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ABSTRACT 
 

 

Kogelnik’s Coupled Wave Theory has been used for decades to predict the diffraction 

efficiency of volume diffraction gratings. Although this theory has been applied with 

success to volume diffraction gratings recorded under a great variety of experimental 

conditions, its predictions deviate from the actual behaviour whenever the hologram is 

thin or the refractive index is high. In these cases, it is necessary to use a more general 

Coupled Wave Theory (CW) or the Rigorous Coupled Wave Theory (RCW). Both of 

these theories allow for more than two orders propagating inside the hologram. The 

difference between them is that in the CW theory the second derivatives that appear in 

the coupled equations are disregarded. The RCW doesn’t incorporate any 

approximation and thus, since it is rigorous, permits judging the accuracy of the 

approximations included in Kogelnik’s and CW theories. In this article a comparison 

between the predictions of the three theories for phase transmission diffraction gratings 

is carried put. Over-modulated diffraction gratings are also recorded in photographic 

emulsions in order to study the applicability of Kogelnik’s Theory in this case. Good 

agreement between theory and experiment is found for both Kogelnik’s and Rigorous 

Coupled Wave Theory formulations in the particular experimental cases studied. 

 

 

Keywords: Holography; Volume holograms, Holographic recording materials, 

Photographic emulsions. 
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1. Introduction 

 

 Volume phase holograms are of relatively high importance due to their 

applications in different fields. In particular, a lot of research has been done in the field 

of holographic phase gratings. Therefore, it is interesting to understand how light 

propagates inside a periodic medium. And since the beginnings of Holography a lot of 

research has been done in order to provide an accurate background of theories that could 

predict the exact behaviour of light inside holograms. The modal theory, first proposed 

by Wagner [1] and Tamir et al. [2-3] for dielectric gratings, was introduced into 

holography by Burkhardt [4]. This theory treats the problem of the propagation of light 

inside the hologram in terms of a set of characteristic modes propagating through the 

periodic medium. On the other hand, the coupled wave theory (a good review of it can 

be found in refs 5-6) assumes that different plane waves, orders, propagate inside the 

hologram. Through the thickness of the hologram transfer of energy occurs between the 

different orders, thus at the end of the periodic structure, some of them are reinforced 

with respect to the others. In particular, a two wave coupled wave theory is very 

popular: that proposed by Kogelnik [7]. Kogelnik’s Coupled Wave Theory has the 

advantage over other theories that, in spite of being mathematically simple, it predicts 

very accurately the response of the efficiency of the first and second order for volume 

phase gratings. Nonetheless, the accuracy decreases when either the thickness is low or 

when over-modulated patterns (high refractive index modulations) are recorded in the 

hologram. In these cases, the coupled wave theory (CW) allowing for more than two 

orders or the rigorous coupled wave theory (RCW) [8] which doesn’t disregard second 

derivatives in the coupled wave equations as does CW, are needed. As has been 

demonstrated during the last two decades, since its first introduction by Moharam and 

Gaylord [8] the RCW method has accomplished the task of explaining a great number 

of physical situations associated with diffraction gratings of different kinds [9-14]. This 

theory is also useful to check into what extent the approximations made in other 

theories are valid. 

 It has been demonstrated by Moharam et al. [15-17] that the regime of 

application of Kogelnik’s Theory, usually called the Bragg regime, can be found by 

comparing two parameters, the volume factor, Q, and the grating strength, ν. The 

volume factor is proportional to the ratio of the thickness, d, of the grating to the square 
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of the period of the grating, Λ, whereas the grating strength, controls the diffraction 

efficiency, η, at Bragg condition (η = 100% if ν = π/2). Two different curves in the Q-

ν, plane, νQ = const, Q/ν = const, delimit the Raman-Nath and Bragg regimes. 

