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Abstract 

This paper is concerned with the verification effectiveness in open-set, text-independent speaker identifi-

cation. The study includes an analysis of the characteristics of this mode of speaker recognition and the 

potential causes of errors. The use of well-known score normalisation techniques for the purpose enhanc-

ing the reliability of the process is described and their relative effectiveness is experimentally investi-

gated. The experiments are based on the dataset proposed for the 1-speaker detection task of the NIST 

Speaker Recognition Evaluation 2003. Based on the experimental results, it is demonstrated that signifi-

cant benefits is achieved by using score normalisation in open-set identification, and that the level of this 

depends highly on the type of the approach adopted. The results also show that better performance can be 

achieved by using the cohort normalisation methods. In particular, the unconstrained cohort method with 

a relatively small cohort size appears to outperform all other approaches.  

1. Introduction 

Speaker identification is a main subclass of automatic speaker recognition, defined as determining the 

correct speaker of a given test utterance from a registered population. When the process includes the op-

tion of declaring that the test utterance does not belong to any of the known (registered) speakers, then it 

is referred to as open-set speaker identification (OS-SI). A second subclass of speaker recognition is 

speaker verification. This process involves determining whether a speaker is who (s)he claims to be. In 

this case, according to the degree of closeness of the test utterance to the target speaker model, a decision 

is made as to whether accept or reject the claimant. 

Given a set of registered speakers and a sample test utterance, the open-set speaker identification process 

can be divided into two successive stages of identification and verification. This is because firstly, it is 

required to identify the speaker model in the set, which best matches the test utterance. Secondly, it must 

be determined (verified) whether the test utterance has actually been produced by the speaker associated 

with the best-matched model, or by some unknown speaker outside the registered set. The difficulty in 

this problem is exacerbated if speakers are not required to provide utterances of specific texts during iden-

tification trials. In this case, the process is referred to as open-set, text-independent speaker identification 

(OSTI-SI). This is the most challenging class of speaker recognition. It has a wide range of applications in 

such areas as document indexation, surveillance, and authorisation control in smart environments. 
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A factor influencing the complexity of OSTI-SI is the size of the population of registered speakers. This 

is because firstly, as this population grows, the confusion in discriminating amongst the registered 

speaker voices increases. Secondly, the growth in the said population also increases the difficulty in con-

fidently declaring a test utterance as belonging/ or not belonging to the initially nominated registered 

speaker.   

The problem of OSTI-SI is further complicated by undesired variations in speech characteristics. These 

variations can have different causes ranging from the environmental noise to uncharacteristic sounds gen-

erated by the speaker. The resultant variations in speech cause a mismatch between the corresponding test 

and pre-stored voice patterns from the same speaker. Such intra-speaker variations have been the subject 

of extensive study in recent years, mainly in the field of speaker verification (SV). The general problem in 

speaker verification is that of minimising the overlapping between the score distributions for true speak-

ers and impostors so that it would be possible to verify or reject a claimed identity to a high degree of 

confidence using a preset threshold. The said mismatch between the testing and training material, how-

ever, has undesired effects on the score distribution parameters (i.e. variance & mean) for the true 

speaker. This can in turn lead to further overlapping of the score distributions for a true speaker and the 

impostors targeting that particular speaker. In practice, it is not possible to gather accurate information on 

the existence, level and nature of speech variations. In such cases, the most effective way to deal with this 

problem is score normalisation [1-7]. To date, a number of normalisation techniques have been devel-

oped, mainly with the aim to tackle the problem in the context of speaker verification. In general, these 

techniques are based on either the Bayesian approach or the standardisation of the score distributions.  

