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Abstract
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1. Introduction

The analysis of bankruptcy problems can be considered as a simple and robust tool to
model how agents should be rationed. The idea behind these problems is that each
agent in a group asks for a quantity of a perfectly divisible good; and they collectively
claim that the available quantity is not enough to satisfy their demands.

The literature proposes two ways to approach how bankruptcy problems might be
solved. The �rst one, namely normative, comes from an axiomatic analysis of rules that
propose particular solutions. The paper by Thomson [16] proposes a nice overview of
the main results following this approach. The second one is based on an interpretation of
bankruptcy problems as (transferable utility) cooperative games, TU-games henceforth.
This formulation, introduced by O�Neill [10], has been employed to justify the employ of
the Random Arrival Rule due to its relationship with the Shapley value of the associated
TU-game; or the use of the Talmudic rule because it coincides with the Nucleolus of the
related TU-game (Aumann and Mashler [3]).

This paper proposes an approach to bankruptcy problems following its coopera-
tive game-theoretical conception, and proposes a new characterization for the Minimal
Overlap Solution (O�Neill [10]) by using a particular form of additivity.

Additivity has been employed as a natural property to be satis�ed by solutions for
TU-Games. For instance, in most of the characterizations provided in the literature
for the Shapley value (Shapley [15]), additivity plays a central role. Moreover, in some
problems (that can be) modeled as TU-games, additivity has also played a central role.
In this sense we could mention that, for cost-sharing problems, additivity is also a central
property to characterize the proportional rule; or in bargaining problems, Perles and
Mashler [13] also employ additivity to characterize their solution.

Following the natural interpretation, by additivity we means that, given two ban-
kruptcy problems the sum of their solutions should coincide with the solution for the
bankruptcy problem generated by aggregating the two initial ones. In this sense, we
should mention that, this natural way to de�ne additivity is incompatible with some non-
demanding properties, as Bergantiños and Méndez-Naya [4] pointed out. The reason
is very simple and is based in the following observation. Given a bankruptcy problem,
there is a unique TU-game associated to it; but the same TU-game can be generated
by several bankruptcy problems. Thus, the fact that there is no bijection between ban-
kruptcy problems and (a family) of TU-games can be employed to show that additivity,
in its most natural conception, is a very demanding property. This is why in this paper
we deal with a particular form of additivity. The idea behind this partial additivity
comes from the interpretation above. Given that there is no bijection between ban-
kruptcy problems and TU-games, is there possible to identify a family of bankruptcy
problems where this relationship (with TU-games) holds? If we are able to identify such
a subclass, it should be possible to guarantee the existence of additive bankruptcy rules
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on such a subclass. This is the aim of this paper.
The rest of the paper is organized as follows. In Section 2 we model bankruptcy

problems and presents some bankruptcy solutions that will be used subsequently. Sec-
tion 3 presents the interpretation of bankruptcy problems in terms of TU games given
by O�Neill. Section 4 introduces bargaining problems and formalizes the relationship
between them and bankruptcy problems. Section 5 is devoted to present, in all contexts
previously considered, the concept of Additivity and some related results. Section 6
presents our main result, an axiomatic characterization of the Minimal Overlap ban-
kruptcy rule based on a partial additivity property. Section 7 summarizes our main
conclusions. Finally, the technical proofs are relegated to the Appendices.

2. Bankruptcy Problems

A Bankruptcy Problem can be formally described by a vector (E; c) 2 R++ � Rn+ such
that

E �
nX
i=1

ci: (2.1)

E is known as the endowment, and represents the quantity of the perfectly divisible
good that should be distributed among the agents in N = f1; : : : ; i; : : : ; ng, also called
creditors. Each agent i 2 N has a claim ci on the endowment. Condition (2:1) re�ects
that agents�rights could be incompatible and hence, the endowment should be rationed.

Let C denote the set of all bankruptcy problems,

C =
(
(E; c) 2 R++ � Rn+ : E �

nX
i=1

ci

)
.

For notational convenience, we will denote by CE the set of problems in which there is
some creditor demanding, at least, the total endowment,

CE =
�
(E; c) 2 C : E � max

i
fcig

�
,

and, for any subclass of bankruptcy problems C� � C, we will denote by CO� the set of
problems in such a subclass with increasingly ordered claims,

CO� = f(E; c) 2 C� : ci � cj for i < jg .

De�nition 2.1. A Bankruptcy rule is a function ' : C ! Rn+, such that for each
bankruptcy problem C = (E; c) 2 C,

(a)
P
i2N
'i(E; c) = E, (e¢ ciency) and
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(b) 0 � 'i (E; c) � ci for each creditor i, (non-negativity and claims boundedness).

Next, we introduce the Minimal Overlap, the Random Arrival and the Contested
Garment bankruptcy rules, that will be used later. The formalism in their de�nitions
depends only on subsequent needs.

Informally speaking, the Minimal Overlap bankruptcy rule, introduced by O�Neill
[10], chooses the awards vector that minimizes the �extent of con�ict�over each available
unit. Let us observe that this solution can be considered a generalization of the Ibn
Ezra�s bankruptcy rule1, which is only de�ned on CE .

We present the de�nition of the Minimal Overlap bankruptcy rule gathered in Al-
calde, Marco and Silva [2], which is based in the result of Chun and Thomson [6].

