
Reconfigurable Frame-Grabber for Real-Time
Automated Visual Inspection (RT-AVI) Systems

Cuenca Asensi, S1.; Ibarra Picó, F2. ;Alvarez, R3
.

Universidad de Alicante, Departamento de Tecnología Informática y Computación,
Campus de San Vicente, Alicante, Spain

1sergio@dtic.ua.es, 2ibarra@dtic.ua.es, 3rias@alu.ua.es

Abstract. In most of the automated systems for visual inspection tasks,
real time requirements constitute an important aspect to have in to ac-
count in the design of them. Often, a frame-grabber attached to a MMX-
optimised software libraries are not enough to satisfy the above re-
quirements and it is necessary to use expensive specialised hardware
and architectures. Reconfigurable hardware gives us the best of both
worlds: the flexibility of software and the high performance of custom-
ised hardware. In this paper we present a reconfigurable frame-grabber
concept to integrate complex real-time processing functions needed for
high-speed line inspection applications directly on-board. This allows
the efficient hardware-software co-design to achieve high-performance
low-cost solutions .

1 Introduction

In order to implant RT-AVI systems on industrial environments it is necessary, on one
hand, to satisfy requirements of real time, robustness and reliability, and on the other,
requirements of economic profitability. A strong commitment exists between the first
ones and the last one.

The final price of an application and therefore its economic feasibility will depend
on the development costs, and the cost of the image acquisition and processing hard-
ware. The different nature of the working environments and activities make very use-
ful the use of commercial software supporting real time capable hardware during the
development tasks. Nowadays, most image processing systems are implemented using
MMX-optimised software libraries [1] [2], running on personal workstations. These
kind of systems offer a good performance/cost ratio covering a wide spectrum of ap-
plications. However, for more demanding time requirements, e.g. web inspection,
document imaging or quality control in high-speed line inspection, it is necessary to
use specialised hardware and architectures [3],[4],[5],[6]. This customised hardware
usually increases the cost, reduces the flexibility and limits the applications of the
system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16364971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Some approaches based on FPL has been proposed. In the intelligent camera concept
[7] [8] an FPGA is directly connected to the video-data stream and outputs data to a
low bandwidth output bus. This eliminates the need for external frame-grabber, but
limits the processing to 1D operations followed by a data compression algorithm. On-
board hardware processing concept has been applied to several frame-grabbers [2] [9],
these include FPL parts to perform a limited number of basic pixel transformation like
thresholding, gain&lighting correction, gray scale, or 1D filter. These boards are at-
tached to the PCI bus eliminating the need of data compression and leaves to the host
the more sophisticated operations.

Our proposal, reconfigurable frame-grabber for texture analysis (RCFG), enlarges
the possibilities of this concept to support complex algorithms for textured surfaces
inspection and takes advantage of the FPL reconfigurability to suit the algorithm par-
ticularities. The on-board processing allows supplying the main processor with elabo-
rated data rather than the unprocessed frame, and in the most of the cases, reducing
the data bandwidth required between the acquisition system and the main processor.
The RCFG integrates the processing functions on data-stream thus providing higher
parallelism possibilities to reduce the frame latency. On the other hand, using recon-
figurable hardware (FPGAs), we can make this frame grabber more flexible while
retaining high speed performance. In this way, we only have to reprogram the hard-
ware to perform a different pre-processing operation to each frame or application; and
if we consider the frame grabber attached to the main processor with a bi-directional
bus, the functionality of the frame grabber could be changed on demand in millisec-
onds.

2 Algorithms

Texture is an important characteristic when considering automatic inspection for qual-
ity control. A wide variety of measures have been proposed related to texture proper-
ties. Among them, statistics measures are widely used in the classification and inspec-
tion of textured surfaces [10],[11],[12],[13] but although the performance of such
algorithms is usually very good [14], their structure is complex and the data flow
process is large. Consequently, the computation cost is high and the implementation in
high speed production lines is difficult. In this work we propose a reconfigurable
frame-grabber concept that permits the efficient hardware implementation of first and
second order histograms extraction for statistical-based texture analysis.

