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Voronoi-Based Space Partitioning for Coordinated
Multi-Robot Exploration

Ling Wu, Miguel Angel Garcia, Domenec Puig and Albert Sole

Abstract—Recent multi-robot exploration algorithms usually
rely on occupancy grids as their core world representation.
However, those grids are not appropriate for environments that
are very large or whose boundaries are not well delimited
from the beginning of the exploration. In contrast, polygonal
representations do not have such limitations. Previously, the
authors have proposed a new exploration algorithm based on
partitioning unknown space into as many regions as available
robots by applying K-Means clustering to an occupancy grid
representation, and have shown that this approach leads to higher
robot dispersion than other approaches, which is potentially bene-
ficial for quick coverage of wide areas. In this paper, the original
K-Means clustering applied over grid cells, which is the most
expensive stage of the aforementioned exploration algorithm, is
substituted for a Voronoi-based partitioning algorithm applied to
polygons. The computational cost of the exploration algorithm is
thus significantly reduced for large maps. An empirical evaluation
and comparison of both partitioning approaches is presented.

Index Terms—Multi-robot, exploration, polygonal model, K-
means.

I. INTRODUCTION

MULTI-ROBOT coordinated exploration of unknown en-
vironments is a challenging task that has been attracting

considerable attention in the mobile robotics and artificial
intelligence communities due to its potential applications to
surveillance, search & rescue and space exploration problems.

The main aim of robot exploration is to unveil the struc-
ture and contents (basically free space and obstacles) of an
unknown region of space. This goal must be solved under
some constraints typically related to minimizing time and/or
energy consumption. When the region to be explored is so
large that those constraints cannot be satisfied with a single
robot, a team of robots must be considered. In this case, the
exploration algorithm must guarantee a coordinated deploy-
ment of the available robots such that, at least, the parallel
exploration yields a reasonable speedup and efficiency, and
eventually satisfies other application-dependent criteria, such
as maximizing robot dispersion [11].

The majority of approaches to multi-robot exploration (e.g.,
[1], [4], [6], [11], [12], [14] are based on occupancy grids [3],
[9] as the basic space representation model. Occupancy grids
constitute a simple yet effective way of modelling the world as
a regular discretization of space. Every cell in the grid keeps
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the probability of a portion of space being empty or occupied
by an object/obstacle.

However, occupancy grids are not suitable enough for
modelling and processing large environments. On the one
hand, hundreds of thousands of cells must be kept and pro-
cessed even for workspaces of moderate size. This has severe
implications in computational time and memory consumption.
On the other hand, the maps are rectangular and bounded by
their initial size. If the real world goes beyond the limits of
the current grid, there is no means to efficiently extend the
map.

The aforementioned inefficiency and lack of flexibility of
occupancy grids have motivated the use of alternative world
representations based on polygonal models (e.g., [8], [10],
[13]). In that case, the exploration algorithm is modified to
deal with points and regions instead of cells, in some cases by
modelling the free space as a graph of basic convex regions
(e.g., trapezoids and triangles in [8], [10]), and in other cases
by defining graphs of curves (roadmaps) contained in the
empty space (e.g., [2], [13]).

The present paper goes into this direction as it describes
and evaluates the application of a polygonal world model
as the core spatial representation of a previously proposed
multi-robot exploration algorithm [11] originally based on
occupancy grids. This algorithm differs from previous ap-
proaches in that it explicitly forces the spread of the available
robots across the unknown space by successively clustering the
unknown cells through the well-known K-Means algorithm.

In this way, the algorithm prevents in a simple and effective
way the greedy-like behaviour of many previous proposals,
which usually drive the various robots according to local op-
timization criteria basically dependent on the current location
of the robots and their nearby exploration targets, which are
constituted by the frontiers of the already explored workspace.
In taking these frontiers into account, they somewhat lose sight
of the global goal of exploration, which is discovering the
overall unknown area.

However, when large environments are considered, the
repetitive execution of K-Means over hundreds of thousands
of cells has a severe impact on the computational cost of the
exploration algorithm. This is why a more efficient polygonal
model proves to be beneficial.

This paper is organized as follows. Section II summarizes
the exploration algorithm originally proposed in [11]. Section
III describes the adaptation of that algorithm to the pro-
posed polygonal space representation. Section IV shows an
experimental comparison between both approaches. Finally,
conclusions and further research lines are given in Section V.
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Fig. 1. Multi-robot coordinated exploration based on K-Means space
partitioning on an empty working space. A partition of unknown space into
eight regions (K = 8) is shown. Every region is assigned to a single robot.
The white area represents the space that has already been explored, while the
coloured regions are the regions produced by K-Means.

