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Abstract—In this paper, a novel full-wave method for the
modal characterization of periodic structures loaded with ellip-
tical waveguides is presented. This method relies on an integral
equation formulation solved via the method of moments, which
finally leads to the solution of a standard eigenvalue problem. The
required modal spectrum of elliptical waveguides is determined
through the boundary integral-resonant mode expansion tech-
nique. For validation purposes, the proposed analysis method is
first successfully applied to periodic waveguide structures already
considered in the technical literature. Then, our new algorithm is
used to compute the related Brillouin diagrams and the interac-
tion impedance of new periodic structures loaded with elliptical
waveguides. Not only the main interacting mode (such as the
T M01 mode) is studied, but higher-order Floquet modes are also
considered. These results have potential applications as slow-wave
structures for high-power microwave devices and possibly filtering
structures at millimeter-wave frequencies.

Index Terms—Arbitrarily shaped waveguides, Brillouin dia-
gram, dispersion curves, electromagnetic band-gap, elliptical
waveguide, Floquet modes, periodic structures.

I. INTRODUCTION

M ETALLIC periodic structures capable of supporting the
propagation of slow electromagnetic waves are widely

used for high power microwave device generation and for the
acceleration of charged particles [1]. These slow-wave struc-
tures are designed to match the phase velocity of the propagat-
ing electromagnetic waves to the speed of electrons in the same
structure to facilitate an effective beam/wave interaction [2].
It is important to know the dispersion relation for such devices
to synchronize the phase velocity of the wave with an electron
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beam [3]. In the last two decades, significant research effort
has been directed to increasing the output power and oper-
ating frequency of the high-power Cerenkov-type microwave
devices [4]. In most of the research and studies involving cylin-
drical slow-wave structures, it was assumed that the main inter-
acting mode is the TM01 symmetric mode [5], [6]. However,
due to the asymmetries related to the electrons’ distribution,
as well as those attributed to manufacturing tolerances, higher-
order modes can also be excited in the cited periodic structures
[7]–[9]. In this context, it is important to examine the impact
of higher-order modes and asymmetric modes on the dynamics
of the electrons during the interaction process, particularly in
systems operating at high frequency, where this problem may
become critical [10]. Consequently, it is crucial to have an
efficient and accurate numerical method for computing the
dispersion relations of both symmetric and asymmetric modes
in arbitrary slow-wave structures [7].

Charged particle beams of elongated elliptic cross sections
have generated great interest in vacuum electronics due to their
low space-charge energy and efficient coupling to RF structures
as compared with circular beams [11]. Corrugated elliptical
waveguides used as slow-wave structures provide a series of
advantages: high power capacity, good thermal conductivity,
large size, and high precision of manufacturing and assem-
bling [12]. The corrugated elliptical waveguide was studied in
[13] with an approximate analysis, which is valid for small
values of eccentricity, using only a single term of Mathieu
function series. Raevskii and Smorgonskii and Belov et al.
studied the structure characteristics as a microwave transmis-
sion line [14], [15]. Xu et al. studied, using a field-matching
method, the fundamental mode of the corrugated elliptical
waveguide by taking no account of space harmonics, as well
as neglecting higher-order modes in the slot region [16], [17].
Recently, Han et al. have studied [18], by following a mode-
matching approach, the dispersion characteristics of three even
TM modes, considering space harmonics in the inner region
and higher-order modes in the slot region. Nevertheless, all
the methods considered are based on the computation of
Mathieu functions, which cannot be very efficient in terms of
computational cost. In this paper, a full-wave modal analysis
of slow-wave periodic structures loaded with elliptical wave-
guides is presented. To solve the proposed elliptical geometries,
we will make use of a rigorous and efficient method based
on the integral equation analysis technique described in [19].
The application of this technique requires knowing the modal
chart of all arbitrarily shaped waveguide sections involved in
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Fig. 1. (a) Periodic structure loaded with elliptical waveguides. (b) Side view
of the unit cell.

the periodic structure under consideration. For this purpose,
the well-known boundary integral-resonant mode expansion
(BI-RME) method, originally proposed in [20] and recently
revisited in [21], is employed.