The statistics used are generally based on the distributions of pixel features like
pixel intensity, edginess magnitude, edginess direction, or sum and difference of in-
tensity between neighbour pixels. When characterizing textures, both the individual
elements and the statistical features derived from them may be used. Some of the most
common statistics used are: Maximum Probability (Mp) , K moments (Mk), K Inv.
moments(Imk), Energy(En), Entropy(Et), Skew (Sk), Kurtosis (Ku), Cluster Shade(Cs),
Clust. Prominence(Cp), Haralick’s Correlation (Hc), etc…

On the other hand, the histograms may be based on the probabilities of single oc-
currences (first order histograms) or joint occurrences (second order histograms).

Some examples of first order histograms are:
Grey level histogram (GLH) computes the grey level probabilities P(i) of the im-

age, where; i=0, 1, 2…G, and G is the number of grey levels.
Edginess histogram (EH), in this case the gradient with displacement d is calcu-

lated for every pixel, and then the histogram of gradient magnitude or direction prob-
abilities are computed.

Some second order histograms are:
Grey level coocurrence histogram (GLCH) is based on the coocurrence matrix [1],

this is constructed from the image by estimating the pair wise statistics of pixel fea-
tures. Each element (i,j) of the matrix represents an estimate of the probability that two
pixels with a specified separation have levels of the feature i and j. This probability
can be estimated as Pθ,d(i,j)=P(i,j)= Cθ,d(i,j)/N. Where Cθ,d(i,j) is the number of cooc-
currences, the separation is specified by a displacement d and an angle θ, and N is the
total number of cooccurrences. The coocurrence histogram has GxG bins, where G is
normally reduced to 32 or 16 grey levels.

Grey level sum and difference histograms (GLSH, GLDH) are similar to coocur-
rence, these are the histograms of the sum and difference of all pixels dx and dy apart.
Similar features to coocurrence can be extracted combining sum and difference histo-
grams. The probability distribution of GLDH can also be used for texture classifica-
tion [3]. In this way, DIFFX and DIFFY are the histograms of absolute grey level
differences between neighbour pixels computed in horizontal and vertical directions,
respectively, while DIFF2 accumulates absolute differences in vertical and horizontal
directions and DIFF4 in all four principal directions respectively, in a single histo-
gram.

For texture classification, all these algorithms are usually applied on square image
sub windows, mainly with 32x32 or 64x64 pixels and G=256, 32, 16 grey levels.

3 Design and Implementation of the Proposed Architecture

3.1 Logical Design

The general task that the RT-AVI system has to perform could be described as fol-
lows: every frame of RxC pixels is divided in R/SxC/S sub-windows of SxS pixels,
then N features are extracted from every pixel and H histograms of B bins are calcu-
lated for every sub window. When the frame has been processed, NxR/SxC/S histo-
grams are transferred to the host for statistics calculation and classification. If we
analyse the actual calculations made from image acquisition to statistics classification
we find four clearly separated stages shown in figure 1: image pre-processing, histo-
gram calculation, statistics calculation and finally texture classification. The first two
stages involve intensive computation on integer data so these tasks can be easily car-
ried out by the reconfigurable parts of the frame grabber. The sophisticated floating

point calculations required in the third and fourth stages are left to the main processor
because of its superior performance/cost ratio in these tasks.

Fig. 1. Basic processing stages

A very simple and primitive solution would be as shown in figure 2. In this version
we first read a frame from the camera and store it into the frame grabber's RAM; then
we process that frame and calculate the histograms for each sub window, storing that
histograms also on the on-board RAM; finally the host computer reads the histograms
from the frame-grabber RAM and calculates statistics from them. This is far from
optimal because it does not use any parallelism.

