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We examine the evolution of the refractive index modulation when recording gratings in an
acrylamide based photopolymer. A nonlocal diffusion model is used to predict theoretically the
grating evolution. The model has been developed to account for both nonlocal spatial and temporal
effects in the medium, which can be attributed to polymer chain growth. Previously it was assumed
that the temporal effect of chain growth could be neglected. However, temporal effects due to chain
growth and monomer diffusion are shown to be significant, particularly over short recording periods
where dark field amplification is observed. The diffusion model is solved using a finite-difference
technique to predict the evolution of the monomer and polymer concentrations throughout grating
recording. Using independently measured refractive index values for each component of the
recording medium, the Lorentz-Lorenz relation is used to determine the corresponding refractive
index modulation. The corresponding diffraction efficiency is then determined using rigorous
coupled wave analysis. The diffraction efficiency curves are presented for gratings recorded using
short exposure times, monitored in real time, both during and after recording. The effect of volume
shrinkage of polymer on grating evolution is also examined. Both the nonlocal temporal response of
the material and monomer diffusion are shown to influence refractive index modulation
postexposure. © 2006 American Institute of Physics. �DOI: 10.1063/1.2200400�
I. INTRODUCTION

With current technologies reaching the limit of their stor-
age capabilities the optical data industry is searching for the
next generation of storage system to meet the demands of the
digital age.1 One possible solution is the use of holographic
techniques where terabit capacity has been predicted and
photopolymers are proving to be the recording medium of
choice.2

It is necessary, however, to develop accurate models
which describe the behavior of photopolymer. As noted, de-
velopment of such models is critical for many applications
including holographic data storage3,4 and holographic optical
element5–7 fabrication and photoembossing.8 Many such
models have been proposed. Zhao and Mouroulis9 proposed
a model, which described the evolution of grating formation
in photopolymer using a four harmonic expansion of the
standard one-dimensional �1D� diffusion equation. Sheridan
and Lawrence developed the nonlocal polymer driven diffu-
sion model �NPDD� which extended the Zhao and Mouroulis
model to include a nonlocal spatial response to account for
high spatial frequency cutoff—Model I.10 A square root re-
lationship, shown to exist between the polymerization rate
and the illuminating intensity,11,12 was also incorporated—
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Model II.13,14 Kinetics of the polymerization process has re-
cently been examined15,16 when the chain termination
mechanism is either bimolecular �two chains terminating
mutually� or primary �chain terminated with a free radical�—
Model III.

In this paper we first extend Model II to account for
volume changes occurring in the recording material during
the recording process. Karpov et al.17 and Sutherland et al.18

have examined the effect of shrinkage in photopolymer. Both
assume that free volume is created when monomer is con-
verted to polymer. This is the due to the fact that the covalent
single carbon bond in the polymer is up to 50% shorter than
the van der Waals bond in the liquid monomer state. To
model this, Sutherland et al. assumes that this results in the
formation of temporary holes, which then collapse resulting
in an overall reduction in the system volume. Karpov et al.
allow for the diffusion of these holes throughout the medium.
We assume hole collapse occurs quickly as the vacuum is
filled and therefore, in this case, make the assumption that
diffusion of holes is negligible. We then incorporate this be-
havior into the NPDD model.

The temporal response of the recording material is then
examined and a material response function proposed. The
model is solved using a finite-difference time-domain
method 19 �FDTD� and the effects of the nonlocal temporal

response on refractive index modulation using the Lorentz-
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Lorenz relation are examined.20 These results are used to
calculate diffraction efficiency using rigorous coupled wave
analysis21 �RCWA� and to carry out fits to experimental data.

An inhibition process has been noted at the beginning of
the recording process. This can be attributed to deactivation
of excited dye molecules due to the presence of oxygen in
the material.22 Models have recently been developed to de-
scribe this phenomenon.23 In this paper, however, we neglect
this dead band region when fitting our experimental data and
assume that once this inhibition is overcome the recording
process in unaffected by the presence of oxygen.