After solving the waveguide steps and the uniform sections
involved in a single cell of the periodic structure, a standard
eigenvalue problem is formulated in terms of the transmission
(ABCD) chain matrix, whose solution provides the propaga-
tion constants of the fundamental and all higher-order Floquet
modes (both symmetric and asymmetric). A method based on
the correlation between eigenvectors at two different frequen-
cies is used to trace the dispersion diagram, thus allowing to
identify multimode regions and the proper sorting of supported
propagating and evanescent modes. The interaction impedance
between the RF wave and the electron beam for different
periodic structures is also successfully computed.

To fully validate the accuracy of the method proposed in
this paper, we have first applied it to analyze different pe-
riodic structures already considered in previous publications,
including not only the fundamental mode but also higher-
order modes. Then, with our novel characterization method,
we have studied the effects, in the k0−β diagram, of two
nonconfocal cases shifting the elliptical waveguide iris and
producing an asymmetry of the structure. Finally, the Brillouin
diagram considering the first five Floquet propagating modes
(such as TM/TE2mn) and the mean coupling impedance of a
new periodic circular structure loaded with elliptical irises are
computed and compared with the circular irises case. Note that
the time factor ejωt is considered and omitted throughout this
paper.

II. THEORY

A. Dispersion Equation

In this section, we will present the theoretical basics related
to the proposed analysis technique. As shown in Fig. 1(a), the

periodic structure under consideration consists of the cascade
connection of an arbitrarily shaped waveguide, whose cross
section σ is defined by any combination of linear, circular,
and/or elliptical arcs, and an elliptical waveguide iris. The unit
cell of length p consists of two regions [see Fig. 1(b)], where
d represents the length of the groove region, and t = p − d
represents the thickness of the elliptical iris.

The ABCD chain matrix of one period p of the structure
under study (M) is directly obtained by solving the cascade
connection of two waveguides and related steps as

M =
[
A B
C D

]
=

4∏
i=1

[
Ai Bi

Ci Di

]
(1)

where the coefficients of the first and third ABCD matrices
are trivial, since they correspond to hollow waveguides with
finite lengths. The second and fourth matrices are related to the
modeling of the same planar waveguide junction.

To obtain the full-wave characterization of the involved
planar junction, a very efficient method based on the numerical
solution of a first-kind Fredholm integral equation, originally
described in [19] for dealing with rectangular waveguides, has
properly been updated. The objective of this technique is to
obtain a multimodal representation of each planar waveguide
junction in terms of a generalized impedance matrix. A remark-
able contribution of this method is the distinction made between
accessible and localized modes: accessible modes are those
used to connect transitions, whereas localized modes are only
used to describe the electromagnetic fields in the junction (the
number of localized modes is always greater than the number
of accessible ones).

The application of this efficient full-wave analysis method re-
quires knowledge of the modal charts related to the waveguides
of the planar junction under consideration, as well as the
coupling coefficients between the modes of these waveguides.
To obtain this information, the well-known BI-RME technique,
which was originally proposed in [20], is employed. More
details about the extension of such technique for the rigorous
consideration of arbitrary cross sections, defined by any com-
bination of linear, circular and/or elliptical segments, can be
found in [21].

Once the 2 × 2 block generalized Z matrix of the planar
waveguide junction is determined, the corresponding transmis-
sion (ABCD) parameters are derived as follows:

A =Z11 · Z−1
21 (2)

B =Z11 · Z−1
21 · Z22 − Z12 (3)

C =Z−1
21 (4)

D =Z−1
21 · Z22 (5)

and then the transmission matrix M can easily be computed
using (1). We must now remind that in a periodic structure of
period p, a generic component F (z) of the electromagnetic field
must satisfy the Floquet condition [22]

