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Affine image region detection and description
R. Vázquez-Martı́n, R. Marfil and A. Bandera

Abstract—This paper describes a novel approach for affine
invariant region detection and description. At the detection
stage, a hierarchical clustering mechanism is employed to group
image pixels into regions. This process is based on the Bounded
Irregular Pyramid (BIP) and takes into account a colour contrast
measure, internal region descriptors and attributes of their
shared boundaries. High-contrasted regions are selected as salient
regions. On the other hand, geometrically and photometrically
normalized regions are represented by a kernel-based descriptor.
The lenght descriptor is reduced by applying Principal Com-
ponent Analysis (PCA). The protocol proposed by Mikolajczyk
et al. [17], [18] has been conducted to compare the proposed
approach with other similar methods. Experimental resultsprove
that the performance of our proposal is high in terms of
computational consuming and distinguished region detection and
description abilities.

Index Terms—salient regions, feature detection, affine invariant
regions, feature description.

I. I NTRODUCTION

I MAGE matching is defined in artificial vision as the
process of bringing two images into agreement so that

corresponding items in the two images correspond to the same
real, physical region of the scene. The similarity may be
applied to global features derived from the original images.
However, this is not the most robust solution when images
are taken from different viewpoints. In this work, the image
matching problem is accomplished from a feature-based strat-
egy, where images are analyzed first in order to extract some
distinguished features. Detected features or image regions are
then characterized by a descriptor which will be subsequently
employed to solve the matching problem.

In this paper, we propose a novel approach for affine,
distinguished image regions detection and description. The
core of the detector is a hierarchical algorithm for perceptual
grouping of the image pixels. Image segmentation is not a
robust process, and obtained results can change depending on
the illumination conditions or the viewpoint. However, there
are a set of image regions whose properties allow them to be
robustly detected in despite of these changes. The aim of the
proposed approach is to find these salient regions. On the other
hand, to solve the correspondence problem stated when dif-
ferent views of the same scene are compared, detected image
regions can be characterized using information obtained from
the image. In our proposal, a weighted histogram is employed.
This descriptor provides satisfactory results, speciallywhen
used in real acquired images. However, to reduce the lenght
of the obtained descriptor, PCA is applied.
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A. Related work

Given a set of images taken from different viewpoints,
the process of finding the projections on each image of real
3D surface patches can be useful for a large number of
applications, such as object recognition, robot localization
or wide baseline matching for stereo pairs. Among other
issues, this process must deal with the problem that image
regions associated to the projections change covariantly with
the class of transformation induced by the viewpoint change.
When the viewpoint change can be approximated by an affine
transformation, approaches which solve this problem are called
affine region detectors [18].

The detection of regions which change covariantly with
affine transformations was described in detail by Mikolajczyk
et al. [18]. In this work, the authors provide a review of affine
covariant region detectors, and compare their performanceon
a set of test images under varying imaging conditions. The
requirement for these detectors is that they must provide re-
gions whose shapes depend on the underlying image features,
so that they correspond to the projections of the same 3D
surface patch on the different images. Although the boundaries
of these covariant regions do not have to be associated to
changes in image features such as colour or texture, some of
the approaches described in [18] look for these abrupt changes.
Thus, the intensity extrema-based region detector (IBR) [19]
starts from intensity extrema and studies a intensity-based
function along rays emanating from this extrema to define a
region of arbitrary shape. The region is delineated by the image
points defined over these rays where the intensity suddenly
increases or decreases. Amaximally stable extremal region
(MSER) [15] is a connected component of an appropriately
thresholded image where all internal pixels have either higher
or lower intensity than all the pixels on its outer boundary.
Among these extremal regions, the’maximally stable’ ones
are those corresponding to thresholds were the relative area
change as a function of relative change of threshold is at a
local minimum.