The problem in the second stage of OS-SI, however, is somewhat more challenging than that in the stan-

dard speaker verification. This, which is further highlighted in Section 2, is due to the initial nomination 

of the speakers of the test utterances based on the best match-scores obtained in the first stage of the proc-

ess. As a result, for example, each out-of-set speaker will have to be discriminated from the registered 

speaker who is its closest pair in the set. Because of the extended challenge in open-set identification, and 

because of the differences in the characteristics of various score normalisation methods (Section 3), it 

may not be possible to foresee the effectiveness of the score normalisation methods in OS-SI from that 

obtained for SV. This is the focus of the investigations presented in this paper. It should be pointed out 

that there have previously been some studies on the use of score normalisation in speaker identification 
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[8-11]. Some of these studies [8-9] were concerned with the use of score normalisation at the sub-

utterance (segmental/frame) level, which is not the subject of work in this paper. Moreover, in all the pre-

vious studies, only certain individual normalisation methods have been used for the benefit of closed-set 

identification. To date, the literature lacks a thorough evaluation of the relative effectiveness of various 

methods in the second stage of open-set Identification.    

The remainder of the paper is organised in as follows. The next section presents a review of open-set 

speaker identification, and defines the error types encountered in this process. Section 3 details various 

score normalisation methods considered in this study. Section 4 presents the experimental setup together 

with the results obtained. The overall conclusions are presented in Section 5. 

2. Open-set speaker identification 

Speaker identification involves representing a set of registered speakers using their corresponding statisti-

cal model descriptions, i.e. λ1, λ2,..., λN, where N is the number of speakers in the set. Each model de-

scription is developed using the short-term spectral features extracted from the utterances produced by the 

registering speaker. Based on such speaker modelling, the process of speaker identification in the open-

set mode can be stated as 

{ }
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where O denotes the feature vector sequence extracted from the test utterance, and θ is a pre-determined 

threshold. In other words, O is assigned to the speaker model that yields the maximum likelihood over all 

other speaker models in the set, if this maximum likelihood score is greater than the threshold θ. Other-

wise, it is declared as originated from an unknown speaker. Based on the above description, for a given θ, 

three types of errors are possible: 

• O, belonging to λm, not yielding the maximum likelihood for λm, 

• assigning O to one of the models in the set when it does not belong to any of them, and 

• declaring O which belongs to λm, and yields the maximum likelihood for it, as originated from an un-

known speaker. 

In this paper, these error types are referred to as OSIE, OSI-FA and OSI-FR respectively (where OSI, E, 

FA and FR stand for open-set identification, error, false acceptance and false rejection respectively). Evi-

< > 
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dently, the first stage is responsible for generating OSIE whereas, both OSI-FA and OSI-FR are the con-

sequences of the decision made in the second stage.  

It should be noted that an OSIE in the first stage would always lead to an error regardless of the decision 

in the second stage. Since the concern of this study is the second stage, the efforts should be on evaluating 

the verification reliability in the absence of any such identification errors in the first stage. In the experi-

mental sense, this assumption involves discarding the false speaker nominations received from the first 

stage when the actual speakers are within the registered set. Without such an assumption, a correct 

speaker rejection decision in the second stage would record a false rejection as far as the whole process is 

concerned.  

In an open-set speaker identification scenario, the universal speaker set is divided into the two subsets of 

known (registered) speakers and unknown speakers. An important point to note is that, each member of 

the unknown speakers can be falsely hypothesised as one of the registered speakers only (against whose 

model, the unknown speaker achieves the highest score). In other words, for a fixed number of registered 

speakers, there are always a corresponding number of disjoint subsets of the unknown speakers. Each of 

these subsets contains the non-clients who all achieve their highest match-score against one particular 

registered speaker. Any changes in the registered (known) speaker subset will result in corresponding 

changes in the number and membership of these non-client subsets. In practice, due to intersession varia-

tions, the membership of the said non-client subsets may not be entirely rigid; i.e. an unknown speaker 

achieving its highest score against a particular model on one occasion, and against another registered 

model on a different occasion due, for example, to variation in his(her) speaking style.  