F (z + p) = e−γpF (z) ∀z (6)
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where γ is the propagation constant of the modes of the infinite
periodic structure. Imposing the Floquet condition at the unit
cell, we obtain

(
V1

I1

)
= M

(
V2

−I2

)
= eγp

(
V2

−I2

)
. (7)

The right-hand side of (7) can be expressed in classical
canonical form

M · x = Λ · I · x (8)

where I is the identity matrix. The solutions (Λ and x) of this
standard eigenvalue problem, which are related, respectively, to
the required propagation constants (eigenvalues) and the trans-
verse field distributions (eigenvectors) in the periodic structure,
can straightforwardly be determined using well-established
routines.

At a given frequency, the real and imaginary parts of the
propagation constant, i.e., γ = α + jβ, corresponding to a
Floquet mode are directly related to the eigenvalue Λ through
the following relationships:

α =
ln |Λ|

p
β =

∠Λ
p

. (9)

We must underline that the number of eigenvalue solutions
Λ in the canonical problem defined by (8) is equal to the
order of the matrix M in the left-hand side. These eigenvalues
are, in general, complex, appearing as pairs corresponding to
forward and backward directions of propagation of the same
mode. Passbands and stopbands are characterized, respectively,
by the condition as to whether the periodic structure supports at
least one propagating Floquet mode within the frequency range
considered.

In conclusion, the nontrivial solutions of the problem and the
resulting points of the dispersion diagram are solved frequency
by frequency. It may happen that, for instance, when several
modes are simultaneously excited (multimode region), the solu-
tions are mixed up since the eigenvalues at different frequencies
do not appear in the same order. To overcome this problem, we
have followed a method originally proposed in [23] based on
computing the correlation between eigenvectors at two different
frequency points.

This correlation-based method computes, for any subinterval
[f1, f2] of the frequency band under analysis, the eigenvalue
vectors Λ1 and Λ2 and the corresponding eigenvector matrices
V1 and V2 at f1 and f2, respectively. The eigenvalues have to
be arranged in ascending order of amplitude, and the eigenvec-
tors are orthogonal and normalized according to

VT
1 V∗

1 = I VT
2 V∗

2 = I (10)

where T denotes the transpose matrix, and ∗ denotes the
complex conjugate.

To find the correct sorting of the solutions, a correspondence
between the eigenvalue vectors Λ1 and Λ2 is needed. This

is obtained by calculating a correlation matrix between the
corresponding eigenvectors as

R = VT
1 V∗

2. (11)

Due to the normalization condition (10), if the ith eigenvector
at frequency f1 slightly differs from the jth eigenvector at
frequency f2, the element Rij is close to unity. Therefore,
there is a strong correlation between Λ1i and Λ2j . Conversely,
Rij is close to zero when there is no correlation between
the two involved eigenvalues. It is important to note that the
eigenvalues are ordered, so the correlation matrix R usually
exhibits unity elements in the main diagonal. If the position of
two corresponding eigenvalues are different at f1 and f2, then
the matrix R exhibits elements close to unity out of the main
diagonal. A threshold procedure is applied to Rij elements to
obtain a new matrix where in any row or column only appears
one element equal to unity, and all the other elements are
zero. This procedure detects crossings between eigenvalues and
therefore allows, in a fully automated way, the correct compu-
tation of the dispersion curve in a frequency range considering
all interactions among the higher-order modes.

Finally, we must say that the computational effort related
to the whole procedure described for finding the dispersion
diagram of periodic waveguide structures is rather low. On one
hand, the canonical eigenvalue problem outlined in (8) is
quickly solved, since the dimension of the M matrix (directly
related to the number of accessible modes chosen in the wave-
guides) is typically small. On the other hand, the modal analysis
of arbitrarily shaped waveguides is frequency independent, so
it is performed only once and outside the frequency loop.