Fig. 2. The same exploration method as in Fig. 1. applied to an unstructured
working space populated with scattered obstacles. Each region is assigned to
a single robot (K = 8). The black areas are already-found obstacles and the
irregular spots and rectangules in the background are obstacles that have not
been found yet.

II. GRID-BASED MULTI-ROBOT EXPLORATION WITH
K-MEANS

The multi-robot exploration algorithm previously proposed
in [11] has the following main features:

• The workspace is modelled as an occupancy grid (dis-
cretized rectangular map) whose cells can be in one of
three states: free, unknown and occupied (obstacle).

• The size and shape of the map is predetermined.
• The whole map is initially unknown.
• All robots share the same global map and can communi-

cate with a central decision agent without communication
failure.

Fig. 3. A Voronoi diagram of 10 sites (points). Space is partitioned into
10 voronoi cells Ai, each of which is constituted by all the points which are
closer to one site than to any other site. The edge between two areas consists
of a subset of equidistant points to two sites. Some cells, such as A10 and
A4, extend to infinite.

• The robots are able to localize themselves within the map.

The exploration algorithm starts with all robots scanning
the environment from their starting positions. The initial free
cells, occupied cells and frontier cells (unknown cells adjacent
to free cells) are thus determined.

The following steps are then repeated until all cells in the
map are known (either empty or occupied):

1) The remaining unknown cells are clustered into as many
disjoint regions as available robots by applying K-
Means, with K being the number of robots. Each robot
is then assigned to its closest region according to the
Euclidean distance to the regions centroids.

2) Each robot is assigned the frontier cell with the lowest
cost. The cost of a frontier cell with respect to a robot is
calculated by summing up: (a) the length of the shortest
path between the robot and the frontier cell, (b) the
Euclidean distance from the frontier cell to the centroid
of the region assigned to that robot, provided the cell
does not already belong to that region, (c) a constant
penalization in case the frontier cell is within the sensor
range of another frontier cell assigned to a different robot
(this guarantees the repulsion between robots).

3) All robots start moving to their assigned frontier cells
until the first robot reaches its destination.

The first two steps are referred to as the decision stage. In
turn, the third step is referred to as the motion stage.

Fig. 1 and Fig. 2 respectively show a snapshot of the map
state after the decision stage during the exploration of both
a blank and an unstructured environment with eight robots.
The unexplored space is partitioned by applying the K-means
clustering algorithm. Each of the eight robots is assigned to
one of the regions. Once that assignment has been performed,
each robot starts moving to its own region.
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Fig. 4. (a) Polygon to be partitioned. (b) Original Voronoi diagram. (c) Constrained Voronoi diagram and cells.

A. Grid-based K-Means partitioning

During the decision stage, all unknown cells in the grid are
clustered by applying the K-Means algorithm according to the
following iterative process:

1) Randomly choose K unknown cells Ci, 1 ≤ i ≤ K, as
prototypes of the K classes.

2) For every unknown cell, compute its Euclidean distance
to the K prototypes and classify the cell into the class
i of its closest prototype Ci.

3) Determine the center of mass Mi of the unknown cells
classified into every class i.

4) If Ci = Mi for all i (convergence condition), go to step
5. Otherwise, substitute every Ci for its corresponding
Mi and proceed from step 2.

5) All unknown cells are partitioned into K stable disjoint
regions.

III. POLYGONAL-BASED MULTI-ROBOT EXPLORATION
WITH VORONOI DIAGRAMS

The multi-robot exploration algorithm described in the
previous section can be adapted to a polygonal world model
representation in a straightforward manner by considering that:

• The workspace is modelled as a disjoint set of closed
polygons. Every polygon has one of three states: free,
unknown or occupied (obstacle). The map is constituted
by the union of all polygons. Its size and shape are
arbitrary.

• The whole map is initially constituted by a single, un-
known polygon.

• Free and occupied polygons are included in the map
after robot sensing, and subtracted from the unknown
polygon/s to which they belong. An efficient library is
utilized for Boolean operations between polygons [7].

• Edges of unknown polygons that are adjacent to free
polygons are referred to as frontier edges.

• Robot path planning is performed in the interior of the
available free polygons by applying any cellular decom-
position algorithm.

However, the distinctive feature of the exploration algorithm
described in [11] is the partitioning of unknown cells during

the decision stage by applying K-Means, which is an algorithm
specifically devised for clustering clouds of points (cells in
this scope) and, hence, not suitable for partitioning polygonal
maps.

Notwithstanding, the K-Means clustering algorithm can be
mimicked when dealing with polygonal maps by means of
Voronoi diagrams.

A. Voronoi diagrams
The Voronoi diagram [5] of a set of 2D points, also referred

to as sites, Ci, 1 ≤ i ≤ K, is a partition of that space into K
disjoint convex regions known as Voronoi cells. Every region
Vi is defined by the points in space that are closer to Ci than
to any other Cj , j 6= i.

