
IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

Digital Object Identifier 10.1109/TE.2007.906601

VisualJVM: A Visual Tool for
Teaching Java Technology

Pedro Pablo Garrido Abenza, Angel Grediaga Olivo, and Bernardo Ledesma Latorre

Reference

• ASCII Text

Garrido Abenza, Pedro Pablo; Grediaga Olivo, Angel; Ledesma Latorre, Bernardo; "VisualJVM:
a visual tool for teaching Java technology", Education, IEEE Transactions on, Vol.51, no.1,
pp.86-92, Feb. 2008

• BibTex

@ARTICLE{visualjvm2008,
 author = {Garrido Abenza, P.~Pablo and Grediaga Olivo, Angel and
Ledesma Latorre, Bernardo},
 title = "{VisualJVM: a visual tool for teaching Java technology}",
 journal = {Education, IEEE Transactions on},
 year = {Feb. 2008},
 volume = {51},
 number = {1},
 pages = {86-92},
 doi = {10.1109/TE.2007.906601},
 ISSN = {0018-9359}
}

Abstract

This paper presents a laboratory session of an Advanced Programming course to introduce
students to the technology involved with the Java programming language. In this special lab
session the educational software tool VisualJVM is used, providing a graphical front-end to a
Java virtual machine (JVM). This tool helps students learn about JVM architecture, learn how
JVM works, and consequently, to understand why a Java program is platform independent. The
student reaction to this experience was very positive and the authors are planning to use the
tool in other contexts.

©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16364977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

86 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

VisualJVM: A Visual Tool for
Teaching Java Technology

Pedro Pablo Garrido Abenza, Angel Grediaga Olivo, and Bernardo Ledesma Latorre

Abstract—This paper presents a laboratory session of an
Advanced Programming course to introduce students to the
technology involved with the Java programming language. In this
special lab session the educational software tool VisualJVM is
used, providing a graphical front-end to a Java virtual machine
(JVM). This tool helps students learn about JVM architecture,
learn how JVM works, and consequently, to understand why a
Java program is platform independent. The student reaction to
this experience was very positive and the authors are planning to
use the tool in other contexts.

Index Terms—Educational technology, Java language, ob-
ject-oriented programming (OOP), program interpreters, user
interfaces.

I. MOTIVATION

W
ITH the explosion of the Internet and the demand for

platform independent software, Java technology has

grown in popularity. Java has a wide range of applications and

target platforms, ranging from PCs and Web servers to em-

bedded devices and smart cards. Thus, there is a strong demand

for knowledgeable Java programming engineers. Therefore,

Java programming courses have been introduced into many

curricula. Java is not only a programming language, but also a

set of specialized platforms that are also known as Java runtime

environments (JRE), which are necessary to execute Java

programs. JRE is composed of the Java library of classes [Java

application programming interface (API) implementation] and

a Java program interpreter. The interpreter, also called Java

virtual machine (JVM), is a program implemented for a specific

platform that executes the multiplatform sequence of bytes

generated by a Java compiler (bytecodes). This unique feature

is the basis of the platform independence of Java programs, and

can be difficult to understand for many students, even those

able to write Java programs [1].

The primary motivation for the development of VisualJVM

was to provide a graphical user interface (GUI) or front-end

to a JVM implementation, which had been developed from

scratch by the authors for research purposes. The role of the

front-end was to facilitate the debugging and testing of the

extensive source code written in C. This front-end shows at

Manuscript received August 11, 2006; revised June 14, 2007.
P. P. Garrido Abenza is with the Department of Physics and Computer

Architecture, Miguel Hernandez University, 03202 Elche, Spain (e-mail:
pgarrido@umh.es).

A. Grediaga Olivo and B. Ledesma Latorre are with the Department
of Computing and Information Technology, University of Alicante, 03690
San Vicente del Raspeig, Alicante, Spain (e-mail: angel.grediaga@ua.es;
bernardo.ledesma@ua.es).