To highlight the extent of difficulty in the second stage of open-set identification, the problem can be re-

expressed as a special (but unlikely) scenario in the standard speaker verification in which each impostor 

targets the speaker model in the system for which (s)he can achieve the highest score. This point is further 

illustrated by Figure 1 which shows typical score distributions associated with these two forms of speaker 

recognition under the same experimental condition. It should be pointed out that in the case of OS-SI, the 

client and non-client speakers are referred to as known and unknown speakers respectively. In the case of 

speaker verification, these are termed true and impostor speakers. As observed in this figure, the overlap-

ping between the score distributions for unknown and known speakers in OS-SI is considerably greater 

than that between the score distributions for impostors and true speakers in SV. This is due to the selec-
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tion of the best-matched models in the first stage of OS-SI, which has forced the score distribution mean 

for unknown speakers to be very close to that for the known speakers.  It is also interesting to note that, 

for the same reason, the distribution variance for unknown speakers appears to be smaller than that for 

impostors in the case of SV.  

3. Score normalisation  

The main purpose of score normalisation is to help the separation between the score distributions for 

known and unknown speakers. In practice, this is particularly important due to the expected variations in 

speech characteristics. The effective reduction in the overlapping of the said distributions can lead to a 

reduction in OSI-FA and OSI-FR for a preset threshold. The following describes various methods in the 

two main categories of score normalisation highlighted earlier.  

3.1. Bayesian solution   

Under the Bayesian framework, the score required for making the decision in the second stage of open-set 

identification can be expressed as follows [5]: 

)|(log)|(log)( UML λOλOO ppL −=  (2) 

where { })|(maxarg,
1

ML
n

Nn
i pi λOλλ

≤≤
== , and Uλ  is the model representing the subset of unknown speakers 

that can falsely be hypothesised (in the first stage) as the speaker of MLλ . In order to deploy equation (2), 

)|( Up λO has to be determined accurately. However, in practice Uλ  is unavailable. Therefore, the best 

option is to determine an appropriate replacement for )|( UλOp . For this purpose, the following three 

techniques can be adopted from the field of speaker verification [1-7]. 

• World Model Normalisation (WMN) 

This technique involves approximating )|( UλOp  with )|( WMλOp , where WMλ is a model generated 

using utterances from a very large population of speakers (such a model is commonly referred to as the 

world model [7] or the universal background model [6]).  

It can be argued that the role of this normalisation method in OS-SI is to enhance the score for a known 

speaker when the test utterance is degraded. The assumption here is that the reference model for the 

known speaker and the world model are both free from all possible degradations (due to the use of clean 

training utterances, or averaging-out the effects of contaminations in speech in the case of the world 

model). With such an assumption, it is not difficult to see that the existence of degradations in the test 



 7

utterance will result in the scores against the known speaker model and the world model to be influenced 

in the same way (unfavourably). Consequently, the normalised score obtained using equation (2) should 

remain relatively unaffected.  

The technique, however, does not aim to suppress the unknown speaker scores in relation to the scores for 

the corresponding known speakers. The reason is that the scores achieved by known and unknown speak-

ers against a phonetically rich world model are in general very similar and any variations in these scores 

are not due to, or influenced by, the identity of the speakers.  

• Cohort Normalisation (CN) 

In this method, the model generated for each registered speaker is associated with a cohort of speaker 

models that are most competitive with it [2]. Here, the competitiveness of any two models is determined 

in terms of how close they are in the speaker space. The entire cohort selection is carried-out prior to the 

test phase, and )|(log UλOp  in (2) is approximated by 

∑ =
=

K

k kfpKK
1 ),(

ML
CN )|(log)/1(),,( MLλλOλOρ , (3) 

where f (λML, i) ≠  f (λML, j) if i ≠  j and )1,( MLλλ f , )2,( MLλλ f ,..., ),( ML Kf λλ are the cohort of speaker models 

associated with MLλ .  