B. Coupling Impedance and Ez Field Computation

The coupling impedance is an important parameter in a
linear-beam tube, since it is a measure of the interaction be-
tween an RF wave and the electron beam [17]. The mean
coupling impedance of the nth Floquet mode (TM family) is
defined as

Kc =
Ezn

E∗
zn

2β2
nP

(12)

where Ezn
is the average longitudinal component of the electric

field on the nth Floquet mode over the cross section of the
junction (the elliptical iris section in this case), and E∗

zn
is its

conjugate value; βn is the imaginary part of the nth Floquet
mode propagation constant, and P is the total power flow
through the whole structure (related to the Poynting vector).
Therefore, we have

Ezn
E∗

zn
=

1
S

∫
S

|Ezn
|2dS (13)

where S is the elliptical iris section, and

P =
1
2

∑
i

Re

∫
S

Ei × H∗
i · ẑdS (14)
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with Ei and Hi being the vector modal fields of the elliptical
iris waveguide.

To evaluate (12), it is required to know the complete modal
chart of the involved elliptical waveguides in a very accurate
way. To reach this aim, the well-known BI-RME method (see
[20] and [21]) is proposed to be used. Following this method,
the longitudinal electric field is calculated using

ez(r) =
k2

c

k

⎡
⎣∫

σ

g(r, s′)Jz(l′)dl′ +
∑
m

ψm(r)
k′2

m

a′
m

⎤
⎦ (15)

a′
m =

k2

k′2
m − k2

∫
σ

ψm(s′)Jz(l′)dl′ (16)

where r and s′ are a generic observation and a source point,
respectively; k = ω

√
με is the wavenumber; g is the static 2-D

Green’s function (satisfying Dirichlet’s boundary condition) for
a rectangular resonator that involves the arbitrary waveguide;
k′

m’s are the cutoff wavenumbers for the TM modes of such rec-
tangular waveguide enclosure, and ψm(r) is the corresponding
normalized scalar potentials; Jz(l′) is the longitudinal surface
current density on σ; and kc and a′

m are the cutoff wavenumbers
for the calculated arbitrary waveguide and the modal expansion
coefficients, respectively. The last two unknown parameters are
obtained after the expansion of the surface current density in
terms of piecewise parabolic functions

Jz(l′) =
∑

j

b′juj(l′) (17)

and solving an integral equation via the Galerkin version of
the method of moments, where the basis and testing functions
uj are chosen to be overlapping piecewise parabolic splines.
Finally, to obtain the complete field expression of the nth
Floquet mode, it is necessary to add the wave propagation in
the z direction and the modal amplitudes

Ezn
= −jη

∑
i

I
(n)
i ezi

e−jβ̃iz (18)

where I
(n)
i , obtained from (7), is the eigenvector corresponding

to the nth Floquet mode, η =
√

μ/ε is the characteristic wave
impedance, and β̃i is the propagation constant of the ith arbi-
trarily shaped waveguide mode. Now, the Poynting vector can
easily be obtained because the electric em and magnetic hm

waveguide modes have been normalized according to∫
S

em × h∗
m · ẑdS = 1 (19)

so we obtain

P =
1
2

∑
i

Re (ViI
∗
i ) (20)

where Vi and Ii are the equivalent voltage and current of the ith
mode of the arbitrarily shaped waveguide (elliptical iris in this
case).

Fig. 2. Brillouin diagram for a periodic elliptical structure with major and
minor semi-axis dimensions a1 = 8.62 mm, b1 = 7.02 mm, a2 = 11.19 mm,
b2 = 10.02 mm, respectively; p = 4 mm; and d = 2 mm. The solid line
corresponds to the first symmetric Floquet mode, the dashed line to the second
symmetric Floquet mode, and the dash-dotted line to the third symmetric
Floquet mode. The circles are taken from [16] for comparison.