Digital Object Identifier 10.1109/TE.2007.906601

any time the internal state of the interpreter in a graphic and

interactive mode. So VisualJVM is composed of the Java inter-

preter and the front-end; the former works as a back-end and

is able to run together with or without the front-end. However,

the use of this tool revealed that VisualJVM was very suitable

for teaching some theoretical concepts involved with the Java

programming language. Because of this the front-end was

improved, giving special attention to factors like usability and

readability, and a set of laboratory exercises were developed

and successfully integrated into an Advanced Programming

course for Telecommunications Engineering degrees at Miguel

Hernandez University, Elche, Spain. Whereas the authors use

this tool to debug the source code of their own JVM imple-

mentation, the students use VisualJVM as an educational tool

to learn Java technology.

This paper is focused particularly on the benefits of

VisualJVM as an educational tool, and is structured as follows.

First, Section II examines other related tools and discusses the

advantages of VisualJVM. Section III presents the lab session,

while Section IV details the first exercise developed, and de-

scribes the use of the VisualJVM tool. The results of the student

evaluation of the effectiveness of VisualJVM in enhancing the

learning process are discussed in Section V. Finally, Section VI

consists of concluding remarks and future plans.

II. RELATED TOOLS

Existing tools, like jclasslib Bytecode Viewer and Class

Viewer for Java, could help in achieving the goals of this lab

session. However, these tools only show static information

about Java compiled classes; they do not show the internal state

of the JVM during the execution of a Java program.

There are other tools that can be used to trace the execution

of Java programs. Loggers, like Java Logging API and log4j,

need to modify the source code so as to collect information at

execution time. In contrast, since VisualJVM works with .class

files (like any other JVM), a user can work with Java programs

even when their source code is not available. Tracers, debug-

gers and profiler tools have been developed using Java platform

debugger architecture (JPDA), including JTracor, jLouiss, Java-

TraceIt! [2], extensible Java profiler (EJP), JProfiler, or hprof.

None of these tools require a recompilation of the Java source

code. However, much as in integrated development environ-

ments (IDEs) such as Microsoft Visual Studio (which includes

Visual J#), Borland JBuilder, VisualCafe, NetBeans, or Eclipse,

they work at the source code level and they do not show the inner

workings of the JVM.

Javy [3] is a virtual environment that simulates the JVM, and

allows users to learn the JVM structure and the Java language

0018-9359/$25.00 © 2008 IEEE

GARRIDO ABENZA et al.: VISUALJVM: A VISUAL TOOL FOR TEACHING JAVA TECHNOLOGY 87

compilation. A Java class visualization tool has also been de-

veloped [4] that allows interaction with a visualization of any

Java class through the instantiation of objects. Several applets

that simulate JVM executing a few bytecode instructions are

included in [5]. Unlike these tools, VisualJVM is not a simu-

lator; when a Java program is loaded by the Java interpreter

that program really is executed. In other words, VisualJVM has

many of the benefits but none of the limitations of a simulation

tool [6], [7].

Moreover, nearly all the previously mentioned tools have

normally been developed for only one target platform, whereas

VisualJVM is highly platform-independent because JVM is

written in standard C and the front-end is based on the Qt 4.0

Opensource toolkit [8]. Such a front-end cannot be found in

common JVM implementations (e.g., Sun Microsystems’ JDK

[9], IBM Jikes research virtual machine (RVM) [10], [11],

Kaffe [12], Joeq [13], etc.). Specifically, the Jikes RVM is used

in many teaching courses such as Advanced Compiler Tech-

niques, Advanced Object-Oriented Programming, Compiler

Design and Optimization, etc. However, to the knowledge of

the authors, VisualJVM is the first JVM including a graphical

interface that visualizes the internal state and the behavior of

a real JVM. Thus, VisualJVM is very suitable for teaching

purposes.

III. DESIGN OF THE LAB SESSION

In this section the design of the lab session is described. The

context of the course and prerequisites are first specified, and

then the learning objectives are described. Finally, the procedure

to be followed and the necessary lab infrastructure are detailed.

A. Context of Course

The Advanced Programming course aims to teach third-year

students the Java programming language, and to introduce them

to good computer program design principles using the object-

oriented programming (OOP) methodology. The course con-

sists of a one-hour lecture and a two-hour lab session per week.

Thus, this one-semester course (15 weeks) features an important

practical component. Even though there are no official course

prerequisites, the students are expected to have basic program-

ming experience in either C or assembler; this background is

acquired through several preceding courses. Some familiarity

with abstract data types (ADT) (e.g., lists, stacks, or queues),

although not required, would be helpful.