When the hypothesised speaker is a valid known speaker, the effect of score normalisation with this 

method should be similar in nature to that in the case of WMN. In this respect, the approach in CN may 

be viewed as deploying the most competitive subset of the world model (WM) speakers for each known 

speaker. As such, CN should be more effective than WMN in dealing with contamination in test utter-

ances. This is because the cohort of models which are selected to be highly competitive with MLλ , should 

provide a better replication of the way )|( MLλOp  is degraded by distortion in O, than is possible with 

WM which is relatively diluted in terms of competitiveness. It should, however, be pointed out that the 

dilution in normalisation factor obtained with WM is inherently limited. This is due to the fact that, in the 

generation of )|( WMλOp , there are relatively more significant contributions by WM subsets which are the 

closest to the observation O, and therefore significantly more competitive with MLλ  when O is produced 

by the true speaker.  

In the use of CN in SV, it has already been found that [5] when the cohort size is very small, the normali-

sation procedure might potentially lead to the enhancement of impostor scores. Considering a cohort size 
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of one as an extreme case, it can be argued that the impostors, who score poorly against a target model, 

may be falsely accepted due to their scores against the single competing model being similarly low.  In 

other words, the technique results in the enhancement of impostor scores relative to the true speaker 

scores. It has been shown in [5] that the above adverse effect of CN drops sharply, as the cohort size is 

increased. 

A similar behaviour of CN should be expected in OS-SI, with the exception that here the scores achieved 

by exclusive non-clients are normally relatively high (rather than low) against both their respective best 

matched-models and the corresponding competing models. Since this is also the case when the hypothe-

sised speakers are known-speakers, it appears that CN is not capable of unfavourably influencing the 

scores for unknown speakers relative to those for known speakers.  

• Unconstraint Cohort Normalisation (UCN) 

This method is similar to the cohort approach with the exception that the competing speaker models for 

each hypothesised speaker are selected during the test trial. To be more precise, log p(O|λU) in (2) is re-

placed with  

∑ =
=

K

k kpKK
1 )(

ML
UCN )|(log)/1(),,( φρ λOλO , (4) 

where, φ(i)  ≠   φ(j) if i ≠ j and )()2()1( ,...,, Kφφφ λλλ are the models yielding the next K highest likelihood 

scores after )|( MLλOp . Evidently, the method does not require any additional processing such as model 

generation/association prior to the test phase.  

As indicated in (4), the competing speaker models are selected based on their closeness to the test token. 

Therefore, in terms of enhancing a known speaker score, the UCN performance is at best similar to that of 

CN. This is because, due to the similarity of competing speaker models to the test token, the normalisa-

tion factor  in this case is always greater than or at least equal to that in the case of CN. For the same rea-

son, UCN provides a higher rate of suppression of scores for unknown speakers, compared to WMN and 

CN.  Based on equation (4), it is evident that the normalisation factor in UCN is inversely related to the 

cohort size adopted. This gives rise to the question that whether in OSTI-SI, the UCN cohort size can be 

determined such that it provides the best compensation when the test utterance from a known speaker is 

degraded (i.e. matching the CN performance) whilst still maintaining some effectiveness in terms of sup-

pressing the scores for unknown speakers. Addressing this question is one of the aims of the experimental 
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investigations in this paper. Indeed, the existence of such an optimum cohort size could enable UCN to 

outperform the other score normalisation procedures. On the other hand, due to variations in operating 

conditions, it might not be possible to determine one cohort size which is optimum in all experimental 

setups. However, the determination of some region of optimality could still be beneficial in unseen oper-

ating conditions.  

3.2. Standardisation of score distributions   

This approach was originally proposed for speaker verification [13] with the aim to facilitate the use of a 

single threshold for all registered speakers. A major difficulty in setting a global threshold in SV is that 

both impostor score distribution and true speaker score distribution have different characteristics for dif-

ferent registered speakers. An approach to tackling this issue is that of fixing the characteristics of one of 

the score distribution types for all registered speakers. Currently, the common practice is to standardise 

the impostor score distributions. The main reason for operating on the impostor score distributions, rather 

than on the true speaker score distributions, is the unavailability of sufficient data (in the existing data-

bases) for a reliable estimation of the standardisation parameters in the latter approach. As discussed be-

low, there are different approaches to computing the parameters for such a standardisation. In all cases, 

however, the computed parameters (i.e. mean and variance) are used for normalising the verification 

scores. The following presents the descriptions of the two main approaches in this category. The discus-

sions are initially in the context of speaker verification, with the assumption that the impostor score dis-

tributions are Gaussian. This is then followed by a discussion on the deployment of the methods for open-

set speaker identification.   