II. NONLOCAL POLYMERIZATION DRIVEN DIFFUSION
„NPDD… MODEL

The generalized 1D NPDD partial differential equation
describing photopolymerization in photopolymer can be
written in the form

�u�x,t�
�t
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�
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�x

� − �
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where u�x , t� is the free-monomer concentration, D�x , t� is
the monomer diffusion constant, F�x , t� is the polymerization
rate, N�x , t� is the polymer concentration, R�x ,x� ; t , t�� is the
nonlocal response function,10,13 H�x , t� is the hole concentra-
tion, and � is a factor introduced to specify the dominant
chain termination mechanism, either bimolecular ��=1� or
primary ��=2�.15 In this paper we examine the bimolecular
case, �=1.

A. Volume shrinkage

We assume that after a certain transience period the rate
of hole creation will be approximately equal to the rate of
hole collapse, and therefore we assume �H�h , t� /�t is small
and can be neglected from Eq. �1�. This is a first order ap-
proximation and is valid as long as both the rate of hole
formation occurring and the volume fraction of holes gener-
ated are low. The equation describing the hole formation
system can be written as

�H�x,t�
�t

= ��
−�

+� �
0

t

R�x,x�;t,t��F�x�,t���u�x�,t����dt�dx�

− kHH�x,t� , �2�

where � is the fraction of free volume created for each
double bond conversion and kH is the rate constant associ-
ated with hole collapse. Later in Sec. III, we present the
numerical results describing the effect of shrinkage on poly-
mer grating formation. The harmonics of hole composition
can be determined where H�x , t�=�iHi�t�cos�iKx� and Hi is
the ith harmonic component of hole concentration and

K=2� /�, where � is the grating fringe spacing.
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B. Nonlocal temporal response

The nonlocal response function represents the effect of
monomer concentration at location x� and t� on the amount
of material being polymerized at location x and time t. Radi-
cal chain polymerization results in chain growth away from
the point of initiation. The active tip of each chain combines
with free monomer extending the polymer chain. This results
in polymerization occurring nonlocal to the point of initia-
tion as a function of both time and space. Previously10 we
assumed that following a brief transient period, the spatial
effect of chain growth was instantaneous �local in time or
action at a distance�. However, where the use of short expo-
sures is necessary, as in optical data storage, temporal effects
become more significant.

It is assumed that the nonlocal response function can be
broken up into the product of a spatial and a temporal re-
sponse, R�x ,x� ; t , t��=R�x ,x��T�t , t��. The purely temporal
part of the response function takes account of the removal of
monomer due to past initiations, over the time interval
0� t�	 t. In the local limit, the time response function must
have the following mathematical properties:

lim
Tmax→0

	T�t�,t�
 = 
�t� − t� , �3a�

�
−�

t

T�t�,t�dt� = 1. �3b�

Previously it was argued that only events in the recent past,
quantified using Tmax, give rise to significant nonlocal tem-
poral effects and that at any time after Tmax any change in
monomer concentration at x� will give rise to an instanta-
neous change in the amount of polymerization at x. The time
response was therefore assumed to have the property that

�
t−Tmax

t

T�t�,t�dt� � 1, �4�

where Tmax was defined as the maximum effective travel
time between x and x�.10 Under this assumption, the material
response function reduces to a purely spatial response. This
assumption is clearly questionable at times close to zero be-
fore the average number of chains reaching a point has
reached a steady state and it can be assumed that only slow
adiabatic variations to the steady state occur with respect to
time. In this paper we no longer make this assumption but
extend the nonlocal diffusion model to include both a nonlo-
cal temporal and spatial response.

The effect of a chain initiated at time t� and position x�
on the amount of polymer generated at time t and position x
will decrease as the interval t− t� increases. The biggest con-
tribution to the removal of monomer at a point and time in
space will be due to chains initiated at the same position and
time. One possible temporal response function was deter-
mined to be the area normalized exponential function,

T�t − t�� =
1

�n
exp� �t − t��

�n
� , �5�

where the time constant �n determines the extent of the non-

local temporal response. As �n gets smaller the response be-
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comes more localized and T�t− t�� approaches a delta func-
tion. The effects of introducing the nonlocal temporal
response are discussed in the next section.