B. Learning Objectives

The two-hour lab session is not intended to give students a

complete knowledge of JVM; this experience is, in fact, a unique

opportunity for them to become familiar with Java technology.

The learning objectives (LOs) are divided into two parts.

1) Outside the JVM: The goal of this first part is to reinforce

theoretical concepts about Java technology.

• Objective #1 (LO#1): To distinguish between an inter-

preted and a compiled language. Students will be able

to differentiate between a compiler and an interpreter, in

other words, to distinguish CPU-specific machine code

from platform-independent bytecodes.

• Objective #2 (LO#2): To understand why a Java program

is platform independent. Students will prove to them-

selves that, unlike the C programming language, a Java

program can be executed under two different operating

systems (OSs) without recompiling the source code.

• Objective #3 (LO#3): To differentiate the concepts of

JVM, JRE, and the Java development kit (JDK), which

are often confused by students.

2) Inside the JVM: Part 2 addresses issues related to the in-

ternal structure of the JVM. The goal is for students to get

a general overview of how the Java programming language

is implemented, since this is an unknown area for them.

• Objective #4 (LO#4): To interpret the structure of the

class file format, which defines the representation of a

Java class. Students will be able to recognize binary files

representing a Java class.

• Objective #5 (LO#5): To become familiar with the JVM

instruction set (opcodes). The JVM has a complex in-

struction set computer (CISC) architecture because JVM

supports about 200 instructions, in contrast to the re-

duced instruction set computer (RISC), which supports

fewer instructions. Java class files are, therefore, very

compact. Students will be able to know the format of

some of the opcodes and the operations they perform.

• Objective #6 (LO#6): To identify and recognize the JVM

architecture. Students will acquire an understanding of

the runtime data areas used during the execution of a

Java program (namely: frames, JVM stacks, the heap, or

the runtime constant-pool).

• Objective #7 (LO#7): To describe some of the processes

involved with the execution of Java programs, such as

the inner loop of the JVM, method invocations, passing

arguments to a method, returning a value from a method,

use of the operand stack of a frame (e.g., doing arith-

metic operations), instancing objects, etc. Students will

also verify that JVM is stack-oriented, meaning that, for

example, the arithmetic instructions take the necessary

operands from the operand stack and the results of the

operation are pushed onto the operand stack.

• Objective #8 (LO#8): To understand how the high-level

Java source code is compiled to the low-level bytecodes.

This LO would be useful for compiler writers and for

compiler construction courses, but was not addressed in

the lab session presented in this paper.

A different instrument was used to measure each of these

parts, which will be discussed in Section V. Once the LOs were

defined, the procedure and a set of exercises were designed to

enable the students to attain them.

C. Procedure

The two-hour lab session presented in this paper takes place

in the last week of the semester, when all the important features

of Java technology have already been explained in lectures. De-

spite the fact that most of the students have a good knowledge

of the Java programming language, their comments reveal that

JVM is a black box for them, since the internal structure is an

88 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

obscure concept, and they have only a limited belief in the the-

oretical explanation given of the Java technology, specifically,

the concept of Java platform independence.

In addition, to prepare the students for the new lab session, a

brief slide presentation that introduced several concepts about

the JVM architecture was given in a lecture during the pre-

ceding week. A first example, the “Hello World” program, was

addressed in a step-by-step manner in this presentation. At the

end of this introductory class the preparatory reading of the

VisualJVM manual was assigned to the students as homework.

D. Lab Infrastructure

These four elements are required to accomplish this lab ses-

sion: 1) the lab room must include one PC per student, able to

boot two desktop OSs, including Windows and Linux (alterna-

tively, making use of a Linux Server or Linux Live-CD is partic-

ularly useful for both students and educators alike); 2) the JDK,

available for both platforms [9], which includes the JRE and

provides several command line tools for the development of Java

programs, including the Java compiler (javac), and a disas-

sembler of Java classes (javap); 3) the JVM specification [14];

and 4) the VisualJVM binary and documentation for the specific

platform. All the course material, as well as several other exer-

cises, is available for downloading from the VisualJVM website:

http://obelix.umh.es/pa/visualjvm.