III. RESULTS

Next, we proceed to study the accuracy and efficiency of the
proposed analysis technique through several examples. First,
we have computed and compared the dispersion diagram and
the interaction impedance of elliptical corrugated waveguides
presented in [16] and [18]. Second, with our novel charac-
terization method, we have studied the effects, in the k0−β
diagram, of two nonconfocal periodic elliptical waveguides by
shifting the elliptical iris in the x- and y-axes, respectively. A
misalignment of the elliptical irises caused by manufacturing
tolerances can produce an asymmetry of the whole structure
and consequently the appearance of asymmetric modes. Fi-
nally, a new periodic circular structure loaded with elliptical
waveguide irises is considered. The Brillouin diagram and the
mean coupling impedance are presented and compared with
the circular iris case. Higher-order Floquet modes are also
computed and plotted. All the reported computational efforts
have been obtained with an Intel Core 2 platform at 2.4 GHz
with 1-GB RAM.

A. Corrugated Elliptical Waveguides

First of all, to validate our theory and the developed computer
code, we have considered the corrugated elliptical waveguide
structures studied in [16]. In this paper, the authors use space
harmonic effects and the field matching method to compute
the field components, ignoring higher-order modes in the slot
region. Therefore, all the results presented in [16] are refereed
to the fundamental lowest symmetric (eTM01 for the elliptical
case or TM01 for the circular one) mode. Fig. 2 shows the Bril-
louin diagram of a periodic elliptical structure (i.e., a stepwise
cascade connection of two different elliptical waveguides), with
dimensions a1 = 8.62 mm, b1 = 7.02 mm, a2 = 11.19 mm,
b2 = 10.02 mm, p = 4 mm, d = 2 mm, and ai and bi being
the major and minor semi-axis of the elliptical waveguides,
respectively. The solid line corresponds to the first symmetric
Floquet mode, the dashed line to the second symmetric Floquet
mode, and the dash-dotted line to the third symmetric Floquet
mode, which have clearly been distinguished by our analysis

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE. Downloaded on March 22,2010 at 04:53:47 EDT from IEEE Xplore.  Restrictions apply. 



520 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 2, FEBRUARY 2010

Fig. 3. k0−β diagram for periodic elliptical structures with different values
of eccentricity e1 while the eccentricity of the groove elliptical waveguides
e2 is constant. The dimensions for the bigger elliptical waveguides are a2 =
5.596 mm, b2 = 5.007 mm, p = 2 mm, and d = 1 mm. The solid line
corresponds to the case a1 = 4.599 mm and e1 = 0.5436; the dashed line to
a1 = 4.4523 mm and e1 = 0.5615; and finally the dash-dotted line to a1 =
4.3081 mm and e1 = 0.5803. The circles are taken from [16] for comparison.

technique. Very good agreement between our results and those
reported in [16] for the fundamental mode can be observed.

In Fig. 3, we present the variations of the k0−β diagram
of the fundamental mode with three different values for the
eccentricity e1 of the elliptical iris, which is defined as ei =√

a2
i − b2

i /ai, whereas the groove elliptical waveguide dimen-
sions are constant (e2 = 0.4466). The elliptical corrugated
structure has a period of p = 2 mm, and the length of the
groove region is d = 1 mm. The elliptical iris eccentricity is
taken as e1 = 0.5436 for the first case, e1 = 0.5615 for the
second case, and e1 = 0.5803 for the third case, respectively.
The dimensions for all the waveguides are included in the
caption of Fig. 3. From this figure, we can conclude that our
results are in excellent agreement with those obtained from [16]
(circles) for the fundamental lowest symmetric mode. As de-
scribed by the authors in [16], a gradual increase in the eccen-
tricity e1 decreases the size of the interaction region, forcing the
structure to approach a coupled cavity chain; thus, increasing
the eccentricity e1 can increase the dispersion of the corrugated
elliptical waveguide while e2 is a constant.