III. NUMERICAL SIMULATIONS

Previously the nonlocal model has been solved using a
two or four harmonic expansion.10,13 Recently it has been
shown that for certain parameter values a more rigorous
method for solving the nonlocal diffusion equation may be
necessary. Wu and Glytsis19 applied a FDTD method to solve
the nonlocal diffusion equation �Model II� in its dimension-
less form. Recently this method has been applied to solve the
extended model, which includes the nonlocal temporal
response.24 It is important to consider sampling size when
using this numerical method for both stability and accuracy.
For numerical stability the increment in the time domain,
�tD, must satisfy the stability criterion,19

�tD �
1

2

�xD
2

RD
, �6a�

where RD is a model parameter describing the relationship
between the rate of polymerization and diffusion and �xD is
the dimensionless time step. In most cases we choose
�tD=0.4 ��xD

2 /RD�, which is consistent with the Wu and
Glytsis analysis.19 However, the diffusion model now in-
cludes a time integral. In evaluating this integral, using the
trapezoidal rule, the size of �tD is critical to the numerical
accuracy of the result. To estimate a suitable value of �tD,
we examine the truncation error associated with the trapezoi-
dal rule. Using the Taylor series it can be shown that the
modulus of the truncation error, �e�, for the integral,

0
tD�T�tD , tD��dtD, is given by25

�e� �
1

12
�tD

2�T�����tD, �6b�

where �T�����=max	�T�x , tD��� ;0�x� tD�
.
By choosing a suitable value for the maximum allowable

truncation error in our system, we can then estimate an ap-
propriate value for �tD. The truncation error used was
�e�=0.005.

The NPDD model is solved for the harmonic compo-
nents of monomer, polymer, and hole concentration during
grating formation. Previously, as discussed in Sec. II, it has
been assumed that rates of polymerization respond instanta-
neously to changes in light intensity, i.e., there is no temporal
response. Therefore if illumination is stopped during grating
formation, polymerization stops instantaneously. Based on
the above analysis and assuming that all the monomer has
not been consumed completely by the end of illumination,
we would expect initiated chains to continue growing after
exposure before terminating some short time after. Colvin
et al.26 examined the harmonic evolution of polymer after
exposure. However, any subsequent change in the harmonic
amplitude was attributed solely to monomer diffusion and
the effects of “dark reactions,” i.e., continued polymer
growth after illumination, were ignored. In this section we
examine the effects of the inclusion of a nonlocal temporal

response on harmonic evolution postexposure while consid-

Downloaded 03 Feb 2009 to 193.145.230.6. Redistribution subject to 
erable unpolymerized monomer still remains available in the
material and we also examine the influence of polymer
shrinkage.

A. Effect of temporal response

Figure 1 shows the effect of dimensionless spatial and
temporal nonlocal parameters, nD and �nD, respectively, on
the polymer and monomer first harmonic evolution when
recording is stopped after tD �dimensionless time�=0.1 and
where �=1.

For small values of �nD we see that there is little increase
in polymer harmonic amplitude after exposure has stopped.
However, as the value of �nD increases the amplitude of the
polymer harmonic continues to increase significantly before
saturating. Similarly the monomer harmonic amplitude de-
creases as the monomer diffuses back into the depleted re-

FIG. 1. First harmonic coefficient of �a� monomer concentration and �b�
polymer concentration for values of nD= �1/64,1 /32,1 /8� and �nD= �i�
0.01, �ii� 0.05, and �iii� 0.1 where RD=1 and �=1.
gions of the grating layer. Assuming chain termination is not
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instantaneous once exposure has stopped, and based on the
above simulation, we see continued polymerization for a
short period after exposure.