IV. LAB EXERCISES

A lab session is presented in this section in which the stu-

dents examine the execution of several ready-made Java pro-

grams. The first one is the “HelloWorld” program that just writes

a “Hello World!!” message on the computer screen. This short

program is usually the first to be attempted when learning any

programming language [15].

//HelloWorld.java

class HelloWorld (

public static void main(String[] args) (

System.out.println(“Hello, World!!”);

)

)

This HelloWorld.java file is compiled into a bytecode se-

quence and written to a HelloWorld.class file by using the Java

compiler included in the J2SE [9] (javac command). Then,

in the first exercise, several other command line tools included

in the J2SE are used in order to execute the program, whereas

in the second exercise, only VisualJVM is used. Both exercises

are detailed below.

A. Lab Exercise: HelloWorld—Without VisualJVM

The student executes this program using the Java runtime in-

terpreter (java command) as follows:

C:\java HelloWorld

Hello, World!!

Although the Java interpreter runs the program opcode-by-

opcode, this process is not observable by the students. In order

to understand how the JVM interpreting the bytecodes works, it

is necessary to look into the HelloWorld.class file.

Identifying the class file is easy using any binary file editor

and looking at the first four bytes of the file, which must be the

hexadecimal magic number 0xCAFEBABE. However, the class

file format is not simple and it is very difficult to analyze the

rest of the bytes by hand, since they contain the version number,

access flags, the runtime constant-pool, fields and methods de-

clared by the class, generated opcodes for each method, etc. So

to get these data more simply, instead of analyzing the binary

files by using a binary file editor, the javap command tool

(which is a disassembler of class files that parses them and prints

out all the previously mentioned data) was used as follows:

C:\javap -c HelloWorld

Compiled from “HelloWorld.java”

class HelloWorld extends java.lang.Object{

HelloWorld();

Code:

0: aload_0

1: invokespecial #1; //Object.“<init>”

4: return

public static void main(java.lang.String[]);

Code:

0: getstatic #2; //Field
out:LPrintStream;

3: ldc #3; //String Hello, World!!

5: invokevirtual #4; //PrintStream.println

8: return

}

At first glance the “HelloWorld” program seems very simple.

However, following the execution is a complex and time-con-

suming task if done manually, due to the great amount of nested

method invocations that are made from the println method.

When a method is invoked (with either invokespecial or

invokevirtual opcodes), the following steps are necessary.

1) Extract the corresponding class file (e.g., Object.class)

from the ZIP or JAR files containing the Java API.

2) Use the javap tool to disassemble the class as shown pre-

viously, and look for the invoked method.

3) Follow the execution flow opcode-by-opcode by hand. If

an invoke opcode is found, then go to step 1.

Because the JVM instruction set has about 200 opcodes,

the students need to consult the JVM Specification [14] to

learn which operation each opcode performs. In order to avoid

wasting time, educators suggested skipping this exercise and

going on with the next one, once the student realizes that

putting this process into practice is not feasible.

B. Lab Exercise: HelloWorld—With VisualJVM

To illustrate the usefulness of VisualJVM, the “HelloWorld”

program will again be examined in this section. To achieve

GARRIDO ABENZA et al.: VISUALJVM: A VISUAL TOOL FOR TEACHING JAVA TECHNOLOGY 89

Fig. 1. Screenshot of the main window of VisualJVM.

LO#1 and LO#2, the exercise is first done using Windows

OSs, and then repeated using Linux OSs. In both cases the

same HelloWorld.class file is used (i.e., without recompiling

the source code), so that the student realizes that an interpreted

program is different from a compiled one.

Within VisualJVM (Fig. 1), the JVM must be configured and

started up before a Java program can be executed. VisualJVM

is not a full JRE, but only a JVM; in other words VisualJVM

does not include the Java API classes. Therefore, the user must

provide the exact location of the Java API classes, which differs

according to the platform, library version, and developer (e.g.,

Sun Microsystems’ JDK or GNU Classpath). This configuration

can be set by either setting the VISUALJVM_JAVAPATH envi-

ronment variable before calling VisualJVM, or by selecting the

path from the application. After that the student can distinguish

between JVM, JRE, and JDK (LO#3).

Before executing any Java program the interpreter must be

started up, that is, loading and linking of the basic Java classes.