The next example compares the corrugated elliptical wave-
guide structure with the corrugated circular case with bigger
radius a = 5.007 mm and inner iris radius b = 3.5085 mm. Two
kinds of corrugated elliptical waveguide structures are consid-
ered. In the first kind, the sections of the elliptical waveguide are
inscribed ellipses of the circular waveguides (a1 = 3.5085 mm,
b1 = 2.8805 mm, a2 = 5.007 mm, b2 = 4.591 mm, i.e., major
axis length constant with regard to the circular case). In the
second kind, the sections of the elliptical waveguide are circum-
scribed ellipses of the circular waveguides (a1 = 4.308 mm,
b1 = 3.5085 mm, a2 = 5.596 mm, b2 = 5.007 mm, i.e., minor
axis length constant with respect to the circular case). In Fig. 4,
the results predicted by our method are successfully compared
with those found in [16] (represented with circles). From the
k0−β diagram, it can be seen that for the inscribed ellipses
case, the dispersion of the structure will slightly strengthen in
comparison with the circular structure. If the sections of the
elliptical waveguides are circumscribed ellipses in the circular

Fig. 4. k0−β diagram for three different periodic structures. The solid line
shows the dispersion curve for the circular periodic case with bigger radius a =
5.007 mm and inner radius b = 3.5085 mm. The dashed line corresponds to
the periodic elliptical structure with a1 = 3.5085 mm, b1 = 2.8805 mm, a2 =
5.007 mm, and b2 = 4.591 mm (inscribed ellipses of the circular waveguide);
and in dash-dotted line, a periodic elliptical structure with a1 = 4.308 mm,
b1 = 3.5085 mm, a2 = 5.596 mm, and b2 = 5.007 mm (circumscribed el-
lipses of the circular case). For all the cases, p = 2 mm, and d = 1 mm. The
circles are taken from [16] for comparison.

Fig. 5. Mean coupling impedance for the same periodic structures in Fig. 4.
(Solid line) Circular case. (Dashed line) Inscribed periodic elliptical case.
(Dash-dotted line) Circumscribed periodic elliptical case. The circles are taken
from [16] for comparison.

waveguides, the dispersion will weaken, and the passband
bandwidth increases.

Fig. 5 shows the interaction impedance for the three struc-
tures considered before computing with our method and the
results presented in [16]. As can be observed, an excellent
agreement between both results is obtained up to βp = 1.7;
for high frequencies, the coupling impedance decreases very
slowly. From these results, we can remark that decreasing
the minor axis length increases the coupling impedance. This
occurs because the axial component of the electric field be-
comes stronger, decreasing b1 [16]. Increasing the length of
the major axis decreases the coupling impedance. Therefore,
if the sections of the elliptical waveguide are inscribed ellipses
of the circular waveguides, we can obtain an increase of the
dispersion behavior and the interaction impedance compared
with the circular one.

Once the new proposed theory has successfully been val-
idated, computing the dispersion characteristic of the lowest
symmetric mode, we have performed a further verification
considering higher-order symmetric modes. In the next example
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Fig. 6. Dispersion curves for corrugated elliptical waveguide with dimensions
a1 = 6.772 mm, b1 = 6.528 mm, a2 = 8.222 mm, b2 = 8.022 mm, p =
6 mm, and d = 3 mm. The constant h = ea = 1.8 mm represents half of the
distance between foci. (Solid line) First symmetric Floquet mode. (Dashed line)
Second symmetric Floquet mode. (Dash-dotted line) Third symmetric Floquet
mode. The circles are taken from [18] for comparison.

(see Fig. 6), we have calculated the dispersion curves of the first
three symmetric modes for a corrugated elliptical waveguide
(i.e., the first three eTM0n modes). The circles are taken
from [18] considering higher-order modes in the slot region;
good agreement is observed in all curves. Passbands and stop-
bands between adjacent modes are correctly identified. All the
previous results were obtained using 150 accessible modes,
200 basis functions, and 400 kernel terms (i.e., localized
modes [19]) for solving the planar waveguide junction of the
structure. To compute the displayed dispersion diagram, the
first four eTMnm symmetric modes have been used for
solving (8). The complete analysis procedure has required a
global computational effort of 0.69 s per frequency point. Such
numerical effort is very well compared with the ones required
by available commercial software tools than can cope with this
kind of elliptical structure.