To match the projections of a real 3D surface on a set
of images taken from different viewpoints does not only
require to find distinguished image features, but also to solve
the correspondence problem established among these sets of
features. This issue can be addressed by characterizing the
distinctive regions in terms of certain patterns. For this reason,
the computation of feature descriptors is done as a separate
step from that of feature detection. For local interest point
(corner) detection, features are usually described using their
associated image patches. Then, Normalized Sum-of-Squared-
Differences (NSSD) is employed to find the best matchings.
On the other hand, descriptor for scale invariant features
are computed at the distinctive points with the associated

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16366065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


46 JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 1, JANUARY 2010

scale. Gaussian derivatives computed at the characteristic scale
over image patches can be employed to achieve invariance
to image rotation. However, among the large number of
proposed techniques, the distribution-based descriptorsare
probably the most used ones. Thus, inside the scale invariant
feature transform (SIFT), Lowe [11] proposed to compute a
histogram of local oriented gradients around the interest point
and scores the bins in a 128-dimensional vector. Mikolajczyk
and Schmid [17] proposed a variant of SIFT, called gradient lo-
cation and orientation histogram (GLOH), which has proved to
be more distinctive but also computationally more expensive.
The SURF approach includes a region descriptor which uses
a distribution of Haar-wavelet responses within the interest
points neighbourhood [1].

B. Overview of the proposal

This paper describes a novel approach for affine region
detection which extends the idea of looking for abrupt changes.
However, instead of changes in intensity or colour (edges),our
approach looks for image boundaries which delimitate high-
contrasted regions of data-dependent shape. To detect these
boundaries, we use a hierarchical clustering scheme which
presents two stages: firstly, it groups neighbour image pixels
into blobs of homogeneous colour and then, it merges these
blobs using a more complex similarity criterion. Basically,
this criterion complements a contrast measure defined between
regions with image edges detected using the Canny detector,
with internal region descriptors and with attributes of their
shared boundaries. Finally, it must be noted that the hierarchi-
cal clustering algorithm represents the input image at different
levels with decreasing resolution. This hierarchy constitutes
a scale-space representation where salient regions could be
detected at different scales. On the other hand, to describethe
detected regions, we have chosen as feature space the colour
probability density function (pdf), which must be estimated
from the region data. To reduce the computational cost,n-
bin histograms are employed. Besides, in order to take into
account the spatial information and not only the spectral one,
geometrically and photometrically normalized salient regions
are characterized by spatially masking them with an isotropic
kernel. Finally, we have applied PCA to the obtained kernel-
based histograms to reduce its large lenght.

C. Summary and comparison with other approaches

Unlike affine region detectors based on interest point
detectors such as the Harris–Affine or the Hessian–Affine
techniques [18], our proposal provides complementary image
information. Thus, it is more closely related to those region
detectors based on image intensity analysis, such as the
MSER and IBR approaches. The main difference with those
approaches is that it searches for high contrasted regions of
uniform properties using a hierarchical structure insteadof
intensity extrema in a 2D image as do the MSER and IBR
detectors. Using this segmentation strategy, it is possible to
work in scale-space, improving repeatability for significant
scale changes.

Fig. 1. a-c-e-g) SIFT features and b-d-f-h) affine covariantregions detected
by the proposed approach in different environments and situations.

On the other hand, Fig. 1 illustrates the main difference
with respect to the popular Difference–of–Gaussians (DoG)
detector, the scale invariant feature detector used by SIFT.
Typically, the DoG provides an immense number of keypoints,
as can be seen in Figs. 1a-c-e-g. On the contrary, the proposed
approach detects a far smaller set of regions. This is due
to the grouping process inherent to any region–based feature
detector. In this case, this grouping merges different image
blobs in accordance with their similarity in colour and the
shared boundary. These regions have a greater underlying
semantic significance than the keypoints detected using a scale
invariant detector. Using the proposed approach the image is
described by a more organized set of features that allows
a reliable matching since comparatively little information is
needed to describe an scene.

The rest of the paper is organized as follows: The proposed
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Fig. 2. a-b) Regions generated by the proposed detector on two images
taken from a mobile robot. Representing ellipses have been chosen to have
the same first and second moments as the originally arbitrarily shaped region
(see Fig. 11 for more examples).

approach for the acquisition and description of salient regions
is described in Sections II and III. Experimental results are
provided in Section IV, where the segmentation algorithm is
evaluated and it is also provided an example of the application
of the approach in an environment mapping framework. The
results of a comparative study of the proposed approach with
other similar approaches are given in Section V. Finally, the
paper concludes along with discussions in Section VI.