A JVM implementation may choose to use lazy resolution (i.e.,

to resolve each symbolic reference in a class individually, only

when used) or static resolution (i.e., to resolve all symbolic ref-

erences at once, when the Java interpreter starts up). VisualJVM

allows either of the two methods to be chosen. Static resolu-

tion implies that much greater delays are involved in the JVM

start-up; the execution, however, will be faster later on.

Once the interpreter has been started up, no matter which

kind of resolution is chosen, the student selects the .class file

containing the main class of the Java program to execute (e.g.,

HelloWorld), and optionally, to specify the command line argu-

ments passed to the main method (Fig. 1). Finally, the program

can be executed by clicking either the [run] or [run step-by-step]

button. In the latter case the execution dialog opens as a new

window, allowing the user to step through the code opcode-by-

opcode (not line-by-line at the source code level) to see how the

execution progresses. This dialog, which will be explained later,

has been very helpful in developing the interpreter, and also very

instructive because this simple window gives the student a clear

understanding of how JVM works.

The Class Browser dialog (Fig. 2) shows all the classes

loaded into the JVM in three different ways: sorted in alpha-

betical order, grouped by the packages hierarchy, and clustered

Fig. 2. Screenshot of the class browser dialog.

in buckets of the internal hash table of the JVM. In each case,

when a class is selected, all the details are shown to the right,

which helps students to reach LO#4. The information given

for each class includes superclass, state (e.g., loaded, linked,

resolved or initialized), visibility (e.g., public or pri-

vate), the runtime constant-pool (opcodes refer to symbolic

information in this table, which is similar to a symbol table

for a conventional programming language), fields, methods,

implemented interfaces, attributes, and the classes hierarchy.

When an specific method is selected by double-clicking the

method name in the list of methods defined for the class, the

corresponding method details dialog appears, explained below.

This allows the user to access the method code of any loaded

class at any time more easily and faster than by using the

javap tool.

The Method details dialog, which can be opened from either

the class browser dialog (as explained previously) or from the

execution dialog, displays data about a specific method, such

as the disassembled code of that method and the descriptor (i.e.,

the parameters that the method receives and the type of the value

that the method returns). The method’s code is shown in table-

form where each line corresponds to one instruction, including

the one-byte opcode and associated mnemonic (e.g.,

), followed by zero to five bytes of additional ar-

guments (e.g., “0” to specify the local variable #0), and a brief

description of the operation that the instruction performs (e.g.,

load an “int” value from the specified local variable). This table

is similar to that in the execution dialog described in (Fig. 3).

This dialog is useful in familiarizing the student with the JVM

instruction set, removing the need to consult the JVM Specifi-

cation [14], and contributing to the attainment of LO#5.

When the user chooses to execute a program step-by-step,

the Execution dialog appears (Fig. 3), showing the architecture

of the JVM and allowing students to accomplish LO#6. The

left-hand side of this dialog shows a list of all JVM threads and

the private JVM stack of the selected thread (the current thread

by default). A JVM stack stores frames, which are shown in

a scrollable list. When a method is invoked (current method),

a new frame is created and pushed into the stack of the cur-

rent thread; this frame will be referred to as the current frame.

When the method invocation is complete, the corresponding

90 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

Fig. 3. Screenshot of the execution dialog.

