem. Following the same procedure explained in [6], the
TEM solution may be obtained from a linear system of equa-
tions that involves the L’ matrix.

B. TE Modes

The transversal component of the electric field at a generic
observation point r inside S (see Fig. 1) may be represented as
follows (cf. [6, eq. (6)]):

dg(r,s’)
/V ol Jt )dll—_]’f]k/Gst r S)

TED r " u}
AR —mk32 e

-t(l V(1 dl! (14)
where G(r,s’) is the solenoidal dyadic Green function and
Ji(I") is the transversal component of the unknown current den-
sity J,. On the other hand, h,, and eELED are, respectively, the
cutoff wavenumber and normalized transversal electric field of
the mth TE mode of the surrounding standard rectangular wave-
guide related to the BI-RME method.

To compute the TE modes, the boundary condition to the tan-
gential component of the electric field (E; - t = 0) is first im-
posed on o. It should be noticed that the evaluation of the first
term of (14) requires the numerical computation of a double par-
tial derivative of g with respect to the observation and source
contour parameters [ and I’. The derivatives of the Green func-
tions are usually avoided in the literature (see [13]) because they
present stronger singularities than the original functions. How-
ever, the double derivative of the scalar Green function has been
obtained and accelerated, as shown in Appendix I. Such double
derivative presents a hypersingularity that has been treated via
the traditional method of adding and subtracting an asymptotic
term [11], [12]

0%g(s,s") '
o W) = L]l + (D).

o o

9%g(s.s')
“aor

15)
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where it can be easily proven that the second term is equal to
zero when the arbitrary geometry is composed of closed con-
tours and/or arcs connected to the surrounding standard wave-
guide, which applies to the considered devices.

Once this treatment is employed in the application of the Nys-
trom method, the following expressions are obtained:

N

= Z - gazs(;gfsj [Je(ss) = Ju(si)]
- ij/f(sg) 'Gst(s7«7sj) /E(SJ)Jt(S])

— m m =0 (16)
m=1 h"2n
& ax~ €FED(s;) - (s;)
1-— 7z am = k ij % b;
m ]:1 m
(17)
which can be cast into matrix form as
U O D R
{lo ¢l-lx T[}E]-0

where U is the M x M unitary matrix and O is the N x M null
matrix. The expressions for the other matrices that compose the
eigenvalue problem are

D =diag (h7°, hy >, ..., hy)) (19)
82g(sl-,s~) . -
Oij = Wl/], 7 ;é J (203)
N
1 9%g(si,sj)
Cii = — o wj BRI (20b)
J#i
Lij :t(Si) . Gst(qu,S]') . t(Sj), Z 7é J (218.)
Lii =~ [ %(s:) - Gui(si,s') - 20l 21b)
Wi,
TEO(g.) . % (s.
Rimzm7 Z/.]:17277Na
hZ,
m=1,2,....M (22)

The solution of (18) provides as eigenvectors the modal
coefficients (a,,) and the amplitudes of the transversal current
density in the discrete points of the contour modified by the
quadrature weights (i.e., b; = w;Ji(s;)), and as eigenvalues
the TE cutoff wavenumbers (k) of the arbitrary waveguide.

When computing the L;; elements according to (21b), the
singular contribution of the function G,; must be carefully
considered. The dyadic Green function is composed of four
components 1e G GG and G} Two of them, i.e.,
foy and G2, <t » do not contribute with any smgularlty, whereas
the singularities introduced by Gst and Gst are of the same
kind as considered previously for the TM case. Therefore, the
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same technique proposed before for the rigorous treatment of
the singularities can also be followed, but considering in this
case the unitary tangent vector t present in (21b). In this case,
the singular integrals L;;; are defined as

13 =— [ ta(s) - Gl (si,8)) (1)l
w;
Y1, 1 ' Yl
L= = [ 1,60 Tl ses) 000 @3

whose an analytical solution for each kind of arc is as follows.
1) Linear Arcs:

L* =& cos® 0

1S

LYY =¢;sin 0

s

1 wj
=- (%) -1
b=y
where 6 is the angle between the linear arc and the X-axis.
2) Circular Arcs:

(24)

LI% = &+ &ty sin

LY = £ (=&2)ty cos om

_ 1 . (Ayp; Api| . Ap;
& = _27rA<pi |:S1n< 5 )ln‘ > —SL( > >] (25)

where the selection of the &£ sign is related to the direction of the
segment, clockwise (+) or counterclockwise (—). Moreover, .,
and t,, are, respectively, the - and y components of vector ?(si),
Ap; = @iz — i1 and ©,,, = 0.5(pi1 + i2) With @ and
;2 being the parametric circular initial and final angles for o;,
as defined in [7]. The definition of the function S% can also be
found in [7, eq. (41)].