Although, several theoretical simulations have been performed to compare the different 

coupled wave theories, sometimes these simulations make use of physical values which 

are not practical in holography. Therefore, it is interesting to check the range of 

applicability of these theories when the parameters take physically obtainable values. In 

this work we will study the applicability of Kogelnik’s Coupled Wave Theory to 

different situations. To do this the efficiency response of the first order at first Bragg 

angle condition for transmission gratings with different spatial frequencies will be 

investigated. In this study, two different refractive index modulations will also be used: 

a relatively easily achievable one in many materials, such as photographic emulsions, 

dichromated gelatins or silver halide sensitised gelatins, n1 = 0.025, and a relatively 

high one, which will allow us to study the efficiency of the first order in over-modulated 

patterns, n1 = 0.055. 

 

2. Efficiency of the different orders that propagate in the diffraction grating 

 

2.1. Coupled wave equations 

 

In this section the differential equations that govern the behaviour of the 

different diffracted orders propagating inside a sinusoidal transmission diffraction 

grating will be derived. Since these equations are well known [5-6] only a brief 

description is given here. 

We will study the propagation of light inside a phase sinusoidal transmission 

grating. For simplicity the conductivity inside the grating, σ, is supposed to be zero and 

the relative permittivity in the hologram is expressed as: 

  (1) 

where εr0 is the average dielectric constant, εr1 the amplitude of the relative permittivity 

and K is the grating vector, which is related to the period of the interference fringes, Λ, 

as follows: 
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  (2) 

Following the CW and RCW approaches the electric field inside the hologram is 

supposed to be an infinite sum of orders in the form:  

  (3) 

where Si and ρ i are the amplitude and the propagation vector of the ith diffracted order, 

respectively. The propagation vector is related to the grating vector as:  

 ρ  i = ρ0+iK (4) 

ρ0 being the propagation vector of the incident wave. 

Since the electric vector E1 satisfies the wave equation inside the hologram: 

  (5) 

β is the propagation constant inside the hologram, 

  (6) 

and λ is the wavelength of light in vacuum. 

By substituting equations (1) and (3) into (5) the following well-known 

equations are obtained: 

  (7) 

This set of differential equations govern the behaviour of the several diffracted 

orders propagating inside the periodic medium. It is usually interesting to express (7) as: 

  (8) 

Ci are the called obliquity factors and are the cosine of the angles that the 

propagation vectors of the different orders form with the z axis. In the particular case of 

non-slanted diffraction gratings, Ci = cos θ0, where θ0 is the angle of reconstruction 

inside the medium. 
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The parameter κ is the coupling constant and is defined as: 

  (9) 

The Ω parameter is defined as: 

  (10) 

As has been demonstrated by Solymar and Cooke [5], Ω is a parameter which 

gives a criterion of whether the hologram is thin or thick. It is stated in ref. 5 that 

whenever Ω > 5 the hologram can be considered thick.  

Finally, the parameter P is defined as: 

  (11) 

ϕ is the angle between the fringes and the z axis, which for non-slanted geometry is 0. 

The parameter P is the called impact parameter and takes the values, P = 1 for 

reconstruction at first Bragg angle, P = 2 at the second Bragg angle, and so on. In this 

work we shall restrict the study to the first Bragg condition. 

It has been a common strategy in volume Holography to disregard the second 

derivatives of equation (8), since slow variation of the diffracted orders inside the 

grating is supposed. This is not completely true for high values of the coupling constant, 

κ, but as will be demonstrated in this study in the range of values that will be treated 

here, this approximation is perfectly valid. 

If the second derivatives are disregarded, equation (8) is transformed into the 

following, which is easier to handle: 

  (12) 

or in order to reduce the amount of significant parameters: 

  (13) 

where: 
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  (14) 

Now, equation (13) has only two significant parameters, Ω and P. The influence 

of Ω and P can easily be interpreted from equation (13). Coupling from one order to the 

two adjacent ones takes place through the last term of this equation. The importance of 

this term grows as Ω decreases, diminishing the influence of the second term. Therefore 

multi-wave diffraction occurs whenever Ω is small. Although this argument can be 

considered general, the rigorous equation (8) cannot be expressed in terms of only two 

significant parameters, Ω and P, so a more complex interpretation must be made. 

Nonetheless, it can be seen that coupling from one order to the adjacent ones is 

strengthen whenever the value of κ increases, and the product Ωκ diminishes. Thus, for 

high values of κ and low values of Q multi-wave diffraction occurs.  