frame is popped off the stack and deleted. The selected frame

state is shown to the right of this dialog, including the associ-

ated method and opcodes, the program counter (PC) register,

arguments received, local variables, operand stack, and a refer-

ence to the class of the current method (the current class). The

highlighted code line shows the JVM instruction pointed to by

the PC that will be executed next. Each time the student clicks

the [step] or [step over] buttons a single opcode is executed and

the execution stops again. Both behave identically if the current

opcode does not contain a method call (invoke); otherwise,

if the [step] button has been pressed, the next instruction will

be the first one in the called method, but if the button pressed

is [step over], the whole called method will be executed. By

pressing the [run] button the execution will continue until the

student, at any time, temporarily halts or permanently aborts

the execution by clicking the [pause] or [stop] buttons, respec-

tively. While execution is paused, student can examine the state

of previous frames in the JVM stack, including data from their

associated method, or visualize any data of any loaded class

with the class browser dialog. The program execution can be re-

sumed by pressing the [step] or [run] buttons. Thus, LO#7 can

be easily achieved because at each step the student can, among

other possibilities, watch the values of the local variables or the

effect on the operand stack of a given opcode (e.g., arithmetic

instructions), and understand processes like passing parameters

when a method is invoked, or how a value is returned to the

calling method when the called method ends. The program exe-

cution flow is recorded, allowing later analysis of the sequence

of method calls made from start to finish. Finally, a summary

report can be generated from statistics gathered during the pro-

gram execution, showing how many times each opcode in the

JVM Instruction Set has been executed, along with a brief de-

scription of that instruction (Fig. 4). These data could be used

as a part of a performance profiler.

V. STUDENT EVALUATION AND RESULTS

Outcome data collected from written surveys used to evaluate

the effectiveness of the aforementioned lab session is presented

and discussed in this section. Students were surveyed using two

Fig. 4. Screenshot of the statistics dialog.

short duration paper-based surveys: 1) a posttest achievement

and 2) an attitudinal survey. The following data correspond to

the most recent semester, when enrollment was 69 students. De-

spite the fact that participation in the lab sessions of this course

was optional, the rate of participation in this special session was

high. There were 41 of 69 (59%) participants, whereas the mean

of the regular sessions was 31 of 69 (about 45%). This partic-

ipation ratio shows an increased enthusiasm on the part of the

student before the session began.

A. Posttest Achievement

After doing the exercises the students were asked to take a

test in order to examine their conceptual understanding of the

theoretical concepts of Java technology. This test was in two

parts, reflecting the two types of learning objectives defined

previously. The first part, Outside the JVM, presented 7 mul-

tiple-choice items assessing student knowledge of the external

interface of the JVM. The second part, Inside the JVM, com-

prised a set of numeric and short-answer items assessing student

understanding of the JVM internal operation. In this second part,

the student had to “fill in the gaps” with specific values from

VisualJVM after executing some Java program (e.g., a local vari-

able) or briefly explain some process.

The student responses to each item were compiled into the

set of the defined learning objectives, and the mean scores are

shown in Table I. As expected, the success rate on most of

the learning objectives for part 1 was higher than those from

part 2 because the latter was totally new for the students. Table I

summarizes student performance on both parts scored between

0–10, and part 2 was more heavily weighed (60%) than part 1

(40%). According to the table the variability is low, since the

SD is a little more than 1/4 of the overall mean, which is about

2/3 of the maximum possible score.

B. Attitudinal Survey

The students also answered a second questionnaire comprised

of 10 items for the measurement and evaluation of the partici-

pant attitudes and satisfaction level. The instrument used for this

purpose was a questionnaire based on a five-point Likert-scale,

GARRIDO ABENZA et al.: VISUALJVM: A VISUAL TOOL FOR TEACHING JAVA TECHNOLOGY 91

TABLE I
POSTTEST ACHIEVEMENT; ITEM RESPONSES (N = 41)

PC = Proportion Correct
M = Mean for Part i
SD = Standard Deviation for Part i

coded as shown in Table II, which summarizes the main results

of the statements asked (all the sentences score on a positive

scale).

Data analysis of responses: On this five-point scale, the av-

erage of these questions was above 3.59. Similarly, if the overall

score can vary from 10 (totally negative attitude) to 50 (highly

positive attitude), the obtained student scores were high, ranging

from 25 to 49, with a mean of 35.93. Therefore, in general it

can be said that the students had a favorable attitude to this

experience.

The most-valued items: Nearly all the items show a very pos-

itive attitude. The most-valued items were numbers 2 and 9,

which directly referred to the students’ learning. Numbers 1 and

5, with a slightly lower score, indicate that the students under-

stand the lab session materials and recognize the usefulness of

the exercises, respectively.

The least-valued items: The lowest rated statement was

number 7, which referred to the little time available. Real-

istically, the students can only conduct two exercises in this

time-limited lab session (two hours), even though the time

devoted to each of these is adequate to complete the work.

Another lower-valued item was number 4, referring to the use

of VisualJVM. The authors interpret these results as suggesting

that the students enjoyed this experience, and that more time

is necessary to learn about JVM architecture than is available

within the scope of the Advanced Programming course.