II. H IERARCHICAL CLUSTERING APPROACH FOR SALIENT

REGIONS DETECTION

The proposed approach employs a hierarchical graph-based
clustering algorithm to detect the high-contrasted regions of
the input image. In this hierarchy, the input image defines the
base level, which is arranged as a graph where each pixel is
a node and neighbourhood relationships are encoded as arcs
(intra-level arcs). Upper hierarchy levels are encoded as undi-
rected graphs where the nodes are generated by grouping a set
of nodes of the level below and the arcs encode their adjacency
relationships. If intra-level arcs represent the neighbourhood
of each node at the same level, another set of arcs establish a
dependence relationship between each node of levell+1 and
a set of nodes at levell. These relationships may be extended
by transitivity down to the base level. The set of pixels linked
to a node is named its receptive field. The receptive field
defines the embedding of this node on the original image. This
hierarchy defines an irregular pyramid [5], [8], where each
level l is a graphGl = (Nl, El) consisting of a set of nodes,
Nl, linked by a set of intra-level edgesEl. In order to speed
up the hierarchical clustering process, the employed irregular
pyramid combines the classical irregular simple graph with
a regular structure. This regular decimation process is only
applied in the homogeneous parts of the image. Then, each
graphGl has a regular part which built fromGl−1 using a
2x2/4 regular decimation procedure and an irregular part which
is built from Gl−1 using an union-find decimation process.
This also implies that there are two types of nodes in our
structure: nodes belonging to the 2x2/4 regular part (regular
nodes) and nodes belonging to the irregular part (irregular
nodes). Experimental results demonstrate that the shape ofthe
obtained salient regions is adapted to real items of the scene,
being no affected by the regular tessellation (see Fig. 2).

Each level of the proposed pyramid is computed in three
steps:

• 2x2/4 regular decimation process: if four regular adjacent
nodes of levell have similar colour, a new regular node
is created atl+1.

• Irregular node generation process: any regular or irregular
node of levell which is not linked to a node atl+1 is
included in a union-find grouping process [15], [14]. This
union-find process only generates irregular nodes at level
l+1.

• Intra-level edge generation inGl+1: the edges ofGl+1
are computed taking into account the neighbourhood of
nodes inGl.

In order to speed up the building process, the pyramid
can be initialized with a first image partition. This initial
partition divides the input image in a set of homogeneous
regions, constituting an over-segmentation of the input image.
Typically, this pre-segmentation process only generates the
first pyramid level, and the rest of levels are built using a
more complex grouping criterion. Our proposal accomplishes
the pre-segmentation and the subsequent clustering process
into an irregular pyramid as two consecutive stages. The first
stage employs a colour distance to group the image pixels
into a set of blobs whose spatial distribution is physically
representative of the image content. It must be noted that the
hierarchy automatically stops growing when it is no longer
possible to link together any more nodes because they are
not similar in colour. The set of nodes which are not linked
to any node at upper levels define a partition of the input
image (see Fig. 3). Then, the second stage clusters the set of
homogeneous blobs into a smaller set of regions taking into
account not only the internal visual coherence of the obtained
regions but also the external relationships among them. Two
constraints are taken into account for an efficient grouping
process: first, although all groupings are tested, only the best
groupings are locally retained; and second, all the groupings
must be spread on the image so that no part of the image is
advantaged. For managing this grouping, the pyramid structure
is used: the roots of the pre-segmented blobs are consideredas
irregular nodes which constitute the first level of the grouping
multiresolution output. However, if the distance between two
nodes in the pre-segmentation stage is based on a colour
criterion, in order to achieve this second grouping process, a
more complex distance must be defined. This distance has two
main components: the colour contrast between image blobs
and the edges of the original image computed using the Canny
detector. Then, the distance between two nodesni and nj ,
Υ(ni, nj), is defined as

Υ(ni, nj) =
d(ni, nj) · min(bi, bj)

α · cij + β(bij − cij)
(1)

where d(ni, nj) is the colour distance betweenni and nj ,
bi is the perimeter ofni, bij is the number of pixels in the
common boundary betweenni and nj and cij is the set of
pixels in the common boundary which corresponds to pixels
of the boundary detected by the Canny detector.α andβ are
two constant values used to control the influence of the Canny
edges in the grouping process. We set these parameters to 0.1
and 1.0 respectively.
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Fig. 3. Presegmentation stage: a-c) Original images; and b-d) colorized pre-segmentation images.