3) Elliptical Arcs:

LIIJ(IJ —

2 = 4 Eatalacosasinm,, + bsin acosny,] (26)

LY = + &tylasin asing,, — beos acosnm,]

[Ani| T . [ An An; [ An;
&3 ST sin{ == |Inj— Si 5 27

where the parameterization and notation previously described
in Sections I1-A.3 and II-B.2 has been used.

C. Coupling Coefficients

In order to use this Nystrom-based BI-RME method within
CAD tools of complex passive waveguide components, an
efficient technique for computing the coupling coefficients
between two cascaded arbitrarily shaped waveguides is re-
quired. To solve this problem, we choose the same standard
rectangular contour for the application of the Nystrom and
BI-RME methods to both arbitrary waveguides. Once the
cutoff frequencies are obtained, and after some post-processing
explained below, the required coupling coefficients are easily
computed by means of the following expression:

Nww)
<ez('AVV1)7e§AVV2)>: Z <eEAVV1)7e£LRVV)>< (RW) AWz)>

- (28)
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where the (e; (AW ") %RW)) term represents the coupling integral

between the Lth mode of the kth arbitrary waveguide and the nth
mode of the common rectangular waveguide.

To derive the expressions for the required coupling coeffi-
cients between each arbitrary waveguide and the auxiliary rect-
angular contour, the fast method originally proposed in [8] will
be adapted to our Nystrom-based formulation. Such a set of cou-
pling integrals is defined as follows:

Ipg = / e -eldS (29)

S

where e and e<> are, respectively, the normalized electric
modal vectors of the rectangular and arbitrarily shaped wave-
guides.

Starting with the TM case, if the Nystrom method is applied
to the IE (2), the following expression is directly obtained for
the potential scalar of such modes:

M MO
I‘S b/‘l—klzdjm (r)a/

TM<>
/l/) hl2 m”°
m

(30)

HMZ

m=1

This expression leads to normalized vector mode function for
the TM modes if the modal expansion coefficients a/,, satisfy
that a’"a’ = k2 (see justification in Appendix II).

Therefore, the normalized transversal electric field for the TM
modes can finally be obtained as follows:

—VppIMO (p
TN ()= (1)

TMD

:—ZVTqrs b—i—z m}l aﬁn

where V is the 2-D nabla operator in the transversal coordi-
nate system and ™" is the normalized modal vector of the
auxiliary standard rectangular waveguide that must accomplish
eTMO — . T™MO /1

For the TE case, we must apply the Nystréom method to IE
(14), thus obtaining the following expression for the tangent
electric field:

€19

TE<>

wl»—‘

Hsi)bi =k Y “ran (32)

which will be adequately normalized if coefficients a,, and b;
satisfy the condition derived in Appendix II.

Now, using expressions (31) and (32) for the normalized TM
and TE modal vectors, the required coupling integrals can fi-
nally be written as

/’1
]P]+

IT]\I ™™ — h ZR (33)
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Fig. 2. Geometry of a cross-shaped iris.
E-TE _ 4
[TE=T ZRJ,, It —1 (34)
TM— TE /1 1.9
- Z R b1 (35)
ITE ™™ =0 (36)

rq

where the R’ and R, terms are the entries of the R’ and R ma-
trices just deﬁned before, and the ap, b], ap, and b; coefficients
are the solutions of the Nystrom-based TM and TE eigenvalue
problems. Therefore, only the new R, terms are easily evalu-

ated as follows:

(37

III. VALIDATION RESULTS

Here, we discuss the accuracy and efficiency of the Nys-
trom-based BI-RME approach through several application ex-
amples. First, we have computed the complete modal chart of
two well-known irises, i.e., a crossed rectangular waveguide and
a “triseptum” circular waveguide. Secondly, making use of the
novel CAD tool, we have analyzed and designed two complex
passive waveguide devices: an inductively coupled rectangular
waveguide filter with rounded corners, and a dual-mode filter in
circular waveguide technology with elliptical irises and tuning
elements. All these examples have been successfully validated
through comparisons with numerical and experimental results,
which are either available in the technical literature or provided
by the authors.