B. Effect of hole formation

The rate at which holes are generated and collapsed will
depend on the characteristics of the material system being
examined. Here we examine the effects of a number of dif-
ferent possible parameter values. Figure 2 shows the first
harmonic of hole concentration, H1�x , tD�, for two different
values of �.

Holes are generated as polymer is formed during the
recording process. When recording stops we see the holes
continue to collapse. For longer exposures the hole concen-
tration will decrease before reaching a constant value, during
the process. In this case, however, the rate of collapse never
exceeds the rate of generation during the brief recording pe-
riod and therefore never reaches a steady state value. How-

FIG. 2. Dependence of the first harmonic amplitude of hole concentration
on �a� �, the fraction of free volume created during polymerization, and �b�
the rate at which that free volume collapses, kH. In each case RD=1, �=1,
D=0, and �nD=0.01.
ever, as discussed in Sec. II, given the slow rate of hole
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generation and collapse, and the low concentration of holes
generated in this period, our first order approximation ap-
pears valid. In the next section we examine the influence of
hole formation on the refractive index modulation.

IV. REFRACTIVE INDEX MODULATION EVOLUTION

In this section we present the measured values of the
refractive index of the main components of the photopoly-
mer recording material. We then examine the influence of
these refractive index values on the first harmonic of refrac-
tive index modulation.

A. Refractive index measurements

The unpolymerized acrylamide based photopolymer ho-
lographic recording material used contains a monomer: acry-
lamide, a binder: polyvinylalcohol �PVA�, a cross-linker:
bisacrylamide, a dye: erythrosin B, and an electron donor:
triethanolamine �TEA�. The concentrations of each compo-
nent are given in Table I.

A Metricon 2010 prism coupler27 in thick film/bulk ma-
terial index mode was used in our refractive index measure-
ments. Solutions containing different combinations of mate-
rial components were prepared and then allowed to dry on
glass slides. The refractive indices of the layers were then
measured at a wavelength of 633 nm. The results are given
in Table II.

The refractive index of the material is dependent upon
the refractive index of the individual material components
and their concentrations or volume fractions. We assume that
the material is made up mainly of monomer, polymer, and a
background material �PVA+TEA�. However, we also need
to account for the influence of the free volume created due to
hole formation during the recording process. Therefore as-
suming that volume is conserved18,20 we can write

TABLE I. Concentrations and volume fractions of photopolymer material
components.

Component
Mass
�g�

Density
�g/cm3�

Volume
�cm3�

Volume
fraction

PVA 7 1.3 5.384 615 0.333 025
Acrylamide 2.4 1.122 2.139 037 0.132 294
Bisacrylamide 0.8 1.24 0.645 161 0.039 902
TEA 8.992 1.124 8 0.494 78

TABLE II. Refractive index measurements of material components �uncer-
tainties based on repeated measurements�.

Material Refractive index

PVA 1.512 7
PVA+TEA 1.495 75±0.000 25
PVA+TEA+DYE 1.496 5±0.000 2
PVA+TEA+acrylamide 1.492 4
PVA+TEA+acrylamide+dye 1.494 1
PVA+TEA+acrylamide+bisacrylamide 1.494 8
PVA+TEA+acrylamide+bisacrylamide+dye 1.479 9±0.000 6
AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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��m� + ��p� + ��b� + ��H� = 1, �7�

where ��m�, ��p�, ��b�, and ��H� are the volume fractions
monomer, polymer, background and holes respectively.
While the collapse of holes will result in a reduction in the
overall volume, the total volume fraction is by definition
conserved. The total refractive index can then be expressed
using the Lorentz-Lorenz relation,20

n2 − 1

n2 + 2
= ��m�nm

2 − 1

nm
2 + 2

+ ��p�np
2 − 1

np
2 + 2

+ ��b�nb
2 − 1

nb
2 + 2

+ ��H�nH
2 − 1

nH
2 + 2

, �8�

where nm, np, nb, and nH, are the refractive indices of mono-
mer, polymer, background, and holes, respectively. We as-
sume that the nH=1, �i.e., in vacuo�. The volume fraction is
given by �i=xi�i /�ixi�i, where xi is the mole fraction and �i