De�nition 2.2. The Minimal Overlap bankruptcy rule is the function

'mo : CO ! Rn+

which associates, to any bankruptcy problem (E; c) in CO, and creditor i, the share of
the endowment,

'moi (E; c) =
iX
j=1

min fcj ; tg �min fcj�1; tg
n� j + 1 +max fci � t; 0g , (2.2)

where c0 = 0, and

(a) t = E if E � cn, or

(b) otherwise, t is the unique solution for the equation

nX
k=1

max fck � t; 0g = E � t,

Remark 1. Just to extend De�nition 2.2 to C, let us note that, for any bankruptcy
(E; c) in C n CO there is a permutation2 � such that (E; � (c)) is in CO. Hence we can
compute

'mo (E; c) = ��1 ['mo (E; � (c))] .

1Anoter way of extending the Ibn Ezra�s proposal, called the Generalized Ibn Ezra banruptcy rule, is
provided by Alcalde, Marco and Silva [1]. They apply recursivity and impose that the general principle
from which it is inspired remains �xed.

2Given a set of agents N , we denote by �N the class of bijections from N into itself, and by � an
element in �N . Throughout the rest of the paper, and abusing notation, � (c) will denote the claims
vector obtained by applying permutation � to its components, i.e. the i-th component for � (c) is cj
whenever j = � (i).
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To introduce the Random Arrival bankruptcy rule, imagine creditors arriving one at
a time, and compensate them fully until money runs out. The resulting awards vector
of course depends on the order in which creditors arrive. To remove the unfairness
associated with a particular order, take the arithmetic average over all orders of arrival
of the awards vectors calculated in this way, O�Neill [10].

De�nition 2.3. The Random Arrival bankruptcy rule is the function

'ra : C ! Rn+

which associates, to each bankruptcy problem (E; c) in C, and each creditor i 2 N , the
share of the endowment

'rai (E; c) =
1

n!

X
�2�N

min

8<:ci;maxf
8<:E � X

j2N;�(j)<�(i)
cj ; 0

9=;
9=; :

The rationale of the Contested Garment bankruptcy rule, de�ned only for two-
creditors problems in the Babylonian Talmud (Baba Metzia, 2a), is provided by Aumann
and Maschler [3] as follows. Suppose that the endowment, E, is allocated in two stages.
In the �rst stage, each creditor i gets whatever the other concedes, that is, he gets
maxfE � cj ; 0g, leaving the rest for the second stage, E �

P
i=1;2

maxfE � cj ; 0g. In this

last stage, the remainder, the part that is truly contested, is divided equally between
the claimants. Equal division in this stage makes sense since both claims becomes equal
after being revised down by the amounts received in the �rst stage, and truncated by
the amount that remains available.

De�nition 2.4. The Contested Garment bankruptcy rule for two-creditors problem is
the function 'cd which associates, to each 2-agent bankruptcy problem the share of the
endowment

'cd1 (E; c) =
E +max fE � c1; 0g �max fE � c2; 0g

2

'cd2 (E; c) =
E +max fE � c2; 0g �max fE � c1; 0g

2

The fact that for two-creditors problems, both the Minimal Overlap and the Ran-
dom Arrival bankruptcy rules coincide with the Contested Garment bankruptcy rule
is well known, however, these bankruptcy rules are not the only ones generalizing the
Contested Garment bankruptcy rule to n-creditors bankruptcy problems, but also the
Talmud and the Adjusted Proportional bankruptcy rules. The Talmud bankruptcy rule,
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was introduced in a very nice paper by Aumann and Maschler [3], on the basis of Consis-
tency. And the Adjusted Proportional bankruptcy rule, introduced by Curiel, Maschler
and Tijs [7], being its ground to divide the remainder, once each creditor has got the

amount corresponding to his minimal right, mi = max
n
E �

P
j 6=i cj ; 0

o
, in proportion

to the part claimed by the creditors, of such a residual endowment, according to their
outstanding claims.

3. Bankruptcy Problems and TU Games

The �rst general approach for the multiperson coalitional games was proposed by von
Neumann and Morgenstern [19]. Next we present the basic concept of their model.

A TU game involving a set of agents N can be described as a function V associating
a real number to each subset of agents, or coalition, S contained in N . Formally, a TU
game is a pair (N;V ), where V : 2N ! R. For each coalition S � N , V (S) is commonly
called its worth and denotes the quantity that agents in S can guarantee to themselves
if they cooperate. So that, it is assumed that V (?) = 0: It is often assumed that (N;V )
is Superadditive, that is, for any pair of coalitions S; T � N such that S \ T = ?;
V (S [ T ) � V (S) + V (T ); so that there is incentive for the grand coalition N forms.

A single-valued solution for TU games, a TU value, is described by a function se-
lecting, for each TU game, a share of the worth of the grand coalition among the agents
in such a game. Let G be a family of TU games referred to a �xed set of agents, say N .

De�nition 3.1. A TU-value is a function  : G !Rn; such that for each TU game
G = (N;V ) 2 G, X

i2N
i(N;V ) = V (N): (3.1)

Let us remark that Condition 3.1 incorporates both Feasibility and Pareto Opti-
mality. The requirement of Feasibility says that the members of the grand coalition
can actually achieve the selected share, Pareto Optimality imposes that they cannot
achieve more. Usually, Individual Rationality is also required, what means that no indi-
vidual can achieve more than the amount allocated to him as a payo¤, for each i 2 N ,
i(N;V ) � V (fig).

Next, we present the Shapley value, whose interpretation, given by Shapley [15] is
the following: �The players in N agree to play the game V in a grand coalition, formed
in the following way: (i) Starting with a single member, the coalition adds one player at
a time until everybody has been admitted. (ii) The order in which the players are to join
is determined by chance, with all arrangements equally probable. (iii) Each player, on
his admission, demands and is promised the amount which his adherence contributes to
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the value of the coalition (as determined by the function V ). The grand coalition then
plays the game �e¢ ciently�so as to obtain V (N), exactly enough to meet all promises.�

De�nition 3.2. The Shapley TU value is the function

sh : G ! Rn

which associates, to each TU game (N;V ) in G, and each creditor i 2 N , the share of
the worth of the grand coalition

shi (N;V ) =
X

S�Nnfig

j S j!(n� j S j �1)!
n!