In order to show the gain in efficiency of the new modal
method proposed in this paper, CPU computation times for the
considered examples are being compared with those obtained
applying the traditional Galerkin-based BI-RME approach. All
CPU costs offered here have been obtained with a Pentium IV
platform at 2.4 GHz with 1-GB RAM.

A. Cross-Shaped Iris

First, we have considered the cross-shaped iris whose ge-
ometry is shown in Fig. 2. These irises are typically used as
inter-cavity coupling elements in circular waveguide dual-mode
filters (see, for instance, [19]).

Making use of the Nystrom-based BI-RME method, we have
computed the normalized cutoff frequencies as a function of
b/a. In Fig. 3, the results predicted by our method (with solid
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Fig. 3. Normalized cutoff frequencies as function of b/« for the cross-shaped

iris shown in Fig. 2.

-

Fig.4. Circular iris with three rectangular metallic insertions (d; = 1.64 mm,
dy =2.72mm, d; = 1.74mm, ¢t = 2 mm, R = 12 mm, and ¢ = 25 mm).

lines) are successfully compared with experimental data from
[20] (with points). For labeling the modes, the same nomencla-
ture used in [20] has been followed.

B. Ridged Circular Iris

The next example deals with the modal analysis of a circular
waveguide with three metallic insertions (the “triseptum” wave-
guide) shown in Fig. 4, which is typically used in circular wave-
guide dual-mode filters. The dimensions of this example have
been selected from a real device operating at 12 GHz [21].

Using the Nystrom-based BI-RME formulation, the first 75
modes have been computed using 500 modes of the auxiliary
square waveguide shown in Fig. 4. Table I shows the ten lower
cutoff frequencies, and their relative error when compared with
the Galerkin implementation [7]. The analysis of the accuracy
of the computed frequencies reveals that the mean value of the
relative error is 0.2%. The CPU time required for computing the
modal spectrum has been of 5.5 s using the Nystrom method,
while the Galerkin technique takes 32.4 s, which represents an
overall reduction of 83%.

The first coupling coefficients between the “triseptum” wave-
guide and a circular waveguide of diameter equal to 24 mm

TABLE 1

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 6, JUNE 2005

CUTOFF FREQUENCIES FOR THE “TRISEPTUM” WAVEGUIDE

Order | Mode Type || Nystrom Relative

(TE/TM) (GHz) Error (%)
1 TE 7.16415 0.09
2 TE 7.42636 0.11
3 ™ 9.97961 0.13
4 TE 11.7858 0.29
5 TE 11.8576 0.21
6 TE 15.0568 0.37
7 TE 15.3597 0.04
8 ™ 15.5577 0.13
9 ™ 16.1950 0.12
10 TE 16.6051 0.36

TABLE II

COUPLING COEFFICIENTS BETWEEN THE “TRISEPTUM”
WAVEGUIDE AND THE CIRCULAR ONE

*Triseptum” waveguide modes
TE, TE; T M, TE3
TE11s | 0.68196 0.69371 — —0.04683
9104 5.1-10—% 1.1-10-7%
TE11. | —0.67994 0.69601 - 0.05407
4.5-10=% | 4-10~4 1-10—73
TMopy | 0.07117 0.00008 —0.93487 0.06039
1.5-10=% | 1-107°6 1.8-107% | 1.2-10~7
TE21s | 0.00298 0.00062 —— 0.89631
7104 1-10-° 3.9-10—7%
TE21. | 0.00062 —0.00759 —_ —0.09502
4.8-107° | 1.2-107° 1.3-10=%

are collected in Table II. The absolute error between such Nys-
trom-based results and the Galerkin ones [7] have also been in-
cluded in Table IT and are denoted by italic letters.

C. Inductively Coupled Rectangular Waveguide Filter With
Rounded Corners

For evaluating the new CAD tool, we have first chosen an
inductively coupled rectangular waveguide filter with rounded
corners (see geometry and dimensions in Fig. 5) originally de-
signed for operation at 11 GHz with a bandwidth of 300 MHz
in [22]. This structure is composed of the cascaded connection
of two kinds of transitions: one between rectangular waveg-
uides and rounded coupling irises, and another one between
rectangular waveguides with rounded corners. Therefore, the
full-wave analysis of this structure will allow to validate the new
theoretical aspects described in Section II-C.