is the molar volume of the ith component.
Using the data from Tables I and II and Eq. �8�, the

refractive index values for the main components of the ma-
terial were estimated. The results are shown in the Table III.
The calculated values of refractive index for PVA and TEA
agree closely with those in the literature.28,29 Independent
verification of our measured value for the refractive index
value of acrylamide is less clear as it is dependent on the
form of the material.30 However, having used the same
method to extract the refractive index for the previous two
components, we believe our result to be accurate. We note
that the refractive index values are estimated for dry layers at
633 nm, which replicates grating experimental conditions.

The values presented in Table III are now used to exam-
ine the theoretical temporal evolution of refractive index
modulation during the formation of transmission holographic
gratings in the photopolymer described in Table I.

B. Refractive index modulation

Using Eq. �8� and following the analysis of Aubrecht
et al.20 and Kelly et al.,24 the refractive index modulation can
be written as

TABLE III. Refractive index values of material components found in the
literature and those calculated from the results in Table II in conjunction
with the Lorentz-Lorenz relation.

Chemical Refractive index, nliterature Refractive index, ncalculated

PVA 1.52–1.55a 1.512 7
TEA 1.485b 1.484 46
Acrylamide nx=1.46, ny =1.55, nz=1.581c 1.471 62

aReference 28.
bReference 29.
cReference 30.

TABLE IV. Best fit parameters obtained for a 1 s ex

Exposure
time �s� npolyacryl nback nacryl

�n

�s�

1 1.511 1.495 1.493 0.09
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where ndark is the average refractive index of the material
before exposure. �1

�m�, �1
�p�, and �1

�H� are the first harmonic
components of monomer, polymer, and hole concentration,
respectively. The refractive index values for monomer and
binder are those shown in Table I. We can then estimate ndark

using Eq. �9� with the initial volume fraction of monomer,
�1

�m�, taken to be 0.13. This gives ndark�1.49. Using Eq. �9�
and the harmonic values determined in Sec. III we now ex-
amine the evolution of the refractive index modulation as a
function of time.

Figure 3 shows a plot of the first harmonic of refractive
index modulation for different values of the hole generation
factor �. As expected based on the NPDD model with non-
local temporal response, we observe postexposure amplifica-
tion as a result of dark field reactions. Now, however, we
also take into account the effect of monomer diffusion after
exposure. The values estimated for the refractive index of the
monomer and background indicate nb�nm. Therefore, as the
monomer diffuses back into the polymerized regions postex-
posure, the refractive index in these regions is reduced and
hence the refractive index modulation decreases. The effect
of hole generation and collapse can also be seen. The initial
growth in refractive index modulation is reduced due to the
presence of holes, having a refractive index value of nH=1.
Postexposure, however, two opposing processes exist. Col-
lapsing holes will cause the refractive index modulation to
increase while the diffusion of monomer will continue to
cause a reduction in the refractive index modulation. In each
case, as the holes collapse, the value of the refractive index
modulation tends towards the same saturation value. In the
next section we examine the experimental results and com-
pare those results to the theoretical predictions presented
here.

V. EXPERIMENTAL RESULTS

The photopolymer solution is deposited on glass slides
and allowed to dry for 48 h. The resulting plates have a
thickness of 90±5 �m, which can be measured directly us-
ing a micrometer screw gauge. Unslanted transmission holo-
graphic gratings were recorded with a spatial frequency of
1000 lines/mm. Recording was carried out using a 532 nm
solid-state laser with a recording intensity of 2 mW/cm2. A
633 nm HeNe laser was used to monitor the first order on-
Bragg diffraction efficiency. Short exposure experiments
were carried out, each for a different exposure time. Expo-
sure time was controlled using a shutter, which closes after

re.