(V (SUfig)� V (S)): (3.2)

From now on, given a TU game (N;V ), for each agent i 2 N and each coalition
S � N , we call the Marginal Contribution of agent i to coalition S, to the amount which
his adherence contributes to the value of the coalition, that is V (SUfig)� V (S):

O�Neill [10] proposed an interpretation of bankruptcy problems as TU games. His
advise was to associate to each coalition the part of the endowment, if any, that remains
after paying the debts that the bankrupted contracted with all his creditors outside this
coalition. Given a bankruptcy problem C = (E; c), we denote by (N;VC) the TU game
that it induces. GC will denote the set of TU-bankruptcy games.

De�nition 3.3. Let C = (E; c) be a bankruptcy problem in C, the TU game induced
by C, called TU-bankruptcy game, is the pair (N;VC), where the function VC : 2N ! R
associates, to each coalition S � N , the real value

VC(S) = max

8<:E � X
i2NnS

ci; 0

9=; :
The previous link, between bankruptcy problems and TU games, could allow us

to translate some of the results and properties relative to values for TU games into
bankruptcy theory and vice versa. Before analyzing this possibility, let us introduce the
properties: Respect of Minimal Rights, Minimal Rights First, Invariance under Claims
Truncation and Translation Invariance.3

The �rst property is a requirement placing a lower bound on awards, that corre-
sponding to the minimal right of each creditor.

3Since, through the paper, we are to introduce properties relative to bankruptcy problems, bargaining
situations and TU-games, we follow the convention of distinguishing C-properties, B-properties and TU-
properties respectively just to clarify the framework in which they are employed.
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Property 1. C-RESPECT OF MINIMAL RIGHTS.

For each (E; c) 2 C, and each i 2 N , 'i (E; c) � mi (E; c) = max

(
E �

P
Nnfig

cj ; 0

)
:

This property is a consequence of e¢ ciency, non-negativity and claims boundedness
together. So that, any bankruptcy rule (See De�nition 2.1) satis�es Respect of Minimal
Rights.

It can be checked that the next two properties that we present, are satis�ed by the
Contested Garment, the Random Arrival and the Minimal Overlap bankruptcy rules.

The �rst one requires that the awards vector is equivalently obtained: (i) directly,
or (ii) by �rst assigning to each agent his minimal right, adjusting claims down by these
amounts, and �nally, applying the bankruptcy rule to divide the remainder.

Property 2. C-MINIMAL RIGHTS FIRST.
For each (E; c) 2 C, '(E; c) = m(E; c) + '(E �

P
i2N
mi(E; c); c�m(E; c)):

The next requirement is that the part of a claim that is above the amount to divide
should be ignored.

Property 3. C-INVARIANCE UNDER CLAIMS TRUNCATION.
For each (E; c) 2 C, '(E; c) = '(E; cE), where cEi is interpreted as the part of E

claimed by creditor i, given that he cannot claim more than there is, cEi = minfci; Eg.

The following condition imposes that origin changes do no a¤ect the recommended
share in a TU game.

Property 4. TU-TRANSLATION INVARIANCE.
For each (N;V ) 2 G, and for any n-dimensional vector a = (a1; ::::; an); (N;W ) =

(N;V )� a; where for each S � N;W (S) = V (S)�
P
i2S
ai:

This property is standard in TU games, and most of the solutions proposed in this
context satisfy it. In fact,it is usual the analysis of TU-games from its 0-normalization,
that is the origin change in which the worth of any individual coalition is zero.

Now, in order to analyze the connections between bankruptcy problems and TU
games, two natural questions arise when considering solution concepts.

First, let  be a TU value, could we interpret  as a bankruptcy rule just identifying
for each C = (E; c), '(C) with (N;VC)? It can be checked straightforwardly that a
TU value  is a bankruptcy rule if and only if  satis�es TU-Individual rationality.

Second, let ' be bankruptcy rule then, is there a TU value  such that for any
bankruptcy problem C = (E; c); '(C) = (N;VC)? Curiel, Maschler and Tijs.[7] showed



Additivity in Bankruptcy Problems 8

that a bankruptcy rule ' is a value for TU-bankruptcy games if and only if ' satis�es
C-Invariance under Claims Truncation.

If for each bankruptcy problem, the recommendation made by a given bankruptcy
rule coincides with the recommendation made by a given TU-value when applied to the
induced TU-bankruptcy game, we say that �The bankruptcy rule corresponds to the TU-
value�. Relative to the bankruptcy rules considered in this work, O�Neill [10] proposed
the following result.

Theorem 3.4. The Random Arrival bankruptcy rule corresponds to the Shapley TU-
value.

In a similar way, it could be de�ned a property for bankruptcy problems from the
straight application of some appealing or natural requirement for TU games. But in
this case, the question would be the following, metaphorically speaking. Is the �essence�
of a property unchanged in its travel from TU games to bankruptcy problems? If
�essence�is understood as meaning and reasonableness, several situations can be found.
Next we provide some examples. It is obvious that TU-Pareto Optimality keeps its
full �essence�. TU-Individual Rationality corresponds to C-Respect of Minimal Rights,
therefore its meaning changes (let us note that the translation of the interpretation of
TU-Individual Rationality would be C-non-negativity, meanwhile C-Respect of Minimal
rights is a consequence of e¢ ciency, non-negativity and claim boundedness together),
but both properties would have, from our point view, similar rank in a scale measuring
reasonableness. TU-Translation Invariance losses absolutely its �essence�, although there
has been some attempt to retrieve it by restricting its translation. To this regard, C-
Respect of Minimal Rights, whose interpretation comes from being a particular kind of
composition, can be seen as the application of TU-Translation Invariance when allowing
only origin changes by using the Minimal Rights vector. So that meaning has been
changed but some reasonableness has been got.