For verification purposes, a prototype of this filter has been
manufactured (see Fig. 6). The simulated scattering parameters
of such a structure are shown in Fig. 7, where they are
successfully compared with the experimental results of the
manufactured prototype. Such results were obtained using 15
accessible modes, 70 basis functions, and 250 kernel terms
in the IEs related to the solution of each discontinuity. These
simulating parameters involved a total CPU effort of 204 s
(1000 frequency points) for the Galerkin method, and 144 s
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Fig. 5. Inductive filter with rounded corners. The dimensions are:
a = 2286 mm, b = 10.16 mm, I; = 4.00 mm, I, = 14.29 mm,
I3 = 1584 mm, t; = 1.70 mm, ¢t = 1.77 mm, t3 = 1.78 mm,
w; = 10.50 mm, w, = 6.70 mm, and w3 = 6.15 mm. The radius of the

rounded corners is R = 2.00 mm.

Fig. 6. Internal pieces of the inductive filter with rounded corners. Each one
is composed of two half-cavities and a coupling iris.

N
o

N}
)

&
1S)

Reflection/Transmission (dB)

-40 :
Nystrém
5 : --- Measurements
) g?O.5 10.7 10.9 1.1 11.3 1.5
Frequency (GHz)
Fig. 7. Magnitude of the reflection (S11) and transmission (521 ) coefficients

of the inductively coupled rectangular waveguide filter with rounded
corners shown in Fig. 5. Solid line: authors’ results. Dashed lines: authors’
measurements of the manufactured prototype (see Fig. 6).

for the new Nystrom-based approach. In this example, the
total gain in computational cost is approximately 30%, which
clearly validates the Nystrom method as a good alternative to
the Galerkin approach for providing accurate results in quite
lower CPU times.
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Fig. 8. Geometry of the four-pole dual-mode filter in circular waveguide
technology with elliptical irises and tuning elements.

Fig.9. Internal pieces of the dual-mode circular waveguide filter with elliptical
irises and tuning elements.

D. Circular Waveguide Dual-Mode Filter With Elliptical Irises
and Tuning Elements

After validating the new developed CAD tool based on the
Nystrom method, we have used such a tool for the design of a
four-pole dual-mode filter in circular waveguide technology. As
can be seen in Fig. 8, such a structure is basically composed
of two circular waveguide cavities coupled through a rotated
elliptical iris and fed to the input/output waveguides by means
of two elliptical irises. In order to tune and couple each pair of
degenerated modes, in the middle plane of each cavity we have
placed a short circular waveguide with three metallic insertions
(see Fig. 8).

In order to verify the geometrical dimensions provided by
the novel CAD tool, we have manufactured a prototype of the
circular waveguide dual-mode filter just described. This filter is
composed of several pieces containing the input/output wave-
guides, the irises, and the resonators of the structure (see the
photograph shown in Fig. 9), which are connected in cascade to
build the whole filter.

The simulated reflection and transmission coefficients of this
filter are compared with the authors’ measurements in Fig. 10.
Some slight misalignments can be observed between both
results in the bandpass frequencies, which can be attributed
to manufacturing tolerances. Nevertheless, as usually happens
with these very sensitive structures, the desired electrical re-
sponse could be recovered by replacing the fixed triangular
tuning elements by real adjustable screws.
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Fig. 10. Magnitude of the reflection (511 ) and transmission (521 ) coefficients
of the dual-mode circular waveguide filter with elliptical irises and tuning
elements shown in Fig. 8. Solid line: authors’ results. Dashed lines: authors’
measurements of the manufactured prototype (see Fig. 9).

During the CAD stages of this dual-mode filter, it was
required to use 100 accessible modes, 300 basis functions,
and 900 kernel terms in the corresponding IEs for obtaining
enough accurate and convergent results. The computational
effort related to each simulation of the whole structure has
been of 3.5 s per frequency point, which was rather adequate
for design purposes.

IV. CONCLUSIONS

A fast and rather accurate Nystrom-based BI-RME method
has been applied to the complete CAD of complex passive
devices composed of cascaded arbitrarily shaped waveguides
defined by linear, circular, and elliptical arcs. This novel
method offers some advantages compared to the standard
Galerkin BI-RME approach: the first one is the simplicity of
the implementation, and the second one is the reduction of
the computational time. The new developed method has been
successfully verified through several application examples of
great practical interest such as the modal chart computation of
cross-shaped and ridged circular irises, the efficient full-wave
analysis of inductively coupled rectangular waveguide filters
with rounded corners, and the complete CAD of circular
waveguide dual-mode filters with elliptical irises and tuning
elements. CPU times have been included to validate the effi-
ciency improvement provided by the inclusion of the Nystrom
approach within modern CAD tools.