Fig. 2. Primitive solution with no parallelism (a) vs. parallel solution (b)

A better solution would try to improve performance by introducing parallelism at
two different levels: camera - RCFG and RCFG - host. If we could process the frame
line by line instead of the full frame at once, we would be processing the image at the
same time we are reading it rather than after it has been read. Looking at the host, the
RCFG does not need to wait until the host finishes the statistical calculations, instead
it can be processing the next frame while the host processes the previous one.

To implement the parallelism between the camera and the RCFG we need to read
the first K-1 lines before we start any processing since we need the lines above and
below the one we are processing to implement the KxK convolution. Once we have
read those lines we should pipeline this operation and keep processing a line while a
new one is read. This requires some FIFOs to store these lines and maintain the pipe-
lined execution. To parallelise the execution of the RCFG and the host, we must have,

at least, two banks of onboard RAM so while the host reads the histograms for the
previous frame the RCFG is writing the histograms for the next frame on a separate
bank. Any single bank can be accessed by the host or the RCFG but not at the same
time.

Figure 3 shows an overview of the architecture. Due to the simplicity of the pre-
processing operations and taking advantage of the parallelism of the logical blocks of
the FPGAs, the pixel data stream can be processed by fixed-point arithmetic units in a
pipelined fashion. To provide greater flexibility we can assume the extraction of pixel
features as a generic KxK convolution of the image pixels allowing simple additions,
subtractions or even more complex pixel combinations involving more than just two
pixels. K-1 FIFOs are required to pipeline these pre-processing operations. Using the
pre-processing module several features can be extracted from every pixel allowing
simultaneous calculation of different histograms for every sub-window.

Histogram computation is similar for both first and second order statistics. The his-
tograms values (bins) are stored in external memories (Histogram Buffers); the pixel
features previously extracted are used by the Address Generators to create the ad-
dresses of the bins that have to be incremented. An incrementer is used to carry out
this operation and return the new bin value to the corresponding histogram buffer
location. The Address Generators are critical components because they have to take
into account the sub-window where the current pixel is included, hence all the histo-
grams (N per sub-window) are calculated at the same time.

Fig. 3. Overview of the RCFG architecture

Several parameters of the architecture have to be set to perform the different meas-
ures, table 1 gives some of the possibilities. E.g. to implement GLCH with rotation
invariant and taking windows of 32x32, the selected parameters are: S=32, N=4 (d=1
and θ=0º, 45º, 90º, 135º), Pre_proc = Concatenation.

Table 1. Setting up the RCFG to perform different measures

Algorithm S (window size) N (nº of Hist). Pre_proc
GLH 64, 32, 16 1 IDENT
EH 64, 32, 16 1 SUB, CONV
GLCH 64, 32, 16 1 to 4 CONCAT

GLSDH 64, 32, 16 2 to 8 SUB, ADD
DIFF 64, 32, 16 1 to 4 SUB, ABS

3.2 Prototype Implementation

In order to validate the proposed architecture we are currently using high performance
prototyping board, Celoxida RC-1000PP [15], and a line scan CCD camera, DALSA
Spark [8]. Spark camera provides 2048 pixels resolution with 8-bit data @30MHz
with a maximum line rate of 12KHz. The output is EIA-644 (LVDS) format thus it
can be directly attached to the RCFG by means of LVDS CMOS line drivers and
receivers.

The RC-1000PP is a PCI board which carries a Xilinx Virtex V1000 FPGA device.
This card is PCI compliant and is plugged into a PC computer (in our case a Pentium
III) allowing simply interfacing between host and frame-grabber and bi-directional
high rate data transfers. The on-board memory consists in four banks of asynchronous
static RAM having 2Mbytes each and they can be accessed either in 8 or 32 bit mode.
The card comes with a library of C functions that can be used by the host software to
interface with the card (reading and writing to onboard memory, programming the
FPGA, etc.). A fairly revolutionary language to specify the FPGA design is also in-
cluded; this language is called Handel C and is extremely similar to conventional C
though modified a little to allow hardware particularities. This language makes proto-
typing and design implementation extremely fast because it is mostly software ori-
ented.