4. Bankruptcy Problems and Bargaining Games

The axiomatic theory of bargaining originated in a paper by Nash [9], where he intro-
duced an idealized representation of the bargaining problem and developed a method-
ology to solve it. The formal model is as follows.

A Bargaining game is a pair (B; d) where B � Rn is a compact and convex set,
d 2 B and there exists x 2 B such that xi � di; i = 1; ::; n with some strict inequality.
(B; d) represents a situation where a set of individuals, denoted by N , bargain over a
set of possible agreements. B is the set of all feasible utility allocations that may be
reached by means of an agreement. If there is no agreement, each individual i gets di,
the utility corresponding to the disagreement point d: From now on we deal with the
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class of bargaining games where the disagreement point is zero, d = 0, and we omit d
in the notation altogether. Let us denote by B this class of bargaining problems.

De�nition 4.1. A Bargaining solution is a function � : B ! Rn; that assigns each
B 2 B a unique element of B, to be interpreted as a compromise among agents or,
alternatively, as the recommendation that an impartial arbitrator would make.

Although the Nash bargaining solution was regarded as �the solution� in this context
until the mid-seventies, from then this model expanded in several directions. (See the
surveys by Thomson [17], [18].)

In this context, and related to our aim in this paper about additivity, it should
be mentioned the Perles-Maschler [13] bargaining solution, originally introduced for
two-person bargaining problems. In order to present it, we need additional notation.
Let @B = fx 2 B : @x0 2 B;with x0 > xg be the undominated boundary of B. Let
PO(B) = fx 2 B : @x0 2 B; with x0 � xg be the strictly undominated boundary of B.
And let D�i(B) be the point of PO(B) of maximal i-th coordinate.

The Perles-Maschler bargaining solution is based on a process of balanced conces-
sions: agents work their way from their preferred alternatives, the shares provided by
D�i(B) for each one, to a �nal position by moving from compromise to compromise.
According to this bargaining solution, balanced is interpreted as follows: the area of the
set of alternatives that each agent renounces in each movement is the same.

De�nition 4.2. The Perles-Maschler bargaining solution for two-creditors problem
with polygonal @B, B2P = fB 2 B :j N j= 2 and @B is polygonalg, is the function

�pm : B2 ! Rn

which associates, to each bargaining game B 2 B2P , and each player i 2 N , the share of
the endowment which is the common limit point of the sequences

�
xt
	
,
�
yt
	
, de�ned

by: xo = D�1(B), yo = D�2(B); for each t 2 N; xt, yt 2 PO(B) are such that
xt1 � yt1, the segments[x

t�1; xt]; [yt�1; yt] are contained in PO(B) and the products�
xt�11 � xt1

� �
xt2 � xt�12

�
and

�
yt1 � yt�11

� �
yt�12 � yt2

�
are equal and maximal.

If @B is not polygonal, �pm is de�ned by approximating B by a sequence of polygonal
problems and taking the limit of the associated solution outcomes.

Next, we present a natural way of linking bankruptcy problems and bargaining
games, which is due to Dagan and Volij [8]. Let us note that one could argue that too
much information is lost in the passage from bankruptcy problems to bargaining games.
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De�nition 4.3. Let C = (E; c) be a bankruptcy problem in C, the 0-Bankrupcy game

induced by C is denoted by B(C) =
�
x 2 Rn+ : 0 � x � c;

P
i2N
xi � E

�
4.

Previous de�nition provides the key to travel from bankruptcy problems to bargain-
ing games. It means that the individuals are bargaining over all the possible divisions of
the endowment E that give each one no more than his claim and no less than zero, and
that if they fail to reach an agreement, no one gets anything. In order to get something,
they need to reach an unanimous agreement.

In this context, the unique restriction for guaranteeing that a bargaining solution
is a bankruptcy rule is Pareto Optimality. And all bankruptcy rules are 0-bankruptcy
game solutions.

Similarly to the above Section, we will say that �a bankruptcy rule corresponds to
a bargaining solution if for each bankruptcy problem, the recommendation made by a
given bankruptcy rule coincides with the recommendation made by a given bargaining
solution when applied to the induced 0-bankruptcy game. Relative to the bankruptcy
rules considered in this work, Dagan and Volij [8] proposed the following result.

Theorem 4.4. For two-person problems the Contested Garment bankruptcy rule cor-
responds to the Perles-Maschler bargaining solution.

Dagan and Volij [8] referred to the previous theorem as follows. �This result is quite
surprising, since we could not get a bankruptcy rule satisfying C-Minimal Rights First
from the application of the other bargaining solutions to the associated 0-bankruptcy
game. It would be very interesting to check what bankruptcy rule corresponds with
the generalization of the Perles-Maschler bargaining solution to n-person bargaining
problems, when and if such a generalization appears.�

5. Some Results Related to Additivity

In this Section we present formally the idea of Additivity for TU games and bargaining
games and present the axiomatic characterizations of solutions involving such a property
in both contexts. Moreover, we point out the di¢ culties when translating Additivity
from both models to bankruptcy problems, what will lay the foundations to go into
Additivity for bankruptcy problems in depth.