• Zero Normalisation (Z-norm ) 

This method approaches the problem of score normalisation from the perspective of the speaker models. 

Whilst aiming to standardise the impostor score distribution, the method provides an alignment of the 

registered speaker models, which are generated under different training conditions, prior to the test phase. 

In general, for each registered speaker model a single impostor distribution is obtained using a set of de-

velopment impostor utterances. The mean and the standard deviation of the impostor distribution for each 

speaker model are then used for score normalisation as follows [7]. 

)(
)()|(log)( C

CC

SV λ
λOλO

z

z

σ
µpL −

= , (5) 
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where Cλ is the model associated with the claimed identity (target speaker model), and )(⋅zµ and )(⋅zσ , 

which are specific to Cλ , represent the mean and standard deviation of the impostor score distribution. It 

is important to note that equation (5) involves a posteriori probability, suggesting that Z-norm should be 

used in conjunction with one of the score normalisation methods described in Section 3.1 or T-norm 

which is discussed later in this section. The reason is that, in order for this method to tackle any mis-

alignments in the speaker models correctly, the adopted development impostor utterances should them-

selves be free from any misalignments. In practice, however, the development impostor utterances are 

misaligned due to various forms of speech anomalies. Therefore, it is essential to enhance the alignment 

of these impostor utterances using another type of normalisation method before adopting them for Z-

norm. In this case, equation (5) can be re-expressed to also reflect the use of score normalisation for im-

postor utterance alignment. The normalisation type adopted for this purpose must be consistent with that 

used in the subsequent test phase. 

• Test Normalisation (T-norm) 

In this method, the required transformation parameters are determined dynamically in the test phase using 

a set of example impostor models. The score normalisation in this case is based on the following equation 

[7]. 

)(
)()|(log)(

C

SV O
OλOO

T

T

σ
µpL −

= , (6) 

Where )(OTµ and )(OTσ  are the mean and standard deviation of ),|(log EI
1λOp  ),|(log EI

2λOp  …, 

)|(log EI
Jp λO  and EI

jλ  is the jth example impostor model.  

3.2.1. Deployment of Z-norm and T-norm in OSTI-SI 

The direct adaptation of Z-norm and T-norm for open-set identification would result in the following two 

formulas. 
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where all the symbols have the same meanings as before except )(OTµ  and )(OTσ  which  are the mean 

and standard deviation of )}|(log,...,|(log,|({log 21 Lppp λOλOλO , with Lλλλ ,...,, 21 being the statisti-
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cal models for L appropriately selected speakers. Ideally, ,,...,2,1, Lll =λ should be taken from a particu-

lar subset in the universal speaker set, whose members are the exclusive non-clients for MLλ . In practice, 

it is not possible to follow this criterion. In fact, in order to avoid unnecessary computational costs, the 

registered speaker models are used for this purpose instead. A requirement in this case is that the set of 

registered speakers should be adequately large.   

It is important to note that the above adapted versions of Z-norm and T-norm cannot lead to the standardi-

sation of the score distribution for either any known speaker or any specific set of exclusive non-client 

speakers. In fact, what each of these methods attempt to achieve in OS-SI is to standardise the distribution 

of the general cross-speaker scores. This point is illustrated through the example presented in Figure 2 for 

T-norm. It should be noted that similar processes in speaker verification lead to the standardisation of the 

impostor score distribution.  