When the whole irregular pyramid is built, there is a set of
nodes which are not linked to any parent node at upper levels.
The union of the receptive fields of these nodes will generate
a partition of the input image. It must be noted that these root
nodes can be located at the different pyramid levels, i.e. they
are selected at different scales. Among these root nodes, the
set of keynodes will be chosen. Two constraints are required
to be a keynode: its receptive field must not be in contact
with the image border, and its colour must be different from
the colour of its neighbours. This second condition is always
satisfied by a root node, but imposing a minimum value to
this contrast measure the algorithm looks for region locations
and scales that can be repeatably associated under differing
views of the same object. That is, among the image regions
associated to the root nodes, the ’maximally stable’ ones are
those corresponding to nodes whose colour is very different
to the colour of their neighbours.

Once the set of visual features has been chosen, each region
is normalized geometrically using the covariance matrix. The
aim is that the covariance matrix of the transformed region
will be equal to the identity matrix. This is achieved by trans-
forming every region pixel by the inverse of the covariance
matrix of the original region [18]. Assuming local planarity
of the detected region, this geometric normalization, together
with the position of the image centroid, provides a rotation-
variant measurement of the image. Therefore, if one also
assumes that the geometric changes induced by the camera’s
motion can be described by an affine transformation, one will
need to represent the image region by a rotationally invariant
descriptor to achieve a viewpoint invariant description. This
descriptor will be presented in Section III.

Finally, the image region is normalized photometrically. In
this case, it is assumed that the combined effect of different
scene illumination and capture system settings can be modeled
by affine transformations of individual colour channels. Then,
the values of individual colour channels are transformed to
have zero mean and unit variance, allowing a patch to be
represented invariantly to photometric changes.

III. PCA KERNEL-BASED DESCRIPTOR

Colour histograms have been traditionally employed to
provide an efficient image region descriptor, encoding the
inner colour distribution of the corresponding set of pixels.
Besides, colour histograms can be easily quantized into a small
number of bins to satisfy the low-computational cost imposed
by real-time processing. On the contrary, colour histograms
do not take into account the spatial information. To avoid this
problem, the regions can be masked with a kernel in the spatial
domain [4].

Specifically, in our implementation, the CIELab colour
space has been chosen at the hierarchical grouping algorithm
and then also to characterize the colour of the salient regions.
Histogram have been quantized in 16 bins, resulting in a
descriptor of 16× 16 × 16 scalar values (4096 values). The
descriptor length is then significantly larger than the one of
other distribution-based descriptors like SIFT (128 values).
This implies more computational time and storage resources.
In order to reduce it, we have applied PCA to the kernel-based
histograms.

PCA is an approach for dimensionality reduction that de-
termines the directions along which the variability of the data
is maximal. For instance, this technique has been applied by
Ke and Sukthankar [9] to the normalized gradient patches pro-
vided by the SIFT detector or by Mikolajczyk and Schmid [17]
to obtain the final GLOH descriptor. PCA is conducted by
extracting the eigenvectors of the total scatter matrix of the
databaseST , defined as

ST =

N
∑

i=1

(Gi − Ḡ)(Gi − Ḡ)T (2)

whereḠ is the mean value of the database ofN descriptors
Gi.