Two di¤erent interpretations have been traditionally used to justify Additivity of a
solution concept. The �rst one is based on risk neutrality: players facing a lottery of two
games do not distinguish between the value of the expected game and the expected value

4An alternative speci�cation of this conection, also due to Dagan and Volij [8], can be made by
identifying the disagreement point with the minimal rights vector.
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of the games. The other one comes from imposing to be irrelevant that players facing
in two remote games evaluate their expectations either in both games independently or
by establishing a package deal.

Let us go on with the concept of Additivity for TU games.

De�nition 5.1. Let  a solution for bargaining games. We say that  satis�es TU -
Additivity if for all pairs of TU games in G, G = (N;V ) and G0 = (N;V 0);

(N;V + V 0) � (N;V ) + (N;V 0);

where the game (V + V 0) is de�ned by (V + V 0)(S) = V (S) + V 0(S) for all S � N:

This property was the main ground used by Shapley [15] to introduced his proposal
for solving TU games. Next we present his axiomatic characterization for what we need
the following two standard properties for TU games.

The �rst one requires the following notion of symmetry: players i; j 2 N are said to
be symmetric with respect to game (N;V ) if they make the same marginal contribution
to any coalition, that is, for each S � N with i; j =2 S; V (SUfig) = V (SUfjg). The
Symmetry axiom requires symmetric players to be paid equal shares.

Axiom 1. TU-SYMMETRY.
If players i and j are symmetric with respect to game(N;V ), then i(N;V ) =

j(N;V ).

The second property requires that zero payo¤s be assigned to players whose marginal
contribution is null with respect to every coalition.

Axiom 2. TU-DUMMY.
If i is a dummy player, that is, V (SUfig) � V (S) = 0 for every S � N , then

i(N;V ) = 0.

Theorem 5.2. [Shapley [15]]. The Shapley TU value is the only TU value on G satis-
fying TU-Symmetry, TU-Dummy and TU-Additivity.

Given that the Random Arrival bankruptcy rule corresponds to the Shapley TU-
value, it could be expected to identify the Random Arrival bankruptcy rule by means
of the translation of TU-Additivity to bankruptcy problems, but the following example
shows the di¢ culties of such a link.

Example 5.3. Let us consider C = (4:5; (4; 4; 4)) and C� = (15:5; (2; 6; 11)). It can
be checked that VC(f2g) = VC(f3g) = 0; VC�(f2g) = 2:5 and VC�(f3g) = 7:5: Now,
we have that C + C

�
= (20; (6; 10; 15)), VC+C�(f2g) = 0 and VC+C�(f3g) = 4. But

(VC+VC�)(f2g) = 2:5 and (VC+VC�)(f3g) = 7:5. Therefore, the TU game (N;VC+VC�)
does not correspond to the bankruptcy problem C + C�.
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Next, we analyze the idea of additivity for Bargaining Games.

De�nition 5.4. Let � a solution for bargaining games. We say that � satis�es B-
Additivity if for all pairs of bargaining games in B, B and B0;

�(B +B0) � �(B) + �(B0);

where y 2 (B +B0) if and only if 9x 2 B; x0 2 B0 such that y = x+ x0.

Perles and Maschler used three standard properties on bargaining games to identify,
together with B-Additivity, their bargaining solution for two-agent problems.

The �rst property says that if the agents cannot be di¤erentiated on the basis of the
information contained in the mathematical description of B, then the solution should
treat them the same.

Axiom 3. B-SYMMETRY.
If B is invariant under all exchanges of agents, �i(B) = �j(B) for all i; j 2 N:

The second property requires that the solution should be independent of the follow-
ing linear transformations. Let �n : Rn ! Rn be the class of independent person by
person, positive, linear transformation with zero as independent term: � 2 �n if there
is b 2 Rn++ such that for all x 2 Rn; �(x) = (b1x1; :::; bnxn): Given � 2 �n and B � Rn;
�(B) = fx0 2 Rn : 9x 2 B with x0 = �(x)g :

Axiom 4. B-SCALE INVARIANCE.
For each B 2 B and each � 2 �n; �(�(B)) = �(�(B)):

The last property considered requires that small changes in bargaining problems do
not lead to wildly di¤erent solution outcomes.

Axiom 5. B-CONTINUITY.
For each sequence of bargaining problems, fB�g�=1;::;n with B� 2 B for all �; If

lim
�!1

B� = B in the Hausdor¤ topology, then lim
�!1

�(B�) = �(B):

Finally, we will say that a bargaining problem B 2 B is strictly comprehensive if the
undominated boundary of B; @B; does not contain a segment parallel to an axis.

Theorem 5.5. [Perles and Maschler [13]]. For two-agent bargaining problems, the
Perles-Maschler bargaining solution is the only bargaining solution on B satisfying B-
Symmetry, B-Scale Invariance and B-Additivity, and to be B-Continuous on the subclass
of B of strictly comprehensive bargaining problems.
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Now, taking into account that both the Random Arrival and the Minimal Overlap
bankruptcy rules correspond to the Perles and Maschler bargaining solution, it could
be expected to identify some of them by means of the translation of B-Additivity to
bankruptcy problems. But in this case the basis of this expectations are weaker. On
the one hand, Perles [12] showed that the axioms characterizing the Perles-Maschler
bargaining solution are incompatible even for three-person unanimity bargaining games,
what raised the problem of �nding a satisfactory generalization of such a solution.
In this line are the works of Peters [14], Calvo and Gutiérrez [5] and Pallaschke and
Rosenmüller [11]. On the other hand, the following example shows that B-Additivity
losses its meaning and reasonableness when translating to bankruptcy problems.