Although the boundaries of regions are constituted by
curves in general, the majority of efficient implementations
of Voronoi diagrams currently generate polyline boundaries.
Fig. 3 shows an example of a Voronoi diagram corresponding
to a set of sites.

As mentioned above, Voronoi diagrams are theoretically de-
fined as a partition of space (2D space in this case). Therefore,
they have no exterior limits and, hence, extend to infinity.
This means that some Voronoi cells may be unbounded and
have infinite area. For instance, this is the case of the cells
associated with points A4, A10, A8, A6 and A7 in the example
of Fig. 3. However, the proposed multi-robot exploration
algorithm only requires the partitioning of those polygons
corresponding to unknown regions (unknown polygons). This
means that the obtained Voronoi diagrams must be further
constrained to the interior of those unknown polygons.

In order to constrain a Voronoi diagram to the interior of a
given closed polygon that is to be partitioned, an AND logical
operation [7] must be performed between that polygon and the
cells of the original Voronoi diagram. The result is a set of
closed Voronoi cells that are globally bounded by the polygon
to be partitioned. This is illustrated in Fig. 4.

If the unknown area to be partitioned is made up of a set
of disconnected regions, and, thus, defined by a collection of
closed, separate polygons, the AND operation is carried out
between the cells of the Voronoi diagram and each of those
polygons in arbitrary order.
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Fig. 5. An example of partitioning sequence of an unknown region with
Voronoi diagrams according to the iterative procedure described in section
III-B with four robots (K = 4). The bottom image shows the final partition
after convergence of the constrained Voronoi cells.

Fig. 6. An example of partitioning sequence of an unknown region with
Voronoi diagrams according to the iterative procedure described in section
III-B with eight robots (K = 8). The bottom image shows the final partition
after convergence of the constrained Voronoi cells.
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B. Polygonal-based Voronoi partitioning

The K-Means partitioning algorithm described in section
II-A is adapted to the proposed polygonal model by applying
Voronoi diagrams according to the following iterative process.

1) Randomly choose K points Ci, 1 ≤ i ≤ K, contained
in the polygons corresponding to the current unknown
regions in the map.

2) Compute the Voronoi diagram associated with the cur-
rent set of Ci.

3) Constrain the cells of the Voronoi diagram to the current
unknown polygons (see section III-A).

4) Determine the center of mass Mi of every constrained
Voronoi cell.

5) If Ci - Mi < ε for all i, ε being a convergence parameter,
go to step 6. Otherwise, substitute every Ci for its
corresponding Mi and proceed from step 2.

6) The set of unknown polygons is partitioned into K stable
disjoint regions.

Fig. 5 illustrates the aforementioned iterative process of
Voronoi diagrams until they converge considering the explo-
ration of a blank map with 4 robots. In the top image, each
region has two centroids: the original one and the centroid
calculated from the current Voronoi diagram. The partition
becomes stable when those centroids converge and, thus, every
region has a single centroid. The Voronoi diagram in the
bottom image shows the stable partition corresponding to that
example. Fig. 6 shows another example of the evolution of the
Voronoi partitioning process for 8 robots and the same map
used in Fig. 5. The white areas in both figures correspond to
space that has already been explored.

IV. EXPERIMENTAL RESULTS

As indicated in section II, the most time consuming stage
of the multi-robot exploration algorithm proposed in [11] is
the successive partitioning of unknown cells by applying the
K-Means clustering algorithm. However, this time can be
significantly reduced by replacing the original world model
representation based on occupancy grids for an equivalent rep-
resentation based on polygons, and then applying constrained
Voronoi diagrams as described in section III.

In order to compare both approaches in analogous con-
ditions, the same maps have been processed with both the
grid-based and the polygon-based multi-robot exploration al-
gorithms. Since the number of iterations until convergence
of both partitioning algorithms (see sections II-A and III-B)
may slightly differ, the iterative partitioning process for both
approaches has been forced to stop after the same number of
iterations (currently 30 iterations).

For example, Fig. 7 plots the partitioning time for both
the grid-based (K-Means) and polygon-based (Voronoi) ap-
proaches corresponding to every exploration step (moment
at which one of the robots reaches its assigned frontier,
and the decision stage, including repartitioning of unknown
regions, is rerun; see section 2) considering 4 robots and
a blank map whose associated occupancy grid has 320x240
cells. In these experiments, every cell accounts for an area
of 0.16 m2 (the cell sides are 40 cm long). Hence, this map

Fig. 7. Partitioning times during the exploration of a medium-size blank
map of 320x240 cells with 4 robots.

Fig. 8. Partitioning times during the exploration of a big-size blank map of
400x400 cells with 4 robots.

represents a workspace of 12,288 m2. Similarly, Fig. 8 plots
the partitioning times for both approaches corresponding to
the exploration with 4 robots of a blank map constituted by
400x400 cells (25,600 m2).