EigenvectorsWi and associated eigenvaluesλi are calcu-
lated by solving

ST Wi = λiWi ∀i ∈ {1, ..., d} (3)

The transformation matrix is then defined asW =
{W1, W2, ...WK}, whereK is the minimal number of eigen-
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Fig. 4. a) Kernel-based descriptor; and b) PCA projections of the kernel-based descriptor in a).

vectors used to obtain a satisfying representation of the data.
Thus,W is an orthogonal transformation that diagonalises the
covariance matrixST . In our case, a set of 3100 training
samples was used to extract the set of eigenvectors. Then,
the compressed feature vector associated to a kernel-based
descriptor will be obtained by projecting it onto this set. This
projection onto a latent space not only reduces dimensionality
but also decorrelates the data. When considering a small
database of high dimensionality, this decorrelation can be
useful for further encodings, due to the sparsity of data in
high-dimensional space.

Fig. 4b shows the feature vectors associated to the kernel-
based descriptors depicted in Fig. 4a. In this case, a set of 500
eigenvectors has been chosen to ensure that the projection of
the data onto this reduced set covers at least 90% of the data’s
spread,

∑K

i=1 λi/
∑

i λi > 0.9.
Finally, it must be noted that the Euclidean distance between

two descriptors can be used to determine whether the two
salient regions correspond to the same patch in different
images.

IV. EXPERIMENTAL RESULTS

A. Evaluation of the proposed segmentation algorithm

The proposed segmentation algorithm has been quantita-
tively evaluated and compared with other similar algorithms.
Three empirical measures have been employed: the Shift-
Variance (SV) and the F and Q functions [14]. Shift variance
means that the image segmentation produced by pyramid-
based algorithms varies when the base of the pyramid is
shifted slightly. This is an undesirable effect, so that theSV
can be taken as a measure of the quality of a segmentation
algorithm. The F and Q functions are measures of the unifor-
mity or homogeneity within the segmented regions together
with simplicity in the sense of a relative lack of small holes
in the segmentation. Finally, these functions also take into
consideration that adjacent regions must present significantly
different values of their uniform characteristics.

The SV method compares the segmentation results provided
by a given algorithm for slightly shifted versions of the same

image. In our case, a window of 128× 128 pixels in the centre
of the original image has been taken. The segmentation of this
subimage is compared with each segmented image obtained
by shifting the window a maximum of 11 pixels to the right
and 11 pixels down. Thus, there are a total of 120 images
to compare with the original one. In order to perfom each
comparison between a segmented shifted imageIi and the
segmented original imageIor, the root mean square colour
difference (RMSDIor ,Ii

) has been employed [13]. Then, the
SV is expressed as

SV =
1

120

120
∑

j=1

RMSDIor ,Ij
(4)

The smaller the value of this parameter, the better is the
segmentation results.

On the other hand, the F function is computed as

F(I) =
1

1000(N · M)

√
R

R
∑

i=1

e2
i

Ai

(5)

with I being the segmented image,N · M the image size,
R the number of segmented regions, andAi and ei the area
of region i and its average colour error, respectively. The Q
function is defined by

Q(I) =
1

1000(N · M)
√

R
∑R

i=1

[

e2

i

1+logAi
+ (R(Ai)

Ai
)2

] (6)

with R(Ai) being the number of segmented regions with area
equal toAi. This measure penalizes more rigidly the existence
of small regions.

For comparison purposes, five irregular pyramids are em-
ployed: the BIP [14], the localized pyramid (LP) [7], the seg-
mentation approach proposed by Lallich et al [10] (MP), the
hierarchy of image partitions (HP) [6], and the combinatorial
pyramid (CoP) [2]. Four features have been evaluated: the F
and Q functions, the SV measure, and the execution time.
The images used are a set of 50 images from the Waterloo
and Coil 100 databases [13]. The algorithms were run on
a 3GHz Pentium IV PC. Table I presents the quantitative
results. One appreciates that the shift variance value of the
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Fig. 5. a) Reference image and detected features;b)–h) images matched against the reference image. The colour of the ellipses determines if the associated
region has been matched to a reference feature (displayed inyellow) or not (displayed in blue).

proposed approach is significantly reduced, providing better
results than the rest of approaches. The F and Q values are also
improved with respect to the values provided by the original
BIP, although they are greater than the ones provided by the
HP, the MP and the CoP. Finally, aathough the computation
time is slightly greater than with the original BIP, it is still at
least ten times less than in the rest of the irregular pyramids.