B. New Periodic Structures Loaded With Elliptical Waveguides

Next, we will consider new periodic structures loaded with
elliptical waveguides. For instance, in the first two examples,
we have studied the Brillouin diagram of periodic corrugated
elliptical waveguides when the elliptical waveguide irises are
shifted in the x- and y-axes, respectively, in comparison with
the confocal case. The geometry and the dimensions of the three
structures analyzed are presented in Fig. 7. A misalignment
of the elliptical irises, attributed to manufacturing tolerances,
produces an asymmetry of the whole structure, and conse-
quently, asymmetric modes can appear. Our method allows to
analyze the structure considering the effects of all these modes.
Fig. 7 compares the k0−β diagram of the lowest symmetric
Floquet mode for a confocal case (solid line) and for two
nonconfocal cases (in dashed 0.2-mm x-axis shifted and in
dash-dotted 0.5-mm x-axis shifted). As can be seen, an increase
of the x-axis misalignment produces a decrease of the passband
bandwidth; meanwhile, the dispersion characteristics change
slightly. However, if the misalignment is in the y-axis, Fig. 8
shows a strength increase in the bandwidth and a decrease of the
dispersion. This decrease is strengthened when increasing the
misalignment in the y-axis (see the dash-dotted line in Fig. 8),

Fig. 7. k0−β diagram of the lowest symmetric Floquet mode for three
different periodic elliptical structures: a confocal case (solid line) and two
nonconfocal cases (0.2- and 0.5-mm x-axis shifted, in dashed and dash-dotted
lines, respectively). The dimensions are a1 = 3.508 mm, b1 = 2.88 mm, a2 =
5.007 mm, b2 = 4.591 mm, p = 2 mm, and d = 1 mm.

Fig. 8. k0−β diagram for three periodic elliptical structures: a confocal case
(solid line) and two nonconfocal cases (0.2- and 0.5-mm y-axis shifted in
dashed and dash-dotted line, respectively). The dimensions are described in
Fig. 7.

since the fields for the fundamental mode are varying more
quickly in this vertical direction.

The last example considered in this paper deals with a
periodic circular waveguide loaded with elliptical and circular
waveguide irises. Figs. 9 and 10 represent the comparison of the
dispersion and mean coupling impedance between elliptical and
circular irises, respectively. In one case, the circular waveguide
iris is inscribed to the elliptical iris, and in the second case
the circular waveguide iris circumscribes the elliptical iris. The
layout and dimensions of the periodic structures under analysis
are shown in the caption of Fig. 9.

From these dispersion curves, it can be seen that if the
section of the elliptical waveguide iris is an inscribed circular
waveguide, then the dispersion will increase in comparison
with the circular structure; if the section is a circumscribed
one, then the dispersion will decrease. However, from Fig. 10,
we conclude that using elliptical waveguide iris will strongly
strengthen the coupling impedance. In conclusion, we can
achieve a high value of the interaction between an RF wave
and the electron beam only using elliptical waveguide irises in
corrugated cylindrical waveguides.

Fig. 11 shows the normalized longitudinal electric field
representation plotted in the transverse plane for the first TM
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Fig. 9. Brillouin diagram for a periodic circular structure loaded with el-
liptical waveguide irises (solid line) and two different circular irises (dashed
and dash-dotted lines). Dimensions of the structures: period p = 2 mm
and d = 1 mm; circular bigger radius a = 5 mm; elliptical iris dimensions
a1 = 3.5 mm, b1 = 2.87 mm; and circular iris radius b = 2.87 mm (circular
iris inscribed of the elliptical iris case, represented with dashed line) and
b = 3.5 mm (circular iris circumscribed of the elliptical case, represented with
dash-dotted line), respectively.