Variability: From Table II the answers are quite homogenous,

since overall SD (4.96) is about 1/7 of the mean (35.93).

Reliability: The reliability was estimated using a Cronbach’s

alpha score across all survey items, which is a measurement of

the internal consistency of the survey. The obtained value of

0.58 indicates good reliability of the attitudinal survey.

TABLE II
ATTITUDINAL SURVEY: FREQUENCY RESULTS (N = 41)

1—Strongly Disagree; 2—Disagree; 3—Undecided; 4—Agree;

5—Strongly Agree; M = Mean; SD = Standard Deviation

C. A Comparative Study

This section presents the results of a comparative study in

order to determine the impact this lab session has had on student

achievement. This study used two groups: one control group

from the academic year 2003–2004 , which did not

have the support of the VisualJVM tool, and one experimental

test group from the academic year 2005–2006 , which

attended the lab session described previoulsy (and whose data

is shown in the previous sections). The instrument used was the

comparison of the correct answers to specific questions in the

common final exam of both groups. Only the questions relevant

to the part 1 (outside the JVM) learning objectives were con-

sidered (i.e., LO#1, LO#2, and LO#3) because as mentioned

previously, the part 2 (inside the JVM) learning objectives rely

on new concepts explained only to the experimental group, and

were not evaluated in the standard final exam.

The differences between both groups are shown in Table III.

Students from the experimental group showed evidence of con-

siderable improvement of Java technology knowledge, reaching

92 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

TABLE III
COMPARATIVE STUDY

M = Mean proportion of correct answers

SD = Standard Deviation

a higher score in terms of the mean percentage of correct an-

swers on the final examination (77%) than students from the

control group (52%).

VI. CONCLUSION AND FUTURE WORK

The VisualJVM tool, which consists of a graphical front-end
and a JVM, is presented in this paper. The graphical front-end
was initially designed for debugging purposes in JVM develop-
ment and was then improved to be used for laboratory instruc-
tion. VisualJVM has been compared with other JVM implemen-
tations and related tools. The authors are not aware of any other
tool that shows what is happening within the JVM during a Java
program execution.

A lab session is described in detail, which has been integrated
into an Advanced Programming course. The intended learning
objectives have been met. Although measuring the impact of ed-
ucational technology in student learning outcomes is often prob-
lematic [16], the results obtained with this lab support the con-
clusion that VisualJVM is a helpful educational tool for learning
Java technology. Furthermore, from observations and informal
conversations with students, many of them enjoyed performing
these “hands-on” exercises. Although more time would be nec-
essary to confirm this conclusion, this experience has proved
to be an effective methodology to stimulate student interest, as
a number of students were subsequently attracted to do their
Master’s theses on this topic.

Moreover, this tool is suitable for use in other courses, such
as those on assembly language [17] and compiler construction
[18]. The authors are planning to apply VisualJVM to such
courses and to offer an advanced seminar for interested re-
searchers or postgraduate students, which would provide an
in-depth understanding of the fundamentals of virtual machine
and Java technology.

Additional future work includes improving the front-end in
response to student comments and the development of a more
complete Java interpreter. In particular, to include the imple-
mentation of a garbage collection algorithm.

REFERENCES

[1] D. Friedman, M. Wand, and C. Haynes, Essentials of Programming

Languages, 2nd ed. Cambridge, MA: MIT Press, 2001.
[2] D. Gonzalez-Pea and F. Fernandez-Riverola, “Understanding JPDA

(debugging) & JVMTI (profiling) Java APIs within JavaTraceIt,” in
Proc. IADIS Int. Conf. WWW/Internet, Murcia, Spain, Oct. 2006, pp.
334–338.

[3] P. Gomez-Martin, M. Gomez-Martin, and P. Gonzalez-Calero, “Javy:
Virtual environment for case-based teaching of JVM,” in Proc. 7th Int.

Conf. Knowledge-Based Intelligent Information and Engineering Sys-

tems, Oxford, U.K., 2003, vol. 2773, pp. 906–913.

[4] H. L. Dershem and J. Vanderhyde, “Java class visualization for teaching
object-oriented concepts,” SIGCSE Bull., vol. 30, no. 1, pp. 53–57,
1998.

[5] B. Venners, Inside the Java Virtual Machine. New York: McGraw-
Hill, 2000.