 

2.2 Solution of the rigorous coupled wave equation 

 

In this section we will explain the method of solution of equation (8), which is 

based in a well-known method, first introduced by Moharam and Gaylord [8]. Although 

the method is applicable to holographic gratings surrounded by two different media, we 

will suppose that the diffraction grating is embedded in an index-matching medium. The 

method will also be restricted to unslanted transmission geometry. These assumptions 

are done in order to make an effective comparison between solutions obtained from 

equation (8) and (12), under simple conditions. 

By using the following change of variables 

  (15) 

where the upper dot represents the derivative with respect to variable z. 

equation (8) can be transformed into: 

  (16) 

where: 

  (17) 

 bi = 2βκΩi(i+P) (18) 
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 ci = 2β cos θ0 (19) 

In matrix form equation (16) is converted into: 

  (20) 

The solution of the amplitude of the different orders can be obtained in terms of 

the eigenvalues and eigenvectors of the central matrix in equation (20), which we will 

call A.  

  (21) 

qm is the mth eigenvalue of matrix A, whereas wim is the mth column element of the row 

corresponding to the ith order in the matrix composed of the eigenvectors of matrix A. 

In order to obtain the values of constants Cm the adequate boundary conditions 

must be imposed. 

The field inside the periodic medium can be expressed as: 

  (22) 

where in non-slanted geometry: 

 ξi = β Ci = β cosθ (23) 

and 

 βi = β sinθ + iK (24) 
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At the output of the hologram the electric field is expressed as: 

  (25) 

Where Ti are the amplitude of the different diffracted orders at the output of the 

hologram. 

To obtain the unknown Cm constants two conditions will be imposed: 

1) At z = 0 only the zero order propagates: 

  (26) 

by using (21): 

  (27) 

2) At z = d the tangential components of the electric and magnetic fields are continuous: 

  (28) 

  (29) 

from equations (28) and (29) this other relation can be obtained: 

  (30) 

Equations (27) and (30) permit obtaining the 2xN unknown Cm coefficients, 

where N is the number of orders retained in the calculations. Finally from equation (28) 

the amplitudes of the N diffracted orders at the end of the periodic structure can be 

obtained. The efficiency of the ith order is calculated as: 

 DEi = TiTi
* (31) 

 

2.3 Comparison between CW, RCW and Kogelnik’s theory 

 

It was previously commented that the parameters Ω and κ  provide a criterion 

whether the hologram could be considered thin or thick. In fact, if we restrict our study 

to the first Bragg condition, P = 1, and disregard the second derivatives, thus obtaining 
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equation (13), the only significant parameter is Ω. Nonetheless in the case of equation 

(8), or RCW, this study is not so simple. 

In this section we will compare the solutions obtained from equations (8) and 

(13) and the analytical expression obtained by Kogelnik for the efficiency of the first 

order at first Bragg condition. 9 orders retained in the calculations for equations (8) and 

(13): N = ± i, i = 0, 1, 2, … In this study different spatial frequencies will be considered 

and two values of the refractive index modulation n1 will be assumed, a relatively easy 

achievable value in most usual materials, n1 = 0.025, and a relatively high one, n1 = 

0.055. Especially interesting is the comparison for the second value, since Kogenik’s 

Theory will be tested in for over-modulated holograms. 

It should be noticed that CW and RCW theories assume a harmonic dependence 

of the relative permitivity, whereas experimental researchers in Holography usually 

describe the phase grating in terms of the refractive index. Therefore, it is necessary to 

relate the average and first harmonic component of the refractive index to the average 

and first harmonic component of the dielectric permittivity. Using: 

  (32) 

where n0 is the average refractive index and n1 is the refractive index modulation. 

Equation (32) holds whenever n1<<n0. In the theoretical calculations a value of n0 = 

1.63 was used, which is a practical value for materials such as photographic emulsions. 