Fig. 10. Mean coupling impedance for the same periodic structures in Fig. 9.
(Solid line) Elliptical iris case. (Dashed line) Inscribed circular case. (Dash-
dotted line) Circumscribed circular case.

mode (eTM01), for the fourth TM mode (eTM21), and for
the sixth TM mode (eTM02) of the elliptical waveguide
iris studied in Fig. 9 and computed at 40, 80, and 90 GHz,
respectively. These three modes have cutoff frequencies of
fc = 36.542 GHz, fc = 74.523 GHz, and fc = 87.015 GHz,
respectively. The cutoff frequency as well as the electric field
has been obtained by means of the BI-RME method, enclosing
the elliptical waveguide iris in a square waveguide of size
10 mm.

Finally, to demonstrate the efficiency of the method pro-
posed, the Brioullin diagram of the first five Floquet modes
(symmetric and non-symmetric modes such as the TM01,
TE21, TM21, TE41, and TM02 of a circular waveguide or first
5 TM/TE2mn modes) for the same periodic circular structure
loaded with elliptical waveguide irises are presented in Fig. 12.
The fundamental mode is represented in solid line; this Floquet
mode propagates for 1.1 ≤ k0p ≤ 1.48 and for k0p ≥ 3.5 in
the considered frequency band. The second Floquet mode of
a circular waveguide, in dashed lines, propagates for 1.88 ≤
k0p ≤ 1.99, for 2.82 ≤ k0p ≤ 2.98, and for k0p ≥ 3.22. The
third Floquet mode is represented in dash-dotted line, and the
fourth Floquet mode is represented in dotted lines, respectively.

Fig. 11. Normalized longitudinal electric field representation plotted in the
transverse plane (a) for the first TM mode (eTM01), (b) for the fourth TM
mode (eTM21), and (c) for the sixth TM mode (eTM02) of the elliptical
waveguide iris studied in Fig. 9.

Fig. 12. Brillouin diagram for a periodic circular structure loaded with ellipti-
cal waveguide irises. Dimensions of the structure: circular radius a = 5 mm,
elliptical iris dimensions a1 = 3.5 mm, b1 = 2.87 mm, period p = 2 mm,
and d = 1 mm. In the figure, the different lines represent the first five TM/TE
Floquet modes propagating in the structure (such as the TM01, TE21, TM21,
TE41, and TM02 of a circular waveguide or TM/TE2mn modes).

The second symmetric mode appears from k0p ≥ 3.28, and
it is represented with a solid-point line. An intensive use of
the proposed sorting technique based on the correlation matrix
has been required to find the correct solution, since the first
five Floquet modes of (7) are mixed up in the considered
frequency band (from 24 to 90 GHz). Such results have been
obtained using 150 accessible modes, 200 basis functions,
and 500 kernel terms (i.e., localized modes [19]) for solving
the planar waveguide junctions of the structure. To compute
the displayed dispersion diagram, the first six TM/TE2mn

accessible modes of the periodic structure have been used for
solving (8). The complete analysis procedure has required a
global computational effort of 0.76 s per frequency point.
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IV. CONCLUSION

An efficient tool for the full-wave modal characterization of
periodic structures loaded with elliptical waveguides has been
described. This tool allows the accurate computation of the dis-
persion diagram, which is related to the lowest symmetric mode
and also to nonsymmetric and higher-order Floquet modes, of
the cited periodic structures. This novel analysis tool is based on
the combination of an integral equation technique and the well-
known BI-RME method, thus leading to the final solution of a
standard eigenvalue matrix problem. For validation purposes,
such method has first been applied to geometries already con-
sidered in the technical literature. Then, the dispersion diagrams
and the interaction impedance of asymmetric periodic elliptical
waveguides as well as periodic circular waveguide with ellip-
tical irises have been studied. From the computed results, we
can state that decreasing the minor axis length in the waveguide
structure or/and in the iris increases the interaction impedance
while the dispersion strengthens, in comparison with the cir-
cular case. The lengthening of the major axis can improve
the dispersion bandwidth. Moreover, for high frequencies, the
coupling impedance decreases very slowly. Periodic structures
loaded with elliptical waveguides have potential applications
to high-power microwave devices and filtering networks at
millimeter-wave frequencies.
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