4. Experimental investigations 

4.1.  Speaker representation   

In all the experimental investigations, the speaker representation is based on Gaussian mixture models 

(GMM) [11]. The GMM topologies used to represent each enrolled speaker model and the world model 

are 32m and 2048m respectively, where Nm implies N Gaussian mixture densities parameterised with a 

mean vector and diagonal covariance matrices. The parameters of each GMM are estimated using a form 

of the expectation-maximisation (EM) algorithm [12]. 

The speech data adopted for the study is based on a scheme developed for the purpose of evaluating 

OSTI-SI [14]. It consists of speech utterances extracted from the 1-speaker detection task of the NIST 

Speaker Recognition Evaluation 2003. The dataset includes 142 known speakers and 141 unknown 

speakers. The training data for each known speaker model consists of 2 minutes of speech and each test 

token from either population contains between 3 and 60 seconds of speech. These amount to a total of 

5415 test tokens (2563 for known speakers and 2852 for unknown speakers). Achieving this number of 

test tokens is based on a data rotation approach which is detailed in [14]. The world model training is 

based on all the speech material from 100 speakers (about 8 hours of speech). In the dataset, there are also 

505 development utterances from 33 speakers which are used for the purpose of Z-norm. 

In this study, the parametric representation of speech is as follows. Each speech frame of 20ms duration is 

subjected to a pre-emphasis and is represented by a 16th-order linear predictive coding-derived cepstral 
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vector (LPCC) extracted at a rate of 10 ms. The first derivative parameters are calculated over a span of 

seven frames and appended to the static features. The full vector is subsequently subjected to cepstral 

mean normalisation. 

4.2. Experimental results and discussions 

Figure 3 presents the equal error rates (EER’s) in the second stage of OS-SI, obtained using different 

score normalisation methods. The Figure also gives the equal error rate without any score normalisation 

as the baseline. As observed, for the benefit of CN and UCN, these results are illustrated as a function of 

the cohort size. For the purpose of comparison, Figure 4 presents the corresponding EER’s obtained in 

speaker verification experiments. An observation of these two figures clearing indicates the added diffi-

culty in the case of OS-SI. This is reflected in the baseline EER’s, and is also observed in the results for 

various normalisation methods. Another immediate observation is the effectiveness of score normalisa-

tion methods in reducing EER’s in both modes of speaker recognition.  

Figure 3 shows that the use of Z-norm in OS-SI results in the reduction of minimum achievable EER with 

all the normalisation methods except UCN (with relatively small cohort sizes). On the other hand, it is 

interesting to observe that (Figure 4) the combination of Z-norm with UCN works well in speaker verifi-

cation. This difference in effectiveness is believed to be due to the lack of availability of sufficient devel-

opment data for computing the Z-norm parameters for every registered speaker model in OS-SI. To be 

more precise, in order for the combined Z-norm/UCN to have its maximum effectiveness, the UCN sce-

nario in aligning the development utterances should match that in the case of test utterances from impos-

tors/unknown speakers in the test phase. This is exactly the case in SV where the combined Z-norm/UCN 

works better than UCN alone. It should be noted that in the test phase of SV, for each considered regis-

tered model, the impostor utterances achieve their highest scores mostly against other registered models 

in the set. This is highly similar to that happening when using the development utterances (from non-

registered speakers) in extracting UCN-based Z-norm parameters. In the test phase of open-set identifica-

tion, on the other hand, each registered model is targeted only by utterances from its own exclusive non-

clients. Therefore, by definition, the scores achieved by non-clients are always higher against the models 

they target than against any other registered models. This problem of scenario mismatch in OS-SI may be 

tackled by adopting a large development set representing enough varieties of unknown speaker utteran-

ces. In other words, for each registered model, there should be an adequately large subset of the develop-
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ment data that can effectively be used as the utterances from exclusive non-clients. (i.e. achieve their 

highest score against that particular registered model). Achieving this in practice is extremely difficult, 

especially when dealing with a large set of registered models. Therefore, it may be best to avoid the use of 

combined Z-norm /UCN with such a realisation of OS-SI. Finally, it is also worth noting that according to 

Figure 4, the effects of the said scenario mismatch fades away for large cohort sizes (i.e. UCNZ performs 

better than UCN). It is also observed that, for such cohort sizes, the EER’s obtained with each of UCN 

and UCNZ become very similar to those for CN and CNz respectively. These are due to the fact that, for 

adequately large cohort sizes, UCN loses its unique property that differentiates it from CN, and which is 

also the cause of the scenario mismatch in Z-norm. 