As the exploration proceeds, the partitioning time corre-
sponding to the grid-based approach goes down steadily. The
reason is that the number of unknown cells (the unknown area)
to which the K-Means clustering algorithm must be applied is
progressively reduced as the robots scan the environment.

In contrast, the computation time of the polygon-based par-
titioning algorithm starts growing as the number of edges that
define the unknown polygons increases. The computational
cost of the Voronoi diagrams algorithm only depends on the
constant number K of robots. Constraining the Voronoi edges
to the interior of the map is also related to the number of
robots. However, the Boolean AND operations required to
constrain those diagrams to the available unknown polygons
depend on the number of edges of those polygons, and that
keeps changing as the robots explore the environment —
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TABLE I
COMPARISON OF AVERAGE COMPUTATION TIMES BETWEEN K-MEANS

AND VORONOI PARTITIONING METHODS, CORRESPONDING TO A
MEDIUM-SIZE BLANK MAP AND DIFFERENT NUMBERS OF EXPLORING

ROBOTS.

KMeans-based Voronoi-based
partitioning partitioning

2 Robots 326ms 151ms (46,39%)

4 Robots 592ms 298ms (50,23%)

6 Robots 961ms 604ms (62,90%)

8 Robots 1253ms 836ms (66,75%)

TABLE II
COMPARISON OF AVERAGE COMPUTATION TIMES BETWEEN K-MEANS

AND VORONOI PARTITIONING METHODS, CORRESPONDING TO A BIG-SIZE
BLANK MAP AND DIFFERENT NUMBERS OF EXPLORING ROBOTS.

KMeans-based Voronoi-based
partitioning partitioning

2 Robots 682ms 301ms (44,10%)

4 Robots 1723ms 464ms (26,95%)

6 Robots 1983ms 1046ms (52,75%)

8 Robots 2699ms 1346ms (49,86%)

notice that although the total area of the unknown polygons
keeps going down during the process, the number of edges
of their boundaries may go up and down depending on the
intricacy of their shapes (see Fig. 5).

However, the exploration reaches a point after which the
unknown polygons become small enough as to start decreasing
the number of edges of their boundaries. From that point
on, the computation time of the polygon-based partitioning
algorithm keeps declining. This behaviour can be clearly
appreciated in the experiments depicted in Fig. 7 and 8.

It is important to remark that the benefits of the polygon-
based partitioning algorithm are not relevant for small maps
since, in that case, the number of cells to be partitioned
is small. Hence, cell-based partitioning cannot be expensive.
However, the proposed technique is clearly superior for big
maps as expected.

A comparison between the partitioning times by considering
different numbers of robots has also been carried out. As
can be seen in Fig. 9, 10, 11, 12, 13 and 14, Voronoi-based
partitioning performs better than KMeans-based partitioning
for both middle size and big size maps with the different
configurations of robots. It can also be noticed that the compu-
tation time of Voronoi-based partitioning rises with the number
of robots. The reason is that the polygons that bound the
already-explored regions (white areas in the figures) increase
their complexity (number of edges) as the number of robots
goes up (see Fig. 1). That complexity can be significantly
reduced if those polygons are conveniently simplified by
applying polygonal approximation algorithms, such as shown
in Fig. 6.

Table I and Table II show the benefits of Voronoi-based
partitioning over cell-based partitioning. The average compu-
tation times for both approaches corresponding to two blank
maps and four different configurations of robots, which have

Fig. 9. Partitioning times during the exploration of a medium-size blank
map of 320x240 cells with 2 robots.

Fig. 10. Partitioning times during the exploration of a big-size blank map
of 400x400 cells with 2 robots.

been shown in the eight graphs of Fig. 7, 8, 9, 10, 11, 12, 13,
14 are compared in both tables.

V. CONCLUSION

This paper describes and evaluates the extension of a previ-
ously proposed multi-robot exploration algorithm and shows
that by replacing the original world model (an occupancy grid)
with a more compact and flexible polygonal representation,
the new approach significantly increases the efficiency of the
most expensive stage of the original algorithm, which is the
partitioning of unknown areas into as many regions as robots.
The original K-Means clustering algorithm applied over grid
cells is substituted for a Voronoi-based partitioning algorithm
applied to polygons.

The current algorithm has been tested in simulation. Further
work will involve improving the global efficiency of the multi-
robot coordinated algorithm and evaluating it on a real team
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Fig. 11. Partitioning times during the exploration of a medium-size blank
map of 320x240 cells with 6 robots.

Fig. 12. Partitioning times during the exploration of a big-size blank map
of 400x400 cells with 6 robots.

of robots. We also aim at extending the current technique to
unbounded environments.
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