B. Testing the approach in an environment mapping frame-
work

The proposed approach has been tested on an ActiveMedia
Pioneer 2AT robot. Among other sensors, this robot is mounted
with a STH-MDCS stereoscopic camera from Videre Design.
This is a compact, low-power colour digital stereo head
with an IEEE 1394 digital interface. It consists of two 1.3
megapixel, progressive scan CMOS imagers mounted in a
rigid body, and a 1394 peripheral interface module, joined
in an integral unit. The camera was mounted at the front and

TABLE I
QUANTITATIVE SEGMENTATION RESULTS: HIERARCHY HEIGHT, NUMBER
OF REGIONS OBTAINED, F, Q,AND SHIFT VARIANCE (SV) VALUES, AND

EXECUTION TIME.

F Q SV Time (sec)
LP 743.2 1011.5 30.2 2.75
MP 650.1 818.5 29.3 3.42
HP 670.3 955.1 28.4 4.23
CoP 630.7 870.2 30.5 2.85
BIP 720.2 1090.1 44.1 0.20

Proposed 700.1 950.3 24.3 0.23

top of the robot at a constant orientation, looking forward.
The robot was driven through different environments while
capturing real-life stereo images. Images were restrictedto
640 × 480 or 320 × 240 pixels.

The viewpoint invariance of our approach has been also
qualitatively tested. Images of an scene starting from headon
(reference pose) and gradually increasing the viewing angle
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Fig. 6. Image examples of the eight sets used for comparison purposes.

and/or the distance to the reference pose have been captured.
Fig. 5 shows one of these experiments, where each visual
feature is represented by an ellipse. For each image, visual
features are extracted and matched to the features found
in the zero degrees reference image (Fig. 5a). A nearest
neighbour-based matching strategy has been used, i.e. two
regions A and B are matched if the descriptorDB is the
nearest neighbour toDA and if the distance between them
is below a thresholdU . With this approach, a descriptor has
only one match. The colour of the ellipses represented in Figs.
5b-h determines if the associated region has been matched to
a reference feature (displayed in yellow) or not (displayedin
blue). Fig. 11 shows some frames of an experiment conducted
in an indoor environment. In this test, detected regions were
matched during the trajectory using the same nearest network
algorithm. As can be seen, corresponding regions are matched
when the same scene is observed from different viewpoints
conditions.

Experimental results show that the system can deal with
changes in viewpoint up to 50 or 60 degrees and with scale
changes of 2 to 2.5. It can be also noted that the number of
matches found slightly decreases with increasing scale change.

V. A COMPARATIVE STUDY

Our approach has been also compared with other similar
methods employed the protocol described by Mikolajczyk et
al. [18]. Images, Matlab code to carry out the performance
tests, and binaries of the approaches have been downloaded
from http://www.robots.ox.ac.uk/∼vgg/research/affine. Specif-
ically, the database is composed by eight different image
sets that represent five changes in imaging conditions (view-
point changes, scaling, image blur, jpeg compression and
illumination changes). These image sets can be grouped into
two different scene types: one scene type contains homoge-
neous regions which present distinctive boundaries (structured
scenes), meanwhile the other type contains repeated textures

of different forms (textured scenes). As our approach is based
on structure cues in images, it is reasonable that it exhibits
a superior performance on structured scenes. Fig. 6 shows an
example from each image set. It must be noted that the set of
parameters employed by the proposed approach has not been
modified to deal with the different image sets.

To evaluate the described detector, we use the repeatability
score as described by Mikolajczyk et al. [18]. This indicates
how many of the detected affine regions are found in both
images, relative to the lowest total number of regions found
(where only the part of the image that is visible in both images
is taken into account). It must be noted that the output for our
detector is a set of arbitrarily shaped regions. However, for the
purpose of the comparisons using the Matlab code mentioned
above, the output region of all detectors are represented byan
ellipse. These ellipses have the same first and second moments
as the detected regions.