As expected from the descriptions given in Section 3.1, CN performs rather poorly for small cohort sizes. 

It is also observed that (similar to the case in SV) the CN effectiveness in OS-SI improves sharply as the 

cohort size is increased. 

The results in Figure 3 show the UCN method as the best performer in OS-SI. Additionally, it is observed 

that the minimum EER obtained with UCN is with cohort sizes of around 5 to 7. As suggested in Section 

3.1, this appears to be the region of optimum cohort size for UCN. In other words, for cohort sizes in this 

region, UCN is effective in providing compensation when the test utterance from a known speaker is de-

graded whilst still maintaining capability in terms of suppressing the scores for unknown speakers. 

Using the best cohort size for each of CN and UCN, Figure 5 presents the experimental results in the sec-

ond stage of OS-SI as the DET curves. The plots clearly indicate the superior performance of cohort 

methods and, especially, UCN in open-set identification. Again, for the purpose of comparison, the corre-

sponding DET curves obtained in speaker verification experiments are illustrated in Figure 6. A compari-

son of the results in these two figures (and also in figures 3 and 4) shows that T-norm, which is amongst 

the best performers in speaker verification (with and without Z-norm), provides the worst performance in 

OS-SI.  

Similar to the case in SV, the WMN performance in OS-SI does not match that of UCN, or CN with an 

appropriately large cohort size. It is interesting to note that this difference in performance appears to be 

even wider in OS-SI. Based on the discussions in Section 3.1, the effectiveness of WMN relative to that 

CN/UCN was not unexpected. 
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The best EER’s obtained for individual score normalisation methods in OS-SI and SV are summarised in 

Table 1. The Table also shows the relative improvement (RI) achieved using the normalisation methods 

over the baseline. Columns 2 and 4 in this table reiterate the fact that the EER’s in OS-SI are, in general, 

larger than those in SV. It is also interesting to note that, moving from SV to OS-SI, there is a consider-

able drop in RI with every normalisation method (columns 3 and 5 in Table 1). Another immediate obser-

vation is that the incorporation of Z-norm always enhances the RI for the considered normalisation meth-

ods except in the case of UCNz in OS-SI.  

According to Table 1, T-norm exhibits the sharpest drop (about 44%) in RI from SV to OS-SI. This result 

further highlights the reduction in the effectiveness of T-norm in OS-SI due to the inevitable compromise 

in its implementation (Section 3.2.1). The RI with UCN, on the other hand, is observed to sustain the 

lowest drop (about 7%) from the corresponding value in SV. This together with the fact that UCN is the 

best performer in OS-SI further confirms the fact that the added challenge in this mode of speaker recog-

nition is one of dealing with the high match-scores by exclusive non-clients.  

5. Conclusions 

An investigation into the effectiveness of the verification process in the second stage of open-set speaker 

identification has been presented. The study has provided valuable insight into certain important charac-

teristics of this class of speaker recognition, as well as into its performance features and limitations. It has 

been shown that an added challenge in the second stage of open set identification, compared to standard 

speaker verification, is due to the relatively high match-scores by unknown speakers. This problem is in 

addition to the difficulties caused by the mismatch (e.g. due to the contamination of speech) between the 

training and testing material in practice. To minimise the adverse effects of these, the use of different 

score normalisation methods has been investigated. The outcomes have shown that, with or without nor-

malisation techniques, the accuracy in the second stage of OSTI-SI is consistently below that in the stan-

dard speaker verification.  Additionally, it has been found that in the case of OSTI-SI, the cohort normali-

sation methods exhibit the best performance.  