[Insert Figure 1 about here] 

[Insert Figure 2 about here] 

Figures 1 and 2 show the efficiency of the first order, +1, as a function of the 

thickness, d, under Bragg condition for a transmission diffraction grating with a spatial 

frequency of 350 lines/mm. For the theoretical simulations of Figure 1 a value of n1 = 

0.025 was considered, whereas for Figure 2 the value of n1 = 0.055 (over-modulated) 

was assumed. It can be seen that in both cases the theoretical simulations obtained by 

using the CW and RCW method differ clearly from that obtained by using Kogelnik’s 

Theory. The values of Ω (from equation (10)) obtained for all the theoretical gratings 

considered are given in Table 1. The values of Ω took the values of 1.20 and 0.55 for 

the gratings considered in figures 1 and 2. For such a low spatial frequency it is clear 

that multi-wave diffraction occurs and Kogelnik’s Theory is not applicable. 
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Nonetheless, it is interesting to notice that good agreement between CW and RCW 

simulations is obtained, justifying the neglect of the second derivatives in this case. 

[Insert Table 1 about here] 

[Insert Figure 3 about here] 

[Insert Figure 4 about here] 

Figures 3 and 4 represent the results of the diffraction efficiency as a function of 

the thickness for a 500 lines/mm spatial frequency diffraction grating. A value of n1 = 

0.025 was considered in Figure 3 whereas n1 = 0.055 was chosen for the theoretical 

simulations of Figure 4. In the case of n1 = 0.025 Kogelnik’s, CW and RCW Theories 

all agree, but they disagree in the over-modulated case (n1 = 0.055, Ω = 1.12). Again, 

there are almost no differences between RCW and CW theories for both cases.  

[Insert Figure 5 about here] 

[Insert Figure 6 about here] 

Finally Figures 5 and 6 represent the diffraction efficiency curves for a spatial 

frequency of 750 lines/mm and Figures 7 and 8 for a spatial frequency of 1200 

lines/mm. In these cases, even in the over-modulated case, good agreement between the 

three theories is observed. It is interesting to notice that for the grating analyzed in 

Figure 6 a value of Ω = 2.51 < 5, is calculated, so the Bragg regime is not guaranteed, 

nonetheless Kogelnik’s Theory seems to be applicable for this case. 

[Insert Figure 7 about here] 

[Insert Figure 8 about here] 

 

3. Angular responses of the first diffracted order for over-modulated gratings 

 

 In this section, experimental results of the angular responses of the diffraction 

efficiency will be shown. The theoretical functions obtained by using the RCW and 

Kogelnik’s Theory will also be compared to the experimental data. 

The experiments were carried out with BB-640 plates, an ultra-fined grain red 

sensitive emulsion. Non-slanted holographic gratings were recorded on BB-640 

emulsion by the interference of two collimated beams from a He-Ne laser (633 nm). 

The experimental set-up is depicted in Figure 9. The beam ratio was 1:1 and the 

polarisation  plane was normal to the plane of incidence (TE polarisation). The angle 

between the normal of the plate and each of the incident beams was 22.5º, so that the 
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spatial frequency of the diffraction gratings was calculated as ∼1200 lines/mm. After 

exposure the holograms underwent a fixation-free rehalogenating bath [18-20] so finally 

phase volume gratings were obtained. In other works it has been demonstrated that 

fixation-free rehalogenating bleaching techniques produce phase holograms with high 

values of the refractive index modulation. Therefore, by using these techniques over-

modulated patterns could be obtained. 

[Insert Figure 9 about here] 

The diffraction efficiency of the phase holograms was calculated as the ratio of 

the diffracted beam intensity to the incident power, and Fresnel losses were also taken 

into account.  

[Insert Figure 10 about here] 

[Insert Figure 11 about here] 

Figures 10-13 show the results of the diffraction efficiency for volume phase 

transmission gratings recorded on BB-640 emulsion using fixation free rehalogenating 

techniques. The dotted points correspond to the experimental data, the dashed line to the 

theoretical simulation using Kogelnik, while the continuous line corresponds to the 

simulation performed using the RCW theory. In all cases high values of the refractive 

index modulation were recorded. The Figures are presented in order of increasing index 

modulation. In Table 2 the parameters used in the theoretical simulations are presented 

for each case. The most important fact that can be deduced from the graphs is that 

Kogelnik’s theory is highly applicable for volume holograms presenting high values of 

the volume factor, Q, even in high over-modulated cases, such as Figure 13 where a 

refractive index as high as n1 = 0.099 was stored in the hologram. 