[6] C. O. Swift and R. W. Cook, “Sales management simulation: Bringing
reality to the classroom,” in Proc. Society for Marketing Advances

Meeting, St. Petersburg, FL, Nov. 2004, pp. 195–198.
[7] K. J. Chapman and C. L. Sorge, “Can a simulation help achieve course

objectives? An exploratory study investigating differences among in-
structional tools,” J. Educ. Bus., vol. 74, no. 4, pp. 225–230, Mar./Apr.
1999.

[8] J. Blanchette and M. Summerfield, C++ GUI Programming With Qt

4. Upper Saddle River, NJ: Prentice-Hall, 2006.
[9] K. Arnold, J. Gosling, and D. Holmes, The Java Programming Lan-

guage, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2005.
[10] J. Zhao, I. Rogers, C. Kirkham, and I. Watson, “Loop parallelisation

for the Jikes RVM,” in Proc. 6th Int. Conf. Parallel and Distributed

Computing Applications and Technologies, Dalian, China, 2005, pp.
35–39.

[11] G. Cabri, L. Leonardi, and R. Quitadamo, “Enabling Java mobile com-
puting on the IBM Jikes research virtual machine,” in Proc. 4th Int.

Symp. Principles and Practices of Programming in Java, Mannheim,
Germany, 2006, pp. 62–71.

[12] A. Sartini and J. Waldron, “Dynamic profiling & comparison of Sun
Microsystems JDK1.3.1 versus the Kaffe VM APIs,” in Proc. 1st Int.

Symp. Information and Communication Technologies, Dublin, Ireland,
2003, pp. 468–474.

[13] J. Whaley, “Joeq: A virtual machine and compiler infrastructure,” Sci.

Comput. Program., vol. 57, no. 3, pp. 339–356, Sep. 2005.
[14] F. Yellin and T. Lindholm, The JVM Specification, 2nd ed. Reading,

MA: Addison-Wesley, 1999.
[15] B. W. Kernighan and D. M. Ritchie, The C Programming Language.

Englewood Cliffs, NJ: Prentice-Hall, 1978.
[16] G. D. Haertel and B. Means, Evaluating Educational Technology.

New York: Teachers College Press, 2003.
[17] C. Bredlau and D. Deremer, “Assembly language through the Java vir-

tual machine,” SIGCSE Bull., vol. 33, no. 1, pp. 194–198, 2001.
[18] J. Engel, Programming for the Java Virtual Machine. Reading, MA:

Addison-Wesley, 1999.

Pedro Pablo Garrido Abenza received the M.S. in computer science engi-
neering from the University of Alicante, Spain, in 1997.

He is currently working toward the Ph.D. degree in physics, computing,
and communication. He has been an Assistant Professor in the Department
of Physics and Computer Architecture, Miguel Hernandez University, Elche,
Spain, since 2001. His current research interests include Java programming
language and reconfigurable computing. Specifically, he is focused on the
development of a Java virtual machine for embedded systems.

Angel Grediaga Olivo received the M.S. degree in telecommunication engi-
neering from the University of Alcala de Henares, Spain, in 1977, the M.S. de-
gree in electronics engineering from the University of Valencia, Spain, in 1998,
and the Ph.D. degree in computer architecture from Miguel Hernandez Univer-
sity, Elche, Spain, in 2002.

He is currently an Associate Professor in the Department of Computing and
Information Technology, University of Alicante, Spain. His research interests
focus on reconfigurable hardware in the area of computer science security,
image processing, and robotics. He has authored numerous books and papers in
specialized journals including Lecture Notes in Computer Science and WSEAS

Transactions on Circuits and Systems.
Dr. Grediaga is a member of several international conference program com-

mittees including the Southern Conference on Programmable Logic (SPL) and
International Business Information Management (IBIMA).

Bernardo Ledesma Latorre received the M.S. degree in computer science
from the University of Valencia, Spain and the Ph.D. degree in computer ar-
chitecture from Miguel Hernandez University, Spain, in 1994 and 2001, respec-
tively.

He is an Associate Professor in the Department of Computing and Informa-
tion Technology, University of Alicante, Spain. His current research interests
include open software tools, Java development, security reconfigurable hard-
ware, and image processing.