R
D �cm2/s�
��10−10�

kH

�s−1� �
MSE

��10−11�

8 2 0.7 0.0005 6.4
posu

��
�nm�

60
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the required recording time has elapsed. We continue to
monitor the diffraction efficiency for a period after this point.
The results are shown in Fig. 4.

We see a continued slight but rapid increase in diffrac-

FIG. 3. Theoretical refractive index evolution when �a� kH=5 and �b�
kH=10 where �nD=0.01, RD=1, D=0, �=0, and �=1.

FIG. 4. Diffraction efficiency evolution for short exposures. Exposure times

are �a� 1, �b� 2, �c� 3, and �d� 5 s.
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tion efficiency postexposure followed by a slower decrease
before reaching saturation. These results follow closely the
form of refractive index evolution predicted by our theoreti-
cal simulation described in Secs. III and IV. These simula-
tions are based on the independently determined refractive
index measurements of the material components as described
in Sec. IV. Therefore the experimental results appear to con-
firm that the initial growth after exposure is influenced by
chain growth and the subsequent slow decrease can be pri-
marily attributed to monomer diffusion.

VI. FITS TO EXPERIMENTAL DATA

In a recent publication fits to this experimental data have
been presented for short exposures using the nonlocal
model,24 assuming shrinkage to be negligible. Good fits were
achieved with parameter fit values for refractive index corre-
sponding closely to those determined independently.

We now fit the data using the same procedure described
in Ref. 24, for the extended model. Examining the experi-
mental data it is evident that the evolution of the profile for
each curve is not exactly identical to the previous exposure.
However, up to 1 s the repeatability is good. Therefore we
apply our fitting procedure to the 1 s exposure data set. The
results are shown in Fig. 5.

A good fit is achieved with a mean square error �MSE�
of 6.4�10−11. However, the volume of holes relative to the
volume of polymer generated over this period is small
��=0.005� and the results would appear to support the as-
sumption that for short exposures little or no shrinkage oc-
curs and therefore volume changes do not influence signifi-
cantly the nature of grating formation examined here. Hole
decay, postexposure may also cause some initial grating am-
plification. However, once again we expect this effect to be
small due to the slow hole decay rate and the low concentra-
tion of holes generated.

VII. DISCUSSION AND CONCLUSION

In this paper we have investigated the inclusion of a
nonlocal temporal response in the NPDD model. The nu-
merical results have shown that as the extent of the nonlocal

FIG. 5. Fit to experimental data using the best fit parameters given in Table
IV for a 1 s exposure.
temporal response changes, the nature of the evolution of the
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polymer harmonics at the initial stages of exposure also
changes. Examining the effect of the inclusion of this re-
sponse when modeling grating evolution after exposure has
stopped, and based on the assumption that chain termination
is not instantaneous, we have carried out numerical simula-
tions, which predict continued polymerization for a period
after exposure. We have also extended the nonlocal model to
account for material shrinkage, which occurs during the po-
lymerization process, and examined the nature of hole for-
mation and collapse. We have estimated the refractive index
of the main components of the photopolymer recording ma-
terial. Based on these results and the results of the nonlocal
diffusion model and using the Lorentz-Lorenz relation we
have examined the evolution of the refractive index modula-
tion during short exposures and also immediately postillumi-
nation. It has been shown that with the inclusion of a nonlo-
cal temporal response, the index modulation continues to
increase after illumination and then decreases as the ampli-
tude of the monomer grating decreases due to monomer dif-
fusion. The initial results would appear to indicate that for
short exposure the influence of volume changes in the mate-
rial is negligible.

We note that this is a first order examination of hole
formation in photopolymer and is valid under the assump-
tions made in Sec. II. The initial results would appear to
indicate that it provides a good approximation to the effects
of shrinkage on grating formation. However, a more rigorous
solution to the NPDD model presented may be necessary to
fully describe this behavior. We also note that previously24

superior fits to experimental data were achieved using the
primary termination model ��=2� when compared to the bi-
molecular case ��=1�. Further work is necessary to compare
these two cases using the model presented here.
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