APPENDIX [
DOUBLE DERIVATIVE OF THE SCALAR 2-D GREEN FUNCTION

When solving the TE modes in the BI-RME method fol-
lowing the Nystrom approach, the evaluation of 9%g/9l’dl is
required [see (20)], where g is the scalar Green function. For that
purpose, a rapidly convergent expression for the dyadic VV'g
has been derived from the bilinear form of the scalar 2-D Green
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function [23]. The dyadic VV’g has been accelerated using the
Poisson summation formula [24]. The directional derivatives
have been then computed as follows:

dg . 829 . .
EZVg-téalal,:t-vv’g-t’ (38)
where
0%g 0%g 0%g d%g
VV'g= XX Xy yX + ——y¥
9= pon ™™ oz oy’ Xy + oyox’ yx+ oyoy’ Yy
(39)

being each term a component of the dyadic [25].

For each component of the dyadic VV'g, a corresponding
rapidly convergent expression, which is going to be presented
below, has been obtained.

A. Component XX

82g _ L i TlO _ Tll 4 TOO _ TOl (40)
Jz0z’  4a® £~ " n n "
where
£ 0] 260 -
v = a a ;
7r T
h|—(pk)| — —
foost | )| - cos | 2]}
Tp =T — (_1)pxl
pl =y — (=1)% + 2nb. 41)
B. Component Xy
82g _ L i Tll 4 Tl[) _ TOI _ TOO (42)
0xdy  4a? = " " "
with
sin [0 s | I
TPY — G a a 5
™ ™
h|—I[pk| | — —
{oost | 21081 | - cos| 20|}
™ /
S? =sgn [Z (y— (1)) + 2n7r} . 43)

C. Components yX, §¥

The remaining components can be obtained from the previous
ones by just using symmetry properties of the Green function

0%g 82g
w(xvy; $,7y,; a, b) = m(y,w, yl,l‘/; b7 a)
82 82
g (x7y;$’7y/;a7b) :—g(er;yl,.Tl;b,a), (44)

dyoy’ Oxdx’
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APPENDIX II
NORMALIZATION OF THE EIGENVECTORS

A. TM Modes

The scalar potential of the TM modes of the arbitrarily shaped
waveguide must be normalized according to

/ (™0 (1)) * dQ = 1. (45)

Q

This normalization condition can be developed using the ex-
pression for 1T (r) derived from (2), thus obtaining

v [ [ [ atesatesa. )0,

M M TMO ™O
+ k"2 / Z Z Y }(;2);/::; (r) alal,dQ
'S_z m n

(")dl' di" dS

S~ U 0(r)

+2k'2/g(r,s'),]z(l') Z mh/2 al, dl'dQ =1. (46)
Q m

m=1

If we consider the following eigenfunction expansion of the
Green function:

MO (1), TMO
ste,5) = 37 LN

%

(47)

and taking into account that the scalar potentials of the rectan-
gular waveguide are also normalized according to

[ B @) = b0, (48)
Q
(46) can be rewritten as follows:
wTMD 1/)TMD
1=k Z / Dl [ S ()l
12 2 TMD(S ) / /
+k Z i s ok Z h,2 ()l
49)

Now applying the Nystrom technique and making use of
the definitions of submatrices collected in (6)—(8), (49) can be
written in matrix form as

% [b’TR'R’Tb'+a’TD'TD’a'+2b'TR'D'a'] —1. (50)

Finally, if we employ (5) in (50), the normalization condition
is established as

T
a’ a =k?>.

(D
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B. TE Modes

In the case of the TE modes of the arbitrarily shaped wave-
guide, the electric modal vector must be normalized according
to

/eTEQ(r) - eTEC(r) dO = 1.

Q

(52)

In this case, we must proceed in the same way proposed
earlier for the TM normalization. First, we insert the definition
of eTE¢(r) given by (14) within (52). Next, the following
eigenfunction expansion for the dyadic Green function G, is
considered:

(53)

and the following condition for the modal vectors of the rectan-
gular waveguide is used:

/e?;LMD (r)er®=H(r) d = 0. (54)

Q

The following normalization condition for the eigenvector so-
lutions of the problem defined by (18) is then finally obtained:

x'Bx =1
x"Ax =k’ (55)
where x, B, and A result in expressing the cited eigenvalue
problem (18) in compact form [A — k?B] x = 0.
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