In the actual prototype we define the frame as a 1024x1024 256 levels grey scale
image and is divided in 64x64 windows making a total of 256 windows. The histo-
grams are stored as 32 bits values even though 16 bit values are more than enough but
the RC-1000PP does not support 16 bits memory accesses. Thus 1Mb is required to
store the processed frame and 256Kb are required to store the first order histograms of
a single frame. The full process is divided into two stages; in the first stage (stage A)
the FPGA writes the processed image in bank 0 and simultaneously the histograms in
bank 1 while the host reads banks 2 and 3 corresponding to the previous frame; in
stage B the bank assignment is reversed and the FPGA writes to banks 2 and 3 and the
host reads from banks 0 and 1. This division provides the required parallelism be-
tween host and FPGA. To achieve the desired parallelism between the FPGA and the
camera a set of 6 on chip RAMs have been implemented, each consisting of 1024
positions of 8 bits. These RAMs are used alternatively on odd and even lines so the
required pipelining is possible. The actual prototype implements the parallel version
explained before, and is capable of performing a 3x3 convolution and storing the

processed image and the histograms for the sub windows in 2 cycles per pixel (if we
ignore pipelining start-up).

Fig. 4. The prototype architecture

4 Conclusion

The main proposal of this paper is the fact that by enhancing the frame-grabber to
perform first and second order histogram computations, a higher degree of parallelism
is achievable. Because of the parallelism introduced between the frame grabber and
host, image acquisition, pre-processing and histogram calculation take virtually no
time because they are simultaneous to the statistics computed by the host.

Nevertheless, the usage of reconfigurable hardware in the frame grabber provides
extremely high speed computations with excellent flexibility allowing to change com-
pletely the functionality of the frame grabber simply by reconfiguring the FPGA and
adjusting the image acquisition system to any new algorithms that may be developed
in the main processor.

The degree of parallelism of this solutions depends greatly on the memory architec-
ture of the system. We could greatly increase performance if we had more memory
banks and therefore the possibility to calculate two or more histograms in parallel.
When increasing the parallelism of the frame grabber the performance of the camera is
critical since you may reach the point where you have to wait for the camera to pro-
vide pixels to continue computations.

References

1. Matrox, inc. http://www.matrox.com.
2. Imaging Technology, inc. http://www.imaging.com
3. Baykut A. et al. Real-Time Defect Inspection of Textured Surfaces. Real-Time Imaging 6,

17-27, 2000.
4. Wei-Bin Chen and Gëtan Libert. Real-Time Automatic Visual Inspection of High-speed

Plane Products by Means of Parallelism. Real-Time Imaging 4, 379-388, 1998.
5. http://vetech.com
6. http://www.datacube.com

7. S.Hossain Hajimowlana, et. al. An In-CameraDataStreamProcessing SystemforDefectDetec-
tion in Web InspectionTasks. _ . Real-Time Imaging 5, 23-34, 1999.

8. Dalsa inc. http:// www.dalsa.com/
9. I2S, inc. http://www.i2s-linescan.com/
10. R.M. Haralick. Computer and Robot Vision. Vol I. Addison-Wesley, New York, 1992.
11. P.C. Chen and T. Pavlidis, Segmentation by texture using a co-occurrence matrix and a

split-and-merge algo-rithm, Computer Graphics and Image Processing 10, pp. 172-182
(1979).

12. D. Harwood, T. Ojala, M. Pietikäinen, S. Kelman and L.S. Davis, Texture classification by
center-symmetric auto-correlation, using Kullback discrimination of distributions, Pattern
Recognition Letters 16, pp. 1-10, (1995).

13. K. Shiranita, T. Miyajima and R. Takiyama. Determination of meat quality by texture
análisis. Pattern Recognition Letters, 19: 1319-1324, 1998

14. T. Ojala, M. Pietikäinen and D. Harwood. A comparative study of texture measures with
classification based on feature distributions. Pattern Recognition 29(1):51-59, 1996.

15. Celoxica, inc http://www.celoxica.com