[Insert Table 2 about here] 

 [Insert Figure 12 about here] 

[Insert Figure 13 about here] 

 

 

4. Conclusions 

 

The limits of applicability of Kogelnik’s Theory have been studied for a particular range 

of physically possible values. It has been demonstrated that for unslanted transmission 

gratings recorded with spatial frequencies of over 750 lines/mm, even for high 
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refractive index modulations, Kogelnik’s Theory is applicable in a range of thickness 

between [0 18] µm. The theoretical simulations also demonstrate that CW and RCW 

theories yield the same results for the first diffracted order at the first Bragg angle 

replay condition. 
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Tables 

 

Table 1. Values of parameter Ω for transmission diffraction gratings with different 

spatial frequencies 

 
 f = 350 lines/mm f = 500 lines/mm f = 500 lines/mm f = 1200 lines/mm 

n1 = 0.025 Ω = 1.20 Ω = 2.46 Ω = 5.53 Ω = 14.16 

n1 = 0.055 Ω = 0.55 Ω = 1.12 Ω = 2.51 Ω = 6.43 

 

 

Table 2. Values of parameters α, n1 ,d  for transmission diffraction gratings recorded on 

BB-640 emulsions 

 
 Figure 10 Figure 11 Figure 12 Figure 13 

n1 0.050 0.058 0.077 0.099 

d (µm) 7.3 7.6 7.5 7.1 

α (µm-1) 0.018 0.0.029 0.032 0.035 
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Figure Captions 

 

Figure 1.- Efficiency of the first order, at first Bragg angle condition for a transmission 

diffraction grating of 350 lines/mm with a refractive index modulation of n1 = 

0.025. 

Figure 2.- Efficiency of the first order, at first Bragg angle condition for a transmission 

diffraction grating of 350 lines/mm with a refractive index modulation of n1 = 

0.055. 

Figure 3.- Efficiency of the first order, at first Bragg angle condition for a transmission 

diffraction grating of 500 lines/mm with a refractive index modulation of n1 = 

0.025. 

Figure 4.- Efficiency of the first order, at first Bragg angle condition for a transmission 

diffraction grating of 500 lines/mm with a refractive index modulation of n1 = 

0.055. 

Figure 5.- Efficiency of the first order, at first Bragg angle condition for a transmission 

diffraction grating of 750 lines/mm with a refractive index modulation of n1 = 

0.025. 

Figure 6.- Efficiency of the first order, at first Bragg angle condition for a transmission 

diffraction grating of 750 lines/mm with a refractive index modulation of n1 = 

0.055. 

Figure 7.- Efficiency of the first order, at first Bragg angle condition for a transmission 

diffraction grating of 1200 lines/mm with a refractive index modulation of n1 = 

0.025. 

Figure 8.- Efficiency of the first order, at first Bragg angle condition for a transmission 

diffraction grating of 1200 lines/mm with a refractive index modulation of n1 = 

0.055. 

Figure 9.- Experimental set-up 

Figure 10.- Efficiency of the first order as a function of the reconstruction angle for a 

transmission diffraction grating of 1200 lines/mm recorded on BB-640 emulsion 

and presenting a refractive index modulation of n1 = 0.050 

Figure 11.- Efficiency of the first order as a function of the reconstruction angle for a 

transmission diffraction grating of 1200 lines/mm recorded on BB-640 emulsion 

and presenting a refractive index modulation of n1 = 0.058 
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Figure 12.- Efficiency of the first order as a function of the reconstruction angle for a 

transmission diffraction grating of 1200 lines/mm recorded on BB-640 emulsion 

and presenting a refractive index modulation of n1 = 0.077 

Figure 13.- Efficiency of the first order as a function of the reconstruction angle for a 

transmission diffraction grating of 1200 lines/mm recorded on BB-640 emulsion 

and presenting a refractive index modulation of n1 = 0.099 
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