Example 5.6. Let us consider C = (50; (20; 60)) and C� = (30; (40; 40)), then C +
C
�
= (80; (60; 100)): It can be checked that vector (60; 20) 2 B(C + C�

) but (60; 20)
=2 (B(C)+B(C�

)): Therefore, the bargaining game (B(C)+B(C
�
)) does not correspond

to the bankruptcy problem C + C�.

Another possibility for requiring Additivity in bankruptcy problems, given the neg-
ative �ndings above presented, is to analyze the direct application of such a concept on
the context at hand.

De�nition 5.7. Let ' a bankruptcy rule. We say that ' satis�es C-Additivity if for all
pairs of bankruptcy problems in C, C = (E; c) and C 0 = (E0; c0);

'(E + E0; c+ c0) � '(E; c) + '(E0; c0):

Unfortunately, it is known that there is no bankruptcy rule satisfying C-Additivity,
fact that is gathered by Thomson [16]. The following example, due to Bergantiños and
Méndez-Naya [4], provides this impossibility result.

Example 5.8. Let ' a C-Additive bankruptcy rule and suppose that

'(10; (5; 15)) = (10� x; x):

If we take y 6= x; 5 � y � 10 by the C-Additivity of ' we have that

'(10; (5; 15)) = '(y; (0; 15)) + '(10� y; (5; 0)) = (10� y; y)

and
(10� y; y) 6= (10� x; x):
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At this point, let us notice that the fact that C-Additivity is a very strong require-
ment in bankruptcy problems is not very surprising, since the amount that a creditor
gets in a bankruptcy problem is very sensitive to the relative position of her claim in front
of both the total amount to be shared and the other creditors�claims and the property
of C-Additivity allows great di¤erences, in this sense, among the involved bankruptcy
problems. To avoid this, Bergantiños and Méndez-Naya [4] analyze C-Additivity in
a restricted domain of bankruptcy problems, those ones in which (i) the order of the
creditors�claims is �xed and (ii) there is always at least one creditor claiming the total
endowment. They identify the Ibn Ezra�s bargaining solutions by means of C-Additivity
in this context. But, from our viewpoint, although condition (i) could be quite suitable,
the domain is really restrictive since bankruptcy problems ful�ll condition (ii) are very
unusual.

6. Partial Additivity and the Minimal Overlap Rule

This section deals with the possibility of �nding a notion of partial additivity for that
could be satis�ed by some bankruptcy rules. To reach our objective we �rst impose two
condition on the problems to be added. The �rst condition is that the position of any
creditor is the same in both bankruptcy problems, when they are ranked on the basis of
the claimed amounts; the second one is that the position of any creditor�s claim, with
regard to the total amount to be shared, does not reverse from a bankruptcy problem
to the other one. Formally,

Property 5. FIXED RELATIVE POSITION CLAIMS ADDITIVITY.
For each pair of bankruptcy problems in C, C = (E; c) and C 0 = (E0; c0), such that

(i) for all i; j 2 N; i 6= j; ci � cj () c0i � c0j and

(ii) for all i 2 N; (E � ci)(E0 � c0i) � 0,

'(E + E0; c+ c0) = '(E; c) + '(E0; c0):

Let us note that in Example 5.8 the two conditions above, (i) and (ii), are not met.
However, and unfortunately, the following example shows that there is no bankruptcy
rule satisfying this kind of Additivity together with Anonymity, a generally accepted
property demanding each agent�s reward depends on the entire structure of the problem
rather than her label (see Axiom 7 bellow, for a formal de�nition).

Example 6.1. Let us suppose that there is an Anonymous bankruptcy rule satisfying
Fixed Relative Position Claims Additivity, say ', then on the one hand

'1(20; (6; 10; 11)) = '1(14; (5; 5; 5)) + '1(6; (1; 5; 6)) = 14=3 = 4 + (2=3);
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and on the other hand

'1(20; (6; 10; 11)) = '1(6; (4; 4; 4)) + '1(14; (2; 6; 7)) =)
2 � '1(20; (6; 10; 15)) � 4

which obviously implies that ' is not a bankruptcy rule.

Example 6.1 clari�es some central characteristic which a¤ects decisively the endow-
ment distribution in a bankruptcy problem and that, up to now, has not been considered
when adding up them. Speci�cally, we refer to the existence of parts of the claims which
�are not on quarrel�in the following sense. Let us consider a given agent, i 2 N . The
following situations would guarantee that some part of agent i�s claim is not on quarrel:

(a) Agent i is the highest claimant and:
(i) There is nobody matching his claim,
or
(ii) The endowment is greater than his claim.

(b) Agent i is not the highest claimant and:
(i) After as much as possible of the excess claims of all agents, with respect

to agent i�s claim, is reimbursed, the remainder endowment is greater that what agent
i�s claim.

Formally, given a bankruptcy problem (E; c) 2 C, and an agent i 2 N , let eij (E; c) =
max f0; (cj � ci)g be j�s excess claim with respect to i�s one (which is a positive number
when cj > ci and zero otherwise). Summing over j for all j 6= i we get the aggregate
excess claim

P
j2N

eij(E; c) relative to the i-th agent. Then

De�nition 6.2. Given a bankruptcy problem in C, C = (E; c) We say that the i-th
agent�s claim is �Partially Indisputable�in (E; c) if either

(a) max
j2N 8fig

fcjg < minfci; Eg or

(b) maxf0; E �
P

j2N 8fig
eij(E; c)g > ci; whenever max

j2N 8fig
fcjg � ci:

The following �partial�Additivity that we introduce, imposes that the quality of
partial indisputableness of the creditors� claims does not change in the bankruptcy
problems that will be added up. Otherwise we could �nd situations where any unit
claimed by an agent would be disputed in the complete bankruptcy problem meanwhile
some of them would not by regarding the problem separately. Formally,
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Axiom 6. Fixed Non-Quarrelled Claims Additivity
Let ' a rule for bankruptcy problems. We say that ' satis�es Fixed Non-Quarrelled