The study has also shown that, due to practical limitations, the use of the standardisation methods in 

open-set identification can only lead to the standardisation of the general cross-speaker scores. However, 

since in OSTI-SI each registered model is targeted only by its own exclusive non-clients, it is concluded 
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that (unlike in the case of SV) the standardisation methods cannot facilitate the use of a single decision 

threshold in this process.  

An analysis of the performance of T-norm has shown that, in practice, this approach cannot be as effec-

tive in OSTI-SI as it is in SV. It has been found that, whilst T-norm is amongst the top performers in 

speaker verification, it provides the least relative improvement (about 20%) in OSTI-SI.    

It has been shown that the use of Z-norm should be in combination with some other form of score nor-

malisation to provide reliability in the model alignment process. The experimental results have confirmed 

that, except for UCN, the EER’s obtainable with all other normalisation methods reduce noticeably when 

these are combined with Z-norm. The problem in the case of UCNz has been found to be due to the lack 

of availability of appropriately large varieties of utterances in the development dataset to meet the re-

quirements in the OSTI-SI scenario. Additionally, it has been shown that, in terms of reducing the scores 

for unknown speakers, UCN is less effective in OSTI-SI than is in SV. This is due to the selection of the 

best-matched model in the first stage of OSTI-SI when the test material is produced by an unknown 

speaker. Nevertheless, UCN has been found to be the best performer in OSTI-SI, reducing the baseline 

EER by about 57%. This superior performance is believed to be in part due to the ability of the technique 

to exhibit some effectiveness in suppressing the scores for unknown speakers whilst attempting to com-

pensate for the adverse effects of contamination in test utterances from known speakers. 
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Figure 1: Score distributions associated with SV and the second stage of OSTI-SI. It should be stated that 

the slight difference between the known and true speaker distributions is due to the fact that, in the case 

of OSTI-SI, the scores (associated with known speaker utterances) yielding an OSIE are not included in 

the estimation of the known speaker distribution). 
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Figure 2: Typical plots of score distributions before and after applying T-norm. 
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Figure 3: Comparison of the effectiveness of various normalisation methods in OS-SI in terms of EER. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 20

20 40 60 80 100 120 140
5

10

15

20

25

30

Cohort Size

S
V

-E
E

R
(%

)

Baseline
WMN
WMNZ

T-norm
T-normZ

CN
CNZ

UCN
UCNZ

 
Figure 4: Comparison of the effectiveness of various normalisation methods in SV in terms of EER. 
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Figure 5: DET curves for various normalisation methods used in OS-SI (the cohort sizes chosen for CN 

and UCN are those giving the best performance). 
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Figure 6: DET curves for various normalisation methods used in SV (the cohort sizes chosen for CN and 

UCN are those giving the best performance). 
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Normalisation 
method 

Best EER 
OS-SI 

(%) ± CI95 

RI (%) 
OS-SI 

Best EER SV 
(%) ± CI95 

RI (%) 
SV 

Baseline 43.3 ± 0.7 0 27.73 ± 0.07 0 
T-norm 34.5 ± 0.6 20 9.92 ± 0.05 64 

T-normz 29.0 ± 0.6 33 9.24 ± 0.05 67 

WMN 28.8 ± 0.6 34 11.57 ± 0.05 58 

WMNz 25.5 ± 0.6 41 10.20 ± 0.05 63 

CN 21.1 ± 0.6 51 10.29 ± 0.05 63 

CNz 20.9 ± 0.6 52 8.65 ± 0.04 69 

UCN 18.8 ± 0.5 57 9.96 ± 0.05 64 

UCNz 21.1 ± 0.6 51 8.66 ± 0.04 69 

 

Table 1: Results for the individual normalisation methods in terms of EER and RI (relative improve-

ment). 

 