The proposed detector is compared to the difference of
Gaussian (DoG) [12], the Hessian-affine detector [16], the
maximally stable extremal region detector (MSER) [15], the
intensity extrema-based region detector (IBR) [19] and the
Fast-Hessian [1]. For all experiments, the default parameters
given by the authors are used for each detector. From Table
II, it can be noted that the detectors generate very different
numbers of regions, although this also depends on the image
type. Thus, some of them provide good results to structured

TABLE II
NUMBER OF DETECTED REGIONS AND COMPUTATION TIMES FOR

DIFFERENT DETECTORS FORGRAF IMAGE (SEEFIG. 6).

detector Number of regions Run time (sec)
DoG 1520 0.39
Hessian-affine 1649 2.43
Fast-Hessian 1418 0.12
MSER 533 0.56
IBR 679 9.77
Proposed 147 0.32
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Fig. 7. Repeatability scores for GRAF, WALL and BOAT sequences (see Fig. 6).

Fig. 8. Repeatability scores for BIKES, TREES and UBC sequences (see Fig. 6).

scenes (e.g. the proposed approach and the MSER) and others
to more textured scenes (e.g. Hessian-affine). Table II shows
that computation times are also very different. They have been
measured on a Pentium 4.2GHz Linux PC, for the GRAF
image, which is800 × 640 pixels.

The repeatability for six sets of images are illustrated in
Figs. 7 and 8. These results show that the proposed detector
ranks similar to the rest of approaches when it deals with
structured images. In these images, only few regions are
detected and the thresholds can be set very sharply, resulting
in very stable regions. On the contrary, the scores associated
to textured images are significantly bad when compared to the
point-based detectors (see Fig. 7, the WALL set).

Finally, the PCA kernel-based descriptor is evaluated using
the recall-precision criterion for image pairs, i.e. the number
of correct and false matches between two images [17]. Fig. 9
shows the results for three sets of images. Regions have
been detected using the proposed approach. Two regions are
matched if the distance between their descriptors is below a
thresholdU . The value of this threshold is varied to obtain
the curves (see [17] for further details). Compared descriptors
are the SIFT [11], colour SIFT [3] and GLOH [17]. From the
results, it can be noted that the PCA kernel-based descriptor
performs better than the rest of descriptors. The number of
regions is significantly low, and this implies that regions are
usually not overlapped. Besides, although the textured scenes

contain similar motifs, the regions capture distinctive image
variations. For these reasons, distribution-based descriptors
like the kernel-based one or the SIFT, exhibit a good per-
formance.

Fig. 10 shows the relationship between the matching accu-
racy of the proposed descriptor and the dimensionality of the
feature space. As expected, increasing the dimensionalityof
the feature vector results in better accuracy. However, when
this dimension exceeds a certain size, the matching accuracy
of the algorithm remains approximately constant.

VI. CONCLUSIONS

This paper describes an affine region detector whose perfor-
mance is similar to the current state-of-the art, both in speed
and accuracy. To obtain these regions, a hierarchical grouping
approach has been performed, generating from the input
image an irregular pyramid. Pyramid segmentation algorithms
exhibit interesting properties when compared to segmentation
algorithms based on a single representation: local operations
can adapt the pyramid hierarchy to the topology of the
image, allowing the detection of global regions of interest
and representing them at low resolution levels. In the obtained
hierarchy, the receptive field of a pyramid node is considered
as a salient regions if this pyramid node is high-contrasted
with respect to its neighbours. This detection is conducted
over the different pyramid levels, allowing to detect salient
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Fig. 9. Recall vs. 1-precision curves for GRAF, BIKES and LEUVEN sequences (see Fig. 6).

Fig. 10. Performance of the proposed descriptor as PCA dimension varies.

regions at different scales. On the other hand, salient regions
have been characterized by a kernel-based descriptor. In order
to reduce the large size of this descriptor, we have applied
PCA to the kernel-based histograms. The performance of the
proposed descriptor is comparable to other similar approaches.
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Fig. 11. Experiment in an indoor environment. Detected regions were matched during the trajectory using a nearest neighbour algorithm. It can be seen
how corresponding regions are matched when the same scene isobserved, e.g. in the following frame sets: (#2, #6, #30), (#100, #108), (#146, #153, #198),
(#222, #224), (#236, #241), (#346, #358), (#414, #442, #445) and (#489, #500, #505, #517)