Claims Additivity if for all pairs of bankruptcy problems in C, C = (E; c) and C 0 =
(E0; c0), such that

(a) for all i 6= j; ci � cj () c0i � c0j ,

(b) for all i 2 N; (E � ci)(E0 � c0i) � 0 and

(c) for all i 2 N; ci is partially indisputable () c0i is partially indisputable,

'(E + E0; c+ c0) = '(E; c) + '(E0; c0)

Remark 2. To understand the extent of Fixed Non-Quarrelled Claims Additivity, it
is worth noticing that in the subclass of bankruptcy problems CE this property can be
applied to any pair of problems in C, C = (E; c) and C 0 = (E0; c0), for which the order
of the agents, on the basis of the amount claimed, is strictly preserved, that is we only
need to demand that for all i 6= j; ci < cj () c0i < c

0
j and ci = cj () c0i = c

0
j :

Our next result not only shows that some kind of Additivity can be ful�lled in the
class of bankruptcy problems but also that Fixed Non-Quarrelled Claims Additivity is
the distinctive property of the Minimal Overlap Rule. Before providing it we present
formally some standard properties that will be also used.

The �rst axiom that we introduce is Anonymity. This property imposes that each
agent�s reward depends on the entire structure of the problem rather than her label.

Axiom 7. Anonymity5

Let ' be a value for bankruptcy games. We say that ' is anonymous if for each
bankruptcy problem in C, B = (E; c), and any permutation �,

� [' (E; c)] = ' (E; � (c)) .

The next axiom, called Continuity, requires that small changes in a bankruptcy
problems does not cause big changes in the agents�rewards.

5The characterization result that we are going to provide is also true if Anonymity is weakened to
Equal Tratment of Equals, that is, for each (E; c) 2 B and each fi; jg � N; if ci = cj then 'i(E; c) =
'j(E; c):We use Anonynity instead of Equal Treatment of Equals because we think that the adventages
of doing so, concerning the simpli�cation of the notation in the proofs, are fairly signi�cant and moreover,
Anonymity is a generally accepted property in our context, that is, bankruptcy problems with no
priorities.
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Axiom 8. Continuity
Let ' be a value for bankruptcy games. We say that ' is continuous if for each se-

quence of bankruptcy problems in C; f(En; cn)gn=1;::;1, that converges to a bankruptcy
problem (E; c) 2 C, i.e. lim

n!1
(En; cn) = (E; c) ;

' (E; c) = lim
n!1

' (En; cn) :

Remark 3. Note that Fixed Non-Quarrelled Claims Additivity and Continuity imply
Invariance under Claims Truncation since given a bankruptcy problems in C, C =
(E; c), and a bankruptcy rule satisfying both properties, ', we have that by Fixed
Non-Quarrelled Claims Additivity,

'(E; c) = '(E � (1=r); [minfE; cig]i2N � (1=r)i2N ) +
+'((1=r); [maxf(1=r); ci � E + (1=r)g]i2N )

for all r such that

r 2 N; (1=r) < minffcigi2N ;max
i2N

fcig � Eg:

Now, by considering the limit when r goes to in�nitum in the previous equation and
taking into account that ' is continuous we get

'(E; c) = '(E; [minfE; cig]i2N ) + '(0; [maxf0; ci � E]i2N ) =
= '(E; [minfE; cig]i2N ):

Theorem 6.3. Let ' a bankruptcy rule, ' satis�es Anonymity, Continuity and Fixed
Non-Quarrelled Claims Additivity if, and only if, ' � 'mo:

Let us observe that the axioms used in Theorem 6.3 are independent. In particular,
the Constrained Equal Awards bankruptcy rule is anonymous, continuous and does not
satisfy Fixed Non-Quarrelled Additivity. The family of asymmetric Minimal Overlap
bankruptcy rules, calledWeighted Minimal Overlap Rules (see Alcalde, Marco and Silva
[2] for a formal de�nition) satisfy Continuity and Fixed Non-Quarrelled Additivity and
are not anonymous. Finally, the bankruptcy rule that recommends the Ibn Ezra�s
proposal for any bankruptcy problem in C, C = (E; c) whenever max

i2N
fcig � E and

the Constrained Equal Losses otherwise, is anonymous, satis�es Fixed Non-Quarrelled
Additivity but does not Continuity.
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Remark 4. To conclude this Section let us point out that the �partial� Additivity
property used to characterize the Minimal Overlap bankruptcy rule is no too exclu-
sive. In fact, if we consider the domain of bankruptcy problems in which there is
nobody demanding as much as there is, a very common situation, (E; c) 2 C such that
max
i2N

fcig � E, the Constrained Equal Losses bankruptcy rule satis�es, in this domain,

Fixed Non-Quarrelled Additivity.

7. Conclusions

This paper explored the possibility of �nding additive bankruptcy rules. Following
the (cooperative) game-theoretical approach of bankruptcy problems, and the close
relationship they share with bargaining problems, we point out that there is a general
impossibility of �nding additive bankruptcy rules. This fact was shown by Bergantiños
and Méndez-Naya [4].

We then explore the possibility of �nding a restricted-additivity property that could
be satis�ed by bankruptcy rules. In this matter we �nd a positive result. When adding
bankruptcy problems where agents share similar relative positions, not only among
them but also relative to the estate, it is possible to �nd bankruptcy rules satisfying
additivity. More than that, if we restrict to anonymous and continues rules, there is a
unique possibility: the employ of the Minimal Overlap Rule proposed by O�Neill [10].

As a further research, which is already suggested in the paper, our approach gives
an insight on how to extend the Perles and Mashler [13] solution to any set of agents.
In fact, what it is somehow di¢ cult, when adding bargaining problems, is to explore
how individual�s bargaining power is added. An interpretation, in terms of bargaining
power, of our Fixed Non-Quarrelled Claims Additivity can be established as follows. If
agents�bargaining power is similar in two problems, the selected bargaining solution
should satisfy additivity in such a case. The question to be carefully explored is how to
de�ne similarity of agents�bargaining power.
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Appendix

This appendix provides a formal proof for Theorem 6.3.
Proof of Theorem 6.3.
First, it is straightforward to check that the Minimal Overlap Rule satis�es Anonymity,
Continuity and Fixed Non-Quarrelled Claims Additivity.

Now, let ' be a rule satisfying these axioms. Let us consider a problem (E; c) 2 B.
By Anonymity we can assume, w.l.o.g., that c is increasingly ordered i.e., ci � cj
whenever i < j.

Let us consider the following two cases:

Case [1] E � cn.
By Fixed Non-Quarrelled Claims Additivity and Continuity (See Remark 3) we
have that

' (E; c) = ' (E; ~c)

where the i-th component of ~c, the vector of truncated claims, is

~ci = min fci; Eg .

Let us denote P 1 = ~c1, for 1 < i � n, P i = ~ci� ~ci�1 and for all i 2 N , let denote
cP

i

k = max
�
P i; 0

	
.

Now, let us consider the following two subcases:
[1]� (a) ~cn = ~cn�1:
From Fixed Non-Quarrelled Claims Additivity we get that

' (E; ~c) =
X
i=P i 6=0

'
�
P i; cP

i
�
.

Now, let us observe that, for each i, we have that, if P i > 0 then cP
i

j = 0 for all j < i,

and cP
i

j = cP
i

i for each j � i. Therefore, by Anonymity

'j

�
P i; cP

i
�
=

8<:
0 if j < i

P i

n�i+1 if j � i
,

i.e.

'j

�
P i; cP

i
�
=

8<:
0 if j < i

~ci�~ci�1
n�i+1 if j � i
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with c0 = 0.6 And, thus, for each agent h

'h (E; ~c) =
X
i=P i 6=0

'h

�
P i; cP

i
�
=

X
i�h=P i 6=0

'h

�
P i; cP

i
�
=

=
X

i�h=P i 6=0

min fci; Eg �min fci�1; Eg
n� i+ 1 =

=
hX
i=1

min fci; Eg �min fci�1; Eg
n� i+ 1 = 'moh (E; c) .

[1]� (b) ~cn 6= ~cn�1:
Let us denote by q(j) the cardinal of the set fP i; i � j; such that P i 6= 0g: From

Fixed Non-Quarrelled Claims Additivity we get that

' (E; ~c) = '
�
P 1 + �; (fcP 1gi<n; cP

1
+ �

�
+

+
X

1<i<n=P i 6=0

'
�
P i � (�=[q(n)� 1]); fmaxf0; cP i � (�=[q(j)� 1])j2Ng

�
+

+'
�
Pn � [�=[q(n)� 1]]; (0; f�g1<i<n; cP

n

n � [�=[q(n)� 1]]
�
;

where
� = (1=r); r 2 N; � < minffP igP i 6=0; Pn([q(n)� 1]=q(n))g:

Now, by considering the limit when r goes to in�nitum in the previous equation and
taking into account that ' is continuous we get

' (E; ~c) =
X
i=P i 6=0

'
�
P i; cP

i
�
:

And from now on, by using the reasoning of the subcase [1]� (a) we get that for each

agent h
'h (E; ~c) = '

mo
h (E; c) :

Case [2] E > cn.

In such a case, there is a unique t, 0 � t < cn such that
nP
j=1

maxf0; cj � tg = E � t.

Let k be the unique agent such that ck � t > 0, and ck�1 � t � 0. So that, the claim of
the j-th agent is partially indisputable in (E; c) only for all j � k.

6Throughout this proof, and for notational convenience, we will consider c0 = 0.
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Then, by Fixed Non-Quarrelled Claims Additivity we have that

' (E; c) = '(t+ �; (fcigi<k; ft+ (�= (n� k + 1)gi�k) + (7.1)

+'(E � t� �; (f0gi<k; fci � t� (�= (n� k + 1)gi�k));

where
� = (1=r); r 2 N; � < minfE � t; (n� k + 1)(ck � t)g:

Now, by considering the limit when r goes to in�nitum in the equation [7:1]and taking
into account that ' is continuous we get

' (E; c) = '(t; [minfci; tg]i2N ) + '(E � t; [maxf0; ci � tg]i2N ):

Let us observe that the problem (t; [minft; cig]i2N ) was analyzed in case [1] above.
Therefore, for each agent h, we have that

'h
�
t; [minft; cig]i2N

�
=

hX
i=1

min fci; tg �min fci�1; tg
n� i+ 1 : (7.2)

Moreover, note that for agent h we have that

maxf0; ch � tg =

8<:
0 if h < k

ch � t if h � k
:

Since by construction
nX
i=1

maxf0; ci � tg = E � t,

we can conclude

'
�
E � t; [maxf0; ci � tg]i2N

�
= [maxf0; ci � tg]i2N : (7.3)

Therefore, by combining equations [7:1], [7:2], and [7:3], we have that, for each agent h,

'h (E; c) =

hX
i=1

min fci; tg �min fci�1; tg
n� i+ 1 +max f0; ch � tg = 'moh (E